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Abstract

Given a gooch-tilting module T over a ringA, let B be the endomorphism ring df, it is an open question
whether the kernel of the left-derived funcibrz§ — between the derived module categorieBaidA could be
realized as the derived module category of a inga a ring epimorphisn — C for n > 2. In this paper, we first
provide a uniform way to deal with the above question bothifting and cotilting modules by considering a new
class of modules called Ringel modules, and then give @itsifor the kernel off ®”§ — to be equivalent to the
derived module category of a riri@with a ring epimorphisnB — C. Using these characterizations, we display
both a positive example af-tilting modules from noncommutative algebra, and a cawxi@mple ofn-tilting
modules from commutative algebra to show that, in genednalopen question may have a negative answer. As
another application of our methods, we consider the duasteprefor cotilting modules, and get corresponding
criterions and counterexamples. The case of cotilting resinowever, is much more complicated than the case
of tilting modules.
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1 Introduction

As is well known, tilting theory has had significant applioas in many branches of mathematics (see [1]), and
the key objectives in this theory are tilting modules, or engenerally, tilting complexes or objects. Given a good
tilting moduleT over a ringA, let B be the endomorphism ring df, if T is classical, then a beautiful theorem of
Happel says that the derived module catega(18) of B is triangle equivalent to the derived module categ@ip)

of A (see [18]). Thus one can use derived invariants to undet$tamological, geometric and numerical properties
of A throughB, or conversely, oB throughA. This theorem also tells that one cannot get new derivedjoses
from classical tilting modules. For infinitely generatdtirig modules, Bazzoni, Mantese and Tonolo recently show
aremarkable resultZ(A) can be regarded as a full subcategory or a quotient catefja?y®) (see [6]). Moreover,

it is proved in [11] that if the projective dimension ®fis at most 1, then there is a homological ring epimorphism
A : B — C of rings such that the kernel of the total left-derived fumckt @ —, as a full triangulated subcategory
of Z(B), can be realized as the derived module categof@) of C. Thus, for (infinitely generated) good tilting
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modules of projective dimension at most 1, Happel's theanem has a new appearance and can be featured as a
recollement of derived module categories:

S A aTeE N

2(B) 2(A)

~_ N~
However, for tilting modules of higher projective dimensijthe existence of the above recollementis unknown (see
the first open question in [11]). On the one hand, the arguomsad in [11] actually does not work any more for the
general case because the proof there involves a two-terrplegnvhich depends on the projective dimension. Thus
some new ideas are necessary for attacking the generdlaitu@n the other hand, neither positive examples nor
counterexamples to this general case are known to expextg.iSquite mysterious whether the above recollement
still exists for a good tilting module of projective dimeaosiat least 2.

In the present paper, we shall consider this question inlddtafact, our discussion is implemented in the
framework of Ringel modules (see Definition 4.1). This pd®s us a way to deal with the above question uniformly
for higher tilting and cotilting modules. We first provideariacterizations of when the kernel of the functapg; —
can be realized as the derived module category of aCimgth a homological ring epimorphis®® — C, and then
use these criterions to give positive and negative exantpldse above question for tilting modules of projective
dimension bigger than 1. Finally, as another applicatioawfcriterions, we shall consider the above question for
cotilting modules.

Before stating our main results precisely, we first intragnotation and recall some definitions.

Let A be a ring with identity, and let be a natural number. A le&-moduleT is called am-tilting A-module
(see [15]) if the following three conditions are satisfied:

(T1) There is an exact sequence

0—P— —PL-LP-5T—0

of A-modules such that a} are projective, that is, the projective dimensiorTas at mosin;
(T2) Exty(T,T™) = 0 for all j > 1 and nonempty sets whereT (! denotes the direct sum btopies ofT;
(T3) There is an exact sequence

0—AASTo—T— - — Ty —0

of A-modules such thaf; is isomorphic to a direct summand of a direct sum of copieB ffr all 0 <i < n.
An n-tilting moduleT is said to begoodif (T3) can be replaced by
(T3)' there is an exact sequence

0—AA>To—Th— - —Th—0

of A-modules such thd is isomorphic to a direct summand of a finite direct sum of es@fT forall 0 <i <n.
A goodn-tilting moduleT is said to beclassicalif the modules?, in (T 1) are finitely generated (see [10, 19]).

For any given tiltingA-moduleT with (T1)-(T3), the modulel’ := @' , Ti is a gooch-tilting module which is
equivalent to the given one, that §,andT’ generate the same tilting class in the categor-afodules (see [6]).

Let T be ann-tilting A-module andB the endomorphism ring ofT. In general, the total right-derived functor
RHoma(T,—) does not define a triangle equivalence between the (unbdyiddeved categorg’ (A) of Aand the
derived category”(B) of B. However, ifaT is good, theriRHoma(T,—) is fully faithful and induces a triangle
equivalence between the derived categ@id) and the Verdier quotient a?(B) modulo the kernel KT @§ —)
of the total left-derived functof @§ — (see [6, Theorem 2.2]). Furthermore, the fun@étoma(T,—) : Z2(A) —
2(B) is an equivalence if and only T is a classical tilting module if and only if KEF @g —) vanishes (see [6]).
From this point of view, the category K@ ®§ —) measures the difference between the derived categorids
andZ(B).

Motivated by the main result in [11], we introduce the foliag notion. A full triangulated subcategony of
2(B) is said to behomologicalif there is a homological ring epimorphisB— C of rings such that the restriction
functor 2(C) — 2(B) induces a triangle equivalence frof(C) to x. Thus, if the projective dimension of a
good tilting moduleaT is at most 1, then the subcategory Kewg —) of 2(B) is homological. Now, in terms of
homological subcategories, our question can be restatied@ss:

Question. Is the full triangulated subcategoier(T @g —) of Z(B) always homological for any good n-tilting
A-module T with n> 2? Here, B is the endomorphism ring of the module T.

Let us first give several characterizations for Kegg —) to be homological.



Theorem 1.1. Suppose that A is aring and n is a natural number. Let T be a getilting A-module, and let B be
the endomorphism ring @fT . Then the following are equivalent:

(1) The full triangulated subcategoier(T @ —) of 2(B) is homological.

(2) The category consisting of the B-modules Y Withf,(T,Y) = 0 for all m > 0 is an abelian subcategory of
the category of all B-modules.

(3) The m-th cohomology of the complegma(P®,A) ®a Tg vanishes for all m> 2, where the complex*Hs a
deleted projective resolution @ff .

(4) The kernel K of the homomorphistoker$o) — Coker¢1) induced fromo : P, — Py in (T1) satisfies
Extop(T,K) = 0 for all m > 0, where¢; : Homa(P,A) A T — Homa (R, T) is the composition map under the
identification ofaTg with Homa (A, T) fori =0, 1.

In particular, if n = 2, then(1) holds if and only ifExtZ (T, A) @A T = 0.

We remark that if the category K@F @g —) is homological inz(B), then the generalized localizatian B — By
of B at the moduldp exists (see Definition 3.4) and is homological, and theeefoere is a recollement of derived

module categories:
//D(_m @
2(Br) 2(B) 7 (A)
\_/ \_/

whereD(A,) stands for the restriction functor induced by Thus, Theorem 1.1 can be regarded as a kind of
generalization of [11, Theorem 1.1 (1)], and also gives giiamation why [11, Theorem 1.1 (1)] holds.

As a consequence of Theorem 1.1, we have the following @soih which(1) extends [11, Theorem 1.1 (1)],
while our new contribution t@2) is the necessity part of the statement.

Corollary 1.2. Suppose that A is a ring and n is a natural number. Let T be a getiting A-module, and let B
be the endomorphism ring gf .

(1) If AT decomposes into M N such that the projective dimension M is at mostl and that the first syzygy
of aN is finitely generated, then the categdtgr(T ®§ —) is homological.

(2) Suppose that A is commutative. Hbma(Ti 1, Ti) = 0 for all Tj in (T3)" with 1 <i < n-—1, then the
categoryKer(T @g —) is homological if and only if the projective dimension,df is at mostl, that is, AT is a
1-tilting module.

A remarkable consequence of Corollary 1.2 is that we canmenawer to the above-mentioned question. In
fact, in Section 7.1, we display an example ofratiiting moduleT for eachn > 2 and shows that KEF @ —) is
not homological.

Dually, there is the notion of (good) cotilting modules ofitininjective dimension over arbitrary rings. This
notion involves injective cogenerators of module categgrAs is known, there is no nice duality between infinitely
generated tilting and cotilting modules. This means thathods for dealing with tilting modules may not work
dually with cotilting modules. Nevertheless, we shall ussthmds in this paper to deal with cotilting modules with
respect to some “nice” injective cogenerators. Our metleoder particularly cotilting modules over Artin algebras.
Here, our main concern again is when the induced subcatsgoiiderived categories of the endomorphism rings
of good cotilting modules are homological, or equivalertthe existence of a recollement similar to [11, Theorem
1.1 (1))

Our consideration is focused on (infinitely generated)liog modules over Artin algebras. Let D be the
usual duality of an Artin algebra. The dual modDIfAa) is an injective cogenerator for the categoryafodules,
and called therdinary injective cogeneratolOur main result for cotilting modules is as follows.

Theorem 1.3. Suppose that A is an Artin algebra. Let U be a gdoedotilting A-module with respect to the
ordinary injective cogenerator for the category of A-maghulSet R= Enda(U) and M:= Homa(U,D(A)). Then
the universal localizatioA : R — Ry of R at the modulgM is homological, and there exists a recollement of

derived module categories:
/'/Dm S
2(Rm) 2(R) Z(A)
\/ N
where O.) stands for the restriction functor induced hy

As is known, over an Artin algebra, each 1-cotilting modsleguivalent to the dual of a 1-tilting right module
(see [1, Chapter 11, Section 4.15]). However, we cannot bebilem 1.3 from the result [11, Theorem 1.1 (1)]



because the relationship between the endomorphism ring wifiaitely generated 1-cotlting module and the one
of the corresponding 1-tilting right module is unknown.

For a more general formulation of Theorem 1.3 on higher thagilmodules, one may see Corollary 6.3 and
the diagram (F) above Corollary 6.3. For higher cotiltig mies, we also give conditions and counterexamples for
subcategories from cotilting modules not to be homologitalugh additional attention is needed.

The contents of this paper are sketched as follows. In Se&jave fix notation, recall some definitions and
prove some homological formulas. In Section 3, we introchiceflective and homological subcategories in derived
categories of rings, and discuss when bireflective subodt=gare homological. In Section 4, we introduce a new
class of modules, called Ringel modules, and establish @adrtesult, Proposition 4.4, which is used not only
to decide if a bireflective subcategory is homological, Habdo investigate higher tilting and cotilting modules
in the later considerations. In Section 5, we apply the tednl previous sections to good tilting modules and
show Theorem 1.1 as well as Corollary 1.2. At the end of thisiee, we point out an example which shows that
there do exist higher tilting modules satisfying the coiodis of Corollary 1.2 (1). In Section 6, we first apply
our results in Section 4 to cotilting modules in a generdirsgtand then prove Theorem 1.3 for Artin algebras.
It is worth noting that, for cotiltingA-modulesU, recollements ofZ(Ends(U)) may depend on the choices of
injective cogenerators to which the cotilting modules a&fenred. In this section, we also give conditions for the
subcategories from cotilting modules not to be homologi€hls is a preparation for constructing counterexamples
in the next section. In Section 7, we apply our results in iBacd to good tilting module§ over commutative
rings, and give a counterexample to show that, in genera(;TKeg —) may not be realized as the derived module
category of a rin@ with a homological ring epimorphisi® — C. For higher cotilting modules, the same situation
occurs. More precisely, we shall use results in Section Gdplaly a counterexample which demonstrates that, in
general, the corresponding subcategories from cotiltindutes cannot be realizable as derived module categories
of rings. This section ends with a few open questions closdgted to the results in this paper.

2 Preliminaries

In this section, we briefly recall some definitions, basidgaand notation used in this paper. For unexplained
notation employed in this paper, we refer the reader to [hdl]the references therein.

2.1 Notation

Let ¢ be an additive category.

Throughout the paper, a full subcategaryf ¢ is always assumed to be closed under isomorphisms, that is, i
X e 3 andY € ¢ withY ~ X, thenY € 3.

Let X be an objectinc. Denote by ad@X) the full subcategory of consisting of all direct summands of finite
coproducts of copies d¥l. If ¢ admits small coproducts (that is, coproducts indexed cetsrexist inc), then we
denote by Ad@X) the full subcategory of consisting of all direct summands of small coproducts ofie®pfX.
Dually, if ¢ admits small products, then we denote by F¥dthe full subcategory of consisting of all direct
summands of small products of copiesxof

Given two morphismd : X — Y andg:Y — Z in ¢, we denote the composite éfandg by fg which is
a morphism fromX to Z. The induced morphisms Hqon(iZ, f) : Hom.(Z,X) — Hom.(Z,Y) and Hom(f,Z) :
Hom,(Y,Z) — Hom,(X,Z) are denoted by* andf,, respectively.

We denote the composition of a functer. ¢ — » between categories and» with a functorG: o — £
between categories andz by GF which is a functor front to . Let Ker(F) and Im(F) be the kernel and image
of the functorF, respectively. In particular, KéF) is closed under isomorphismsdn In this note, we require that
Im(F) is closed under isomorphismsn.

Suppose thay is a full subcategory of. Let KerfHom-(—,9")) be the left orthogonal subcategory with
respect tgy, that is, the full subcategory af consisting of the objectg such that Hom(X,Y) = O for all objects
Y in 9. Similarly, we can define the right orthogonal subcategaeyMom. (9, —)) of ¢ with respect tay .

Let%(c) be the category of all complexes ovewith chain maps, and¢’(¢) the homotopy category & (¢).
As usual, we denote biy®(¢) the category of bounded complexes o@eand by.#®(¢) the homotopy category
of €°(¢). Whenc is abelian, the derived category ofis denoted byZ(¢ ), which is the localization of# (¢) at
all quasi-isomorphisms. Itis well known that bo#i () andZ(c) are triangulated categories. For a triangulated
category, its shift functor is denoted Hf universally.



If 7 is a triangulated category with small coproducts, thenafoiobjectU in 7, we denote by TrigJ) the
smallest full triangulated subcategoryofcontainingd and being closed under small coproducts.

Suppose thar and7’ are triangulated categories with small coproducts: IfT — 7/ is a triangle functor
which commutes with small coproducts, thefiria(U)) C Tria(F(U)) for every object in 7.

2.2 Homological formulas

In this paper, all rings considered are assumed to be asisecénd with identity, and all ring homomorphisms
preserve identity. Unless stated otherwise, all moduleseferred to left modules.

LetRbe aring. We denote ig-Mod the category of all unitary leR-modules, byQg then-th syzygy operator
of R-Mod forn € N, and regar®? as the identity operator &-Mod.

If M is anR-module and is a nonempty set, then we denoteM{/) andM' the direct sum and product of
| copies ofM, respectively. Iff : M — N is a homomorphism oR-modules, then the image &fc M underf is
denoted by(x)f instead off (x). The endomorphism ring of the-moduleM is denoted by Eng(M). ThusM
becomes a natur&-Endk(M)-bimodule. Similarly, ifNg is a rightR-module, then, by our conventioN, is a left
(EndNR))°P- right R-bimodule.

As usual, we simply writ¢?’(R), .7 (R) and Z(R) for ¥ (R-Mod), .7 (R-Mod) and Z(R-Mod), respectively,
and identifyR-Mod with the subcategory a#(R) consisting of all stalk complexes concentrated in degree. ze
Let ¢ (R-proj) be the full subcategory & (R) consisting of those complexes such that all of their terradiaitely
generated projectivie-modules.

For eachn € Z, we denote bH"(—) : Z(R) — R-Mod then-th cohomology functor. A compleX® is said to
beacyclic (or exactjf H"(X*) =0 for alln € Z.

In the following, we shall recall some definitions and basict$ about derived functors defined on derived
module categories. For more details and proofs, we refé, 4, 1, 13].

Recall that’# (R)p (respectively,# (R),) denotes the smallest full triangulated subcategor#aiR) which

(i) contains all the bounded-above (respectively, bourukddw) complexes of projective (respectively, injec-
tive) R-modules, and

(ii) is closed under arbitrary direct sums (respectiveisect products).

Let JZ (R)c be the full subcategory of# (R) consisting of all acyclic complexes. ThérZ (R)p, 7 (R)c)
forms a hereditary torsion pair irt" (R) in the following sense:

(a) Both #'(R)p and.# (R)c are full triangulated subcategories.4f (R).
(b) Hom,y (g (M*,N*) = 0 for M* € %' (R)p andN® € % (R)c.
(c) For eachX® € 7 (R), there exists a distinguished triangle#i(R):

QOxe

pX* = X® — X* — (pX*)[1]

such thapX*® € # (R)p andcX® € 7 (R)c.

In particular, for each complex® in ¢ (R), the chain mapX*® D xeisa quasi-isomorphism it¥'’(R). The
complexpX*® is called theprojective resolutiorof X* in Z(R). For example, ifX is anR-module, then we can
choosg,X to be a deleted projective resolutiongof.

Note also that the property) implies that each quasi-isomorphism between complexeg {iR)p is an iso-
morphism inJZ (R), that is a chain homotopy equivalence#i(R).

Dually, the pair(.# (R)c,-# (R)1) is a hereditary torsion pair it¢"(R). This means that, for eack® in Z(R),
there exists a compleX*® € %7 (R), together with a quasi-isomorphigdg. : X* — ;X*. The complexX* is called
theinjective resolutiorof X* in Z(R).

More important, the composition functors

H(R)p— #(R)— 2(R) and #(R) — 4 (R) — 2(R)

are equivalences of triangulated categories, and the @aldacalization functoq : .7 (R) — Z(R) induces an
isomorphism Homy (g) (X®,Y*) = Homg, ) (X®,Y*®) of abelian groups whenever eith¥f € 7 (R)p or Y* €
H(R);.

For a triangle functoF : 7 (R) — 2 (S), we define itdotal left-derived functolLF : 2(R) — 2(S) by X® —
F(pX*), and itstotal right-derived functoRF : Z(R) — Z(S) by X* — F(;X*). Specially, ifF preserves acyclicity,
that is,F (X*®) is acyclic wheneveX?® is acyclic, therF induces a triangle funct®(F) : 2(R) — 2(S) defined by



X*® — F(X*). In this case, up to natural isomorphism, we hiaffe= RF = D(F ), and simply calD(F) thederived
functorof F.
Let M* be a complex oR-S-bimodules. Then, the tensor functor and the Hom-functor

M®*@g—: 2 (S — #(R) and Homk(M*,—): #(R)— # (9

form a pair of adjoint triangle functors. For the conciseni@fins of the tensor and Hom complex of two complexes,
we refer, for example, to [13, Section 2.1]. For simplicifyy € SMod andX € R-Mod, we denotéM® ®gY and
Homg(M*, X) by M* ®@sY and Hong(M®, X), respectively.

Denote byM*® @5 — the total left-derived functor df1® ® —, and byRHomg(M*, —) the total right-derived
functor of Honk(M*, —). Note that(M' ®@g —,RHomg(M*, —)) is still an adjoint pair of triangle functors.

The following result is freely used, but not explicitly stdtin the literature. Here, we will arrange it as a lemma
for later reference. For the idea of its proof, we refer to, [@&neralized Existence Theorem 10.5.9].

Lemma 2.1. Let R and S be rings, and let H#'(R) — .7 (S) be a triangle functor.

(1) Define Ly to be the full subcategory of (R) consisting of all complexes®Xsuch that the chain map
H(axe) : H(pX®) — H(X*) is a quasi-isomorphism it¥”(S). Then

(i) Ly is a triangulated subcategory of (R) containing# (R)p.

(ii) LH I’T%(R)c = {X' S Ji/(R)c | H(X') S Ji/(S)c}.

(ii ) There exists a commutative diagram of triangle functors:

H (R 7(R)

|
D(H)

LH/LH ﬂJi/(R)c—> @(S)

where £y /Ly N (R)c denotes the Verdier quotient @fy by £y N2 (R)c, and where DH) is defined by
X® = H(X*®) for X® € Ly.

(2) Define® 1 to be the full subcategory o (R) consisting of all complexes®Xsuch that the chain map
H(Bxs) : H(X®) — H(;X*) is a quasi-isomorphism it#’(S). Then

(i) ® n is a triangulated subcategory of (R) containing.# (R); .

(i) R4 N (R = {X* € # (Ric | H(X*) € # (S)c}.

(ii ) There exists a commutative diagram of triangle functors:

D(H
Rt/ NH (R ——= 9(9)

where® n/® 1 N (R)c denotes the Verdier quotient gfy by % 4 N7 (R)c, and where BH) is defined by
X®+— H(X®) for X* € R 4.

Note that ifH commutes with arbitrary direct sums, thep is closed under arbitrary direct sums.iff (R).
Dually, if H commutes with arbitrary direct products, them is closed under arbitrary direct productsi#i(R).

From Lemma 2.1, we see that, up to natural isomorphism, ttenaaf the functoiLH (respectivelyRH) on a
complexX® in Ly (respectivelyg 1) is the same as that of the functdron X®. Based on this point of view, we
obtain the following result which will be applied in our lajgroofs.

Corollary 2.2. Let R and S be two rings. Suppose tffaiG) is a pair of adjoint triangle functors with F.#'(S) —
A (R) and G: #(R) — #(S). Let®: FG — Id () ande : (LF)(RG) — Idyr) be the counit adjunctions. If
X® € . g and G X*) € L, then there exists a commutative diagran#(R):

(LF)(RG)(X*) —> X
Bx

|

FG(X*) —— J



Proof. It follows from X* € % ¢ that the quasi-isomorphisfx. : X* — ;X* in .# (R) induces a quasi-isomorphism
G(Bxe) : G(X*) — G(;X*) in £ (9). Since(# (S)p,-# (S)c) is a hereditary torsion pair itk (S), there exists a
homomorphismG(Bxs) : pG(X*) — pG(iX*®) in 2 (S) such that the following diagram is commutative:

o OIG<><.)
pG(X*) —— G(X*)
pG(Bx°)l G(Bxs)
aG(ix?)

pG(iX®) —— G(iX*)

Note that,G(Bx-) is a quasi-isomorphism it (S) since all the other chain maps in the above diagram are quasi-
isomorphisms. By the propertp) related to the paif.Z (S)p, # (S)c), we know that,G(Bx. ) is an isomorphism
in JZ (S), and therefore the chain m&f,G(Bx-)) : F(pG(X*)) — F(pG(iX*)) is an isomorphism in? (R).

Now, we can easily construct the following commutative dieny in 7 (R):

F(a ° )
F(,G(X*)) — FG(x*) — X s xo
F(pG(Bxse)) | ~ lFG(Bxﬁ le-
. . F(GG(ix')> eX R
(LF)(RG)(X*) == F(pG(iX*)) —— FG(iX*) —=iX

SinceG(X*) € L by assumption, the chain mé&dagx-)) is a quasi-isomorphism i’ (R), and is an isomor-
phisminZ(R). Clearly, the quasi-isomorphisfx. is an isomorphism i (R).

Furthermore, the coungk. : (LF)(RG)(X*) — X* is actually given by the composite of the following homo-
morphisms inZ (R):

(LF)(RG)(X*) —— F(pG(iX'))Fm))FG(iX') 0x O e ) ] (Bx-) e,

Define
1= (F(sG(Bx+))) Flagxe)) : (LF)(RG)(X*) — FG(X*)

which is an isomorphism itZ (R). It follows that there exists a commutative diagran#(R):

(LF)(RG)(X*®) —>X'
Tl

This finishes the proof.]

As a preparation for our later proofs, we mention the follogvihree homological formulas which are related to
derived functors or total derived functors. The first onalseh from [16, Theorem 3.2.1, Theorem 3.2.13, Remark
3.2.27].

Lemma 2.3. Let R and S be rings. Suppose that M is an S-R-bimodule andhlirgective S-module.
(1) If N is an R-module, then

Homs(Tor(M, N), 1) ~ Extk(N, Homg(M, 1)) for all i > 0.
(2) If L is an RP-module which has a finitely generated projective resotutioR°P-Mod, then
Homg(Exti(L, M), I) ~ TorX(L, Homg(M, 1)) for all i > 0.

The next formulais proved in [13, Section 2.1].



Lemma 2.4. Let R and S be rings. Suppose thatiX a bounded complex of R-S-bimodules. 1fe&X¢®(R-proj),
then there is a natural isomorphism of functors:

Homg(X®,R) @ — — Homx(X*,—) : €(R) — €(S).
In particular,
Homg(X*,R) ®f — — RHomg(X*,—) : Z(R) — 2(9).
The last formula is useful for us to calculate the cohomolgigyups of tensor products of complexes.

Lemma 2.5. Let n be an integer, and let S be aring and M &R-Biodule. Suppose that Y= (Y')icz is a complex
in €(S) suchthatY=0foralli >n+1, andTorf‘(M,Y') =0foralli € Zand j> 1. Let me Z with m< n. If

Tor?(M,H™Y(Y*)) = 0= Torg ; (M,H™(Y*)) for 0<t <n—m—1, then HNM ®sY*) == Tor;_,(M,H"(Y*)).

Proof. Suppose that* is the following form:

_,mel‘w;%ymd_m>Ym+l_> %Ynflﬂyn_,o_,
Fori € Z, defineC; := Cokerd'~1) = Y'/Im(d'~) andl; := Im(d'). Then we have two short exact sequences of

S-modules for eache Z:
@ O0—H(Y")—GC -l —0 and (b) 0— i 25Y* . Cyy—0.
Clearly, H'(Y*) = Ker(TiA;), andd' : Y' — Y'*1 is just the composite of the canonical surjectidn— C; with
TEA 1 G — YL, _ _
(1) We claim that ifM @sH'(Y*®) = 0, thenH'(M ®sY*) ~ Tor;(M,Ci1).
In fact, sinceM ®s— : SMod — Z-Mod is right exact, the sequence

. i—1 .
MosY 129 MesY — MesG — 0

is exact, that is, Cokét @ d'~1) ~ M ®sG;. This implies thaH' (M ®sY*) ~ Ker(1® TiA;) where
1@TNi = (1oT)(1oA) : M@sC — M®sY' ',

which is the composite of & 14 : M ®sC — M ®sl; with 1@ A : M @sli — M @sY L,
Assume thaM ®@sH'(Y*) = 0. Then 1z 15 is an isomorphism and K&t ® tiAi) ~ Ker(1® A;). Now, we apply
M ®s— to the sequenc@), and get the following exact sequence:

Tor3(M,Y*1) — Tor$(M,Ci11) — M @sli “4 M egY

Since Top(M,Y*1) = 0 by assumption, we obtain TM,Ci; 1) ~ Ker(1® Aj). It follows that
H'(M®sY®) ~ Ker(1@ To\) ~ Ker(1@ Aj) ~ Torg(M,Ci11).
This finishes the claim (1).
(2) We show that, for any > 1, if Tor(M,H'(Y®)) = 0=Tor> ; (M,H'(Y*)), then
Tory(M, Ci) — Tory, (M, Giy1).

This follows from applyingM ®s— to the exact sequences) @nd ), respectively, together with our assump-
tions onY®.
(3) Letme Z with m< n— 1. Suppose that

Torp(M,H™*(Y*)) =0=TorZ 1 (M,H™*(Y*)) for 0<t<n-m-1.

Then, by takingt = 0, we haveM ®sH™M(Y*) = 0. Thanks to (1), we havel™(M ®sY*) =~ Tor3(M,Cn1).
SinceY' =0 fori > n+1, it follows thatH"(Y*) = C,. This implies that ifn—m =1, thenH™(M ®sY*) ~
Tory (M, HM(Y*)).

Now, suppos@—m> 2. For 1<t < n—m- 1, we see fron{2) that ToP(M, Cit) — Torg, 1 (M, Crmyt41).
Thus

Torg(M, Cs1) =~ To(M,Cryi2) >~ --- ~ Tors 1 1(M, Cq_1) ~ Tory (M, Cy).

ConsequentiyH™(M ®sY*) =~ Tory(M,Cm1) =~ Tory_(M,Cn) = Tors_(M,H"(Y*)). This finishes the proof of
Lemma 2.5



2.3 Relative Mittag-Leffler modules

Now, we recall the definition of relative Mittag-Leffler mods (see [17], [2]).

Definition 2.6. A right R-moduleM is said to beR-Mittag-L efflerif the canonical map
pr: M@RR — M, m® (r))ic; — (Mn)ic; for me M, r; € R,

is injective for any nonempty sét
A right R-moduleM is said to bestrongly R-Mittag-Leffleif the m-th syzygy ofM is R-Mittag-Leffler for every
m> 0.

By [17, Theorem 1], a righR-moduleM is R-Mittag-Leffler if and only if, for any finitely generated soimdule
X of MR, the inclusionX — M factorizes through a finitely presented rigkimodule. This implies that iM is
finitely presented, then it iR-Mittag-Leffler. Actually, for such a modulél, the above map is always bijective
(see [16, Theorem 3.2.22]). Further, if the riRgs right noetherian, then each rigRtmodule isR-Mittag-Leffler
since each finitely generated rigRtmodule is finitely presented.

In the next lemma, we shall collect some basic propertiesitflytLeffler modules for later use.

Lemma 2.7. Let R be a ring and M a right R-module. Then the following stegets are true.

(1) If M is R-Mittag-Leffler, then so is each moduleAdd(Mg). In particular, each projective right R-module
is R-Mittag-Leffler.

(2) The first syzygy of M in®-Mod is R-Mittag-Leffler if and only iforf(M,R') = 0 for every nonempty set I.

(3) M is strongly R-Mittag-Leffler if and only if M is R-Mittag-ffer and Tor}(M,R') = 0 for each i> 1 and
every nonempty set I.

(4) If M is finitely generated, then M is strongly R-Mittag-Leffleand only if M has a finitely generated
projective resolution.

Proof. (1) follows from the fact that tensor functors commute with dirsums.

(2) Note that the first syzyg@r(M) of M depends on the choice of projective presentationdgf However,
the “R-Mittag-Leffler” property ofQr(M) is independent of the choice of projective presentationdgf This is
due to (1) and Schanuel’'s Lemma in homological algebra.

So, we choose an exact sequence

0—Ki—>P—M—0
of right R-modules withP; projective, and shall show thKt is R-Mittag-Leffler if and only if TOI?(M, R') =0 for

any nonempty sdt
Obviously, we can construct the following exact commugtiagram:

fel
0—— To}(M,R) —= K1 ®rR — P @rR —= M®rR —0

P

0 Ky = M! 0

wherep;, 1 <i < 2, are the canonical maps (see Definition 2.6). Since thegtiog moduld?; is R-Mittag-Leffler
by (1), the mapp; is injective. This means that, is injective if and only if so isf @ 1. Clearly, the former is
equivalent to thak; is R-Mittag-Leffler, while the latter is equivalent to that f¢M,R') = 0. This finishes the
proof of (2).
(3) For each > 0, letQi(M) stand for the-th syzygy ofM in R°P-Mod. Then, for each nonempty setwe
always have _
Tor? 1 (M,R') =~ Torf(Qk(M), R).

Now (3) follows immediately from(2).

(4) The sufficient condition is clear. Now suppose thhts stronglyR-Mittag-Leffler. We need only to show
that the first syzygy oM is finitely generated, that i3/ is finitely presented. However, this follows from the fact
that the inclusion maM — M factorizes through a finitely presented righitnodule.(]

A special class of strongly Mittag-Leffler modules is thesslaf tilting modules. The following result can be
concluded from [2, Corollary 9.8], which will play an impartt role in our proof of the main result.



Lemma 2.8. If M is a tilting right R-module, then M is strongly R-Mittdgeffler.

As a corollary of Lemmas 2.8 and 2.7 (4), we obtain the follgyvresult which is a generalization of [11,
Corollary 4.7].

Corollary 2.9. Let M be a tilting right R-module. If M is finitely generateden M is classical.

Proof. Suppose thalr is finitely generated. Then we can get an exact sequén8g from (T3) by using
the argument in [11, Corollary 4.7] repeatedly. This shdwat Mg is actually a good tilting module. Sindé is
stronglyR-Mittag-Leffler, it follows from Lemma 2.7 (4) tha¥l admits a finitely generated projective resolution.
Clearly, such a resolution can be chosen to be of finite lesigiteM has finite projective dimension. This implies
thatMg is classical ]

3 Homological subcategories of derived module categories

In this section, we shall give the definitions of bireflectared homological subcategories of derived module cate-
gories. In particular, we shall establish some applicafitertons for bireflective subcategories to be homological

Let RandSbe arbitrary rings.

LetA : R— Sbe a homomorphism of rings. We denoteXy. S-Mod — R-Mod the restriction functor induced
by A, and byD(A..) : 2(S) — 2(R) the derived functor of the exact functvy. Recall thai\ is aring epimorphism
if A« : SMod — R-Mod is fully faithful. This is equivalent to saying that tiheultiplication mapS®rS— Sis an
isomorphism inS-Mod.

Two ring epimorphisma : R— Sand)\’ : R— S are said to bequivalentif there is an isomorphismp: S— S
of rings such thakh’ = Ay. Note that there is a bijection between the equivalencesetasf ring epimorphisms
staring fromR and bireflective full subcategories BiMod, and that there is a bijection between bireflective full
subcategories dR-Mod and the abelian full subcategoriesR¥Mod which are closed under arbitrary direct sums
and direct products (see, for example, [11, Lemma 2.1]).

Recall that a ring epimorphisin: R — Sis calledhomologicalf TorR(S,S) =0 for alli > 0. This is equivalent
to that the functoD(A.) : 2(S) — Z(R) is fully faithful, or thatS®g S~ Sin 2(9). Itis known thatD(A,) has a
left adjointS®k — and a right adjoinRHomg(S, —).

Let o be a full triangulated subcategory 6f(R). We say that is bireflectiveif the inclusiony — Z2(R)
admits both a left adjoint and a right adjoint.

Combining [8, Chapter I, Proposition 2.3] with [11, Sect®], we know that a full triangulated subcategory
o of Z(R) is bireflective if and only if there exists a recollement @migulated categories of the form

£
¥y —9(R) X

wherei, is the inclusion functor. Here, by a recollement of triaragetl categories (see [7]) we mean that there are
six triangle functors between triangulated categoriekénfollowing diagram:

i* I
2(R) X
~_ _~ >~ 7

it J

L=l

such that
(1) (i*,i.), (ir,i"), (j1, ") and(j*, ) are adjoint pairs,

(2) i, j. and ] are fully faithful functors,
(3)i'j. = 0 (and thus als¢'i; = 0 andi*j, = 0), and
(4) for each objecK € Z(R), there are two canonical distinguished triangleifR):

i) — X — L ) — i OO, 1 (X) — X — i (X) — 1] (X[,

whereii'(X) — X andj; j'(X) — X are counit adjunction morphisms, and whre- j,j*(X) andX — i,i*(X)
are unit adjunction morphisms.
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Note thatx is always equivalent to the full subcategory (Qdom@(R>(—,9f)) of 2(R) as triangulated cate-
gories ( for example, see [11, Lemma 2.6]). But here we doemuire that the triangulated categorymust be a
subcategory o/ (R) in general. For more examples of recollements related tadhmgital ring epimorphisms, we
refer the reader to [12].

Clearly, ify is homological (see Definition in Section 1), then itis bieefive. Let us now consider the converse
of this statement.

From now on, we assume thatis abireflective subcategoryof Z(R), and defines’ := o NR-Mod.

It is easy to see that is closed under isomorphisms, arbitrary direct sums arettiproducts inZ(R). This
implies thats” also has the above propertiefRfMod. Moreover#£ always admits the “2 out of 3" property: For an
arbitrary short exact sequenceRrAMod, if any two of its three terms belong &, then the third one belongs &.

By [11, Lemma 2.1]# is an abelian subcategory BfMod if and only if & is closed under kernels (respectively,
cokernels) irR-Mod. This is also equivalent to saying that there existsiguaring epimorphism : R— S(up to
equivalence) such thdt is equal to IngA,).

If 9 is homological via a homological ring epimorphigmR — S, theny = Im(D(A,)) and& = Im(A,). In
this case¢g must be a full, abelian subcategoryrMod.

In general, for a bireflective subcategaryin 2(R), the categorys may not be abelian. This means that
bireflective subcategories i##(R) may not be homological. Alternatively, we can reach thispbiy looking at
differential graded rings: By the proof of [8, Chapter IVpPosition 1.1], the compleiX (R) is a compact generator
of 9. In particular, we haver = Tria(i*(R)). It follows from [1, Chapter 5, Theorem 8.5] that there exiatdg
(differential graded) ring such that its dg derived catggsrequivalent tgy as triangulated categories. In general,
this dg ring may have non-trivial cohomologies in other éegrbesides the degree 0. In other words, the category
9 may not be realized by the derived module category of an argirng.

Leti. : o — Z(R) be the inclusion functor with' : Z(R) — o as its left adjoint. Definé\ := Endy g, (i*(R)).
Then, associated withr, there is a ring homomorphism defined by

0: R— A, r—=i*(r)forreR,
where-r : R— Ris the right multiplication by map. This ring homomorphism induces a functor
3. : A-Mod — R-Mod,
called the restriction functor.
The following result is motivated by [22, Section 6 and Satfr].

Lemma 3.1. The following statements hold true.

(1) Foreach Y € o, we have H(Y*) € Im(3,) for all n € Z. In particular, H"(i*(R)) is an RA-bimodule for
allneZ.

(2) Letngr : R— i.i*(R) be the unit adjunction morphism with respect to the adjoit gi*,i,). ThenA ~
HO(i*(R)) as RA-bimodules, and there exists a commutative diagram of Rufesd

(3) IFHO(i*(R)) € o, then H'(i*(R)) = O for all n > 1, the homomorphisiis a ring epimorphism and
7 ={Y* € 2(R)|H™(Y*) € Im(3,) for all me Z}.
Proof. The proof of Lemma 3.1 is derived from [22, Section 6 and $ec’i], wherey is related to a set of
two-term complexes if#' (R-proj).
By our convention, the full subcategory (;) of R-Mod is required to be closed under isomorphisniz-idod.

Letnr: R—i.i*(R) = i*(R) be the unit adjunction morphism.
(1) LetY* € . Then we obtain the following isomorphisms for each Z:

Homg, g (i* (R),Y*[n]) — Homy, gy (R,i.(Y*)[n]) = Homy, gy (R, Y*[n]) ~ H"(Y*),
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where the firstisomorphism s given by Hong, (nr, Y*[n]), which is actually an isomorphism 8modules. Since
Homy, g, (i*(R),Y*[n]) is a leftA-module, we clearly hav"(Y*) € Im(3,). If Y* =i*(R), then one can check that
the composite of the following isomorphisms

(+)  Homgg)(i*(R),i" (R)[n]) ~ Homg,g) (R i.i* (R)[n])) = Homy, g (R,i" (R)[n]) ~ H"(i*(R))

is an isomorphism oR-A-bimodules. This implies thai"(i*(R)) is anR-A-bimodule.
(2) In (%), we taken = 0. This gives the first part qR). For the second part ¢2), we note that there exists the
following commutative diagram d®-modules:

Homg(R R) —— Hom,g (i*(R),i*(R))

Homg k) (RNR) J/N
Homgr) (Ri.i"(R))

which implies the diagram i1i2) if we identify Homg(R,R), Homy,r)(R,i.i*(R)) and Homy, ) (R NRr) with R,
HO(i*(R)) andH%(nR), respectively.
(3) Define
" i={Y* € 2(R)|H™(Y*) € Im(3,) for all me Z}.

It follows from (1) thaty C o'.

SupposeH®(i*(R)) € 9. We shall prove thay’ C o, and soy = o'

In fact, from (2) we see thai\ ~ H%(i*(R)) as R-modules, and s@/A € 7. Note that the derived functor
D(3.) : Z(N\) — 2(R) admits a right adjoint, and therefore it commutes with asloyt direct sums. Sincg is a
full triangulated subcategory ¢f (R) closed under arbitrary direct sums#(R), it follows from 2(A) = Tria(AN\)
andrA € o that Im(D(3,)) € 7. In particular, In{3,) C o .

To provey’ C o, we shall use the following statemerttg-(d) mentioned in [3, Lemma 4.6]. For the defini-
tions of homotopy limits and homotopy colimits in triangteld categories, we refer to [9, Section 2].

(a) By canonical truncations, one can show that each boundeglegroverR can be generated by its coho-
mologies, that is, iM* € €®(R), thenM*® belongs to the smallest full triangulated subcategorg(R) containing
H"(M*) with all n € Z.

(b) Any bounded-above complex ovBrcan be expressed as the homotopy limit of its bounded “guidtie
complexes, which are obtained from canonical truncations.

(c) Any bounded-below complex ov& can be expressed as the homotopy colimit of its bounded “sai-
plexes, which are obtained from canonical truncations.

(d) Any complex is generated by a bounded-above complex andrediedusbelow complex obtained by canon-
ical truncations.

Recall thaty is a full triangulated subcategory ¢f(R) closed under arbitrary direct sums and direct products
in 2(R). Therefore it is closed under taking homotopy limits and btopy colimits in2(R). Now, by the fact
Im(3,) C o and the above statemerit-(d), we can show that’ C 9. Thusy =9o".

Next, we shall show thad"(i*(R)) = 0 for alln > 1. The idea of the proof given here is essentially taken from
[22, Lemma 6.4].

On the one hand, from the adjoint péit,i.), we can obtain a triangle i%(R):

X® — R, i*(R) — X°[1].

It is cleat that the unifjr induces an isomorphism Hojk, (i*(R), Y*[n]) ~ Homg,g) (R, Y*[n]) for eachY® € o
andn € Z. This implies that Homg) (X*,Y*[n]) = 0 for Y* € 9" andn € Z.
On the other hand, by the canonical truncation at degree @btan a distinguished triangle of the following
formin Z(R):
(R)=0 =i (R) = (R — i (R[]
0 ifs>1,

such thaH3(i*(R)=°) 2{ HS(i*(R)) ifs<O,

andH' (i*(R)=1) ~ {
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It follows thatnrP = 0 and that there exists a homomorphigoR — i*(R)=C such thatya = nr. Sincei*(R) €
7 =o', we know thai*(R)=0 € o and Hon}Z(R)(X',i*(R)SO) = 0. Consequently, there exists a homomorphism
8:i*(R) — i*(R)=0 such thayy = nr 8. So, we have the following diagram ia(R):

i*(R)=0
)
X* R—"—i"(R) X*[1]
o
?*(R)zl
i*(R)=°[1]

Further, one can check thakBa = ya = nr. Sinceng: R — i,i*(R) =i*(R) is a unit morphism, we infer that
Ba = Idj(r), and so
H"(6a) = H"(B)H"(a) = Idyni(r)) for any ne Z.

n
This means thati"() : H"(i*(R)) — H"(i*(R)=?) is injective. Observe that"(i*(R)=%) = 0 forn > 1. Hence
H"(i*(R)) =0forn> 1.
Finally, we shall prove thal: R — A is a ring epimorphism.
Clearly, thed is a ring epimorphism if and only if for everfx-moduleM, the induced map Hogid,M) :
Homg(A,M) — Homg(R M) is an isomorphism. Observe that Had, M) is always surjective. To see that this
map is also injective, we shall use the commutative diagraf)iand show that the induced map

Homg(H%(nRr),M) : Homg(H°(i*(R)),M) — Homgr(R,M)

is injective. That is, we have to prove thatfif: HO(i*(R)) — M, with i = 1,2, are two homomorphisms iR-Mod
such thaH%(nR) f; = HO(nR) f2, thenf; = f,.

Now, we describe the map®(nr). Recall thaH"(i*(R)) = 0 for alln > 1. Without loss of generality, we may
assume that (R) is of the following form(up to isomorphism i (R)):

ee YN ﬂv*n+1_, I Y A E,VO_>0_>...
From the canonical truncation, we can obtain the followirggidguished triangle i (R):
Vet i (R) S HO(4(R) — V=1
whereV* =1 is of the form:
Vv ™ v 2 L Kerd ) —0— -

andrtis the chain map induced by the canonical surjecti8n— HO(i*(R)) = Cokerd—1). Applying H%(—) =
Homy () (R, —) to the above triangle, we see thaf(nr) = nr1tin 2(R) and thatH%(m) is an isomorphism of
R-modules.

Suppose that®(ngr) f1 = HO(nr) f2 : R— M with fi : HO(i*(R)) — M for i = 1,2. Thenngrtf; = ngrf,. From
the proof of(2), we have Infd.) C 9. ThusgM € 9 sinceM is anA-module. Note that the unifz : R— i.i*(R) =
i"(R) induces an isomorphism Hoppg) (i* (R),M) ~ Homg, g (R,M). Thusrtf; = 1tf; andHO(m) f; = HO(TD) f. It
follows from the isomorphism dfi®(m) that f; = f,. This means that Hog{H%(nr), M) is injective, and thus is
a ring epimorphism. This finishes the proof(8f). O

In the following, we shall systematically discuss when fhéetive subcategories of derived categories are ho-
mological. Note that some partial answers have been givireititerature, for example, see [22, Theorem 0.7 and
Proposition 5.6], [3, Proposition 1.7] and [11, Proposit®6]. Let us first mention the following criterions.
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Lemma 3.2. Lety be a bireflective subcategory &f(R), and let i : Z(R) — 9 be a left adjoint of the inclusion
9 — 2(R). Then the following are equivalent:

(1) o is homological.

(2) H™(i*(R)) = 0 for any ms 0.

(3) HO(i*(R)) € o and H™(i*(R)) = 0 for any m< 0.

(4) HO(i*(R)) € o, and the associated ring homomorphigmR — Endy R (i*(R)) is @ homological ring
epimorphism.

(5) There exists a ring epimorphisin R — S such thakS < 9 and i (R) is isomorphic inZ(R) to a complex
Z* .= (Z")nez with Z' € SModfor i = 0,1.

(6) & := 9 NR-Mod is an abelian subcategory ofRod such that i(R) is isomorphic inZ(R) to a complex
Z* == (Z")nez With Z' € & fori =0, 1.

In particular, if one of the above conditions is fulfilledethy’ can be realized as the derived category of
Endy g (i*(R)) via .

Proof. It follows from the proof of [3, Proposition 1.7] th&t) and(2) are equivalent, and th&2) implies both
(3) and(4). By Lemma 3.1 (3), we know th&B) implies(2).

Now, we show that4) implies (1). In fact, sinceH°(i*(R)) € o, it follows from Lemma 3.1 (3) that

7y ={Y* e 2(R) |H™(Y*®) € Im(3.) for all me Z},

whered: R — A= Endy,g)(i*(R)) is the associated ring homomorphism. By assumpbasia homological ring
epimorphism, and therefore the derived fun@eb..) : Z(A\) — Z(R) is fully faithful. Furthermore, we know from
[3, Lemma 4.6] that

Im(D(3,)) ={Y* € 2(R) |H™(Y*) € Im(3,) for all me Z}.

Thusy =Im(D(3,)) € Z(R), thatis,> is homological by definition. Hende) implies(1).

Consequently, we have proved ttiaj-(4) in Lemma 3.2 are equivalent.

Note that(5) and(6) are equivalent becauggis an abelian subcategory BfMod if and only if there is a ring
epimorphism : R — Ssuch that?” = Im(A,) (see [11, Lemma 2.1]).

In the following, we shall prove thgtl) implies(5) and that(5) implies(2).

Suppose thay is homological, that is, there exists a homological ringregiphismA : R — S such that the
functor D(A.) : 2(S) — Z(R) induces a triangle equivalence from(S) to 9. Thusy = Im(D(A.)). Since
i*(R) € o, we havei*(R) € Im(D(A.)). It follows that there exists a comple® := (Z")nez € €(S) such that
i*(R) ~Z* in Z(R). This showg5).

It remains to show thab) implies(2). The idea of the following proof arises from the proof of [Ptpposition
3.6].

LetA : R— Sbe aring epimorphism satisfying the assumptions in (5). \&g iseentify Im(A,.) with SMod since
M. : SMod — R-Mod is fully faithful. LetZ® be a complex ir¢’(R) such thaZ*® ~i*(R) in Z(R). We may assume
thatZ* := (Z",d")nez such thatz" € SMod for n = 0,1, and defing) = Homy,(g)(A,Z°%) : Homy g (S, 2°) —
Homy () (R, Z*). We claim that the mag is surjective.

In fact, there is a commutative diagram:

Homy (r)(S,Z°) ., Homyr)(S.2°)

P

Hom, (g (R.Z*) —2> Homyg) (R.Z*),

where¢’ = Hom, g (A,Z°), and whereq, and g, are induced by the localization functqr. %" (R) — Z(R).
Clearly, theqgy is a bijection. To prove thaii is surjective, it is sufficient to show thét is surjective.

Let f* := (f7) € Hom (g (R,Z*) with (f')icz a chain map fronR to Z*. Then f' =0 for anyi # 0 and
f9d% = 0. Sincez? is anS-module, we can defing: S— Z° by s s(1)f° for s€ S. One can check thatis a
homomorphism oR-modules withf® = Ag, as is shown in the following visual diagram:




Since\ : R— Sis a ring epimorphism and sin& is anS-module, the induced map Hegt\, Z?) : Homg(S,Z1) —
Homg(R,Z') is a bijection. Thus, from this bijection together witgd® = f%d® = 0, it follows thatgd® = 0. Now,
we can define a_morphiS(j = (g') e Homy (g (S,2°), where(g)icz is the chain map witlg® = g andg' = 0 for
anyi # 0. Thusf* = Ag*. This shows thad’ is surjective. Consequently, the méyis surjective, and the induced
map

Homy, k) (A,i*(R)) : Homgy g (Si*(R)) — Homgyr) (R i*(R))

is surjective sinc&*® ~ i*(R) in Z(R).

Finally, we shall prove that (R) ~ Sin 2(R). In particular, this will give rise ttH™(i*(R)) ~ H™(S) = 0 for
anym# 0, and therefore shoy2). So, it suffices to prove that(R) ~ Sin Z(R).

Indeed, leti, : ¥ — Z(R) be the inclusion, and lejr : R — i.i*(R) be the unit with respect to the adjoint
pair (i*,i). Clearly,i*(R) =i.i*(R) in Z(R). Since we have proved that Hok (A,i*(R)) is surjective, there
exists a homomorphism: S — i.i*(R) in 2(R) such thatnr = Av. Furthermore, sincgS belongs toy by
assumption, we see that Hof) (NR,S) : Homg g (i*(R),S) — Homgy,r)(R,S) is an isomorphism. Thus there
exists a homomorphism: i..i*(R) — Sin 2(R) such thal = nru. This yields the following commutative diagram
in 2(R):

R R R
TR I
ii*(R)— = =S— = > iLi*(R),

which shows thajr = nruvandi = Avu. Since Hom, (g (Nr.i*(R)): Homy, g, (i*(R),i*(R)) — Homy,g) (R i.i*(R))
is an isomorphism, we clearly hawe = 1; j«r). Note that Hom(A,S) : Homg(S S) — Homg(R, S) is bijective
sinceA : R — Sis a ring epimorphism. It follows froth = Avuthatvu= 1s. Thus the mau is an isomorphism in
2(R), andi*(R) =i.i*(R) ~ Sin 2(R). This shows that5) implies(2).

Hence all the statements in Lemma 3.2 are equivalent. Thehés the proofl.

Now, we mention a special bireflective subcategoryZgR), which is constructed from complexes of finitely
generated projectivB-modules. For the proof, we refer to [8, Chapter Ill, Theor2®; Chapter IV, Proposition
1.1]. See also [11, Lemma 2.8].

Lemma 3.3. LetZ be a set of complexes #i°(R-proj). Definey := Ker(Homy,g)(Tria(z),—)). Theny is bire-
flective and equal to the full subcategory?(R) consisting of complexe$¥h Z(R) such thaHomy, g (P*, Y*[n])
= Oforevery P € 2 and ne Z.

To develop properties of the bireflective subcategorie¥@R) in Lemma 3.3, we shall define the so-called
generalized localizations, which is motivated by a dismrssvith Silvana Bazzoni in 2012. In fact, this notion
was first discussed in [21] under the name “homological Iaatibns” for a set of complexes ig®(R-proj), and
is related to both the telescope conjecture and algeBrdieory. The reason for not choosing the adjective word
“homological” in this note is that we have reserved this wimndring epimorphisms.

Definition 3.4. Let Rbe aring, and lek be a set of complexes i#(R). A homomorphisms : R— Rs of rings is
called ageneralized localizationf R at > provided that

(1) As is Z-exact, that is, iP* belongs tax, thenRs ®r P* is exact as a complex ovB, and

(2) As is universallyZ-exact, that is, ifSis a ring together with &-exact homomorphism : R — S, then there
exists a unique ring homomorphigpt Rs — Ssuch thath = As .

If < consists only of two-term complexes #i°(R-proj), then the generalized localization Bfat  is the
universal localizatiorof R at 2 in the sense of Cohn (see [14]). It was proved in [14] that ersigl localizations
always exist. However, generalized localizations may migteén general. For a counterexample, we refer the
reader to [21, Example 15.2].

We remark that, in Definition 3.4 (1), ¥ consists of complexes if®(R-proj), then, for eactP® := (P')icz € 2,
the complexRs ®rP* is actually split exact as a complex oWy sinceRs g P' is a projectiveRs-module for each
i. Further, by Definition 3.4 (2), ikj : R— R is a generalized localization &fat> fori = 1,2, thenA; andA; are
equivalent, that is, there exists a ring isomorphsni; — Ry such thais = A1p.

Suppose that: is a set ofR-modules each of which possesses a finitely generated fivgjeesolution of
finite length. For eacl) € u, we choose such a projective resolutigh of finite length, and sek := {pU |
U € u} C €°(R-proj), and letR, be the generalized localization Bfat . If pU’ is another choice of finitely
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generated projective resolution of finite lengthfbr then the generalized localizationRat>' := { U’ |U € u }
is isomorphic toRy,, that is,R;, does not depend on the choice of projective resolutiorti$.of hus, we may say
thatRy, is thegeneralized localization of R at .

Generalized localizations have the following simple prtips (compare with [11, Theorem 3.1 and Lemma
3.2)).

Lemma 3.5. Let R be aring and leX be a set of complexes #°(R-proj). Assume that the generalized localization
As : R— Rs of R atZ exists. Then the following hold.

(1) For any homomorphism : R — S of rings, the ring homomorphiskgd : R — S isZ-exact.

(2) The ring homomorphisiks is a ring epimorphism.

(3) Definex* := {Homr(P*,R) | P* € XZ}. ThenAs is also the generalized localization of R at the Eét In
particular, Rs+ ~ Ry as rings.

Proof. (1) For eachP® € X, we have the following isomorphisms of complexeSehodules:
S®RP® ~ (S®R, Rs) ®rP® ~ S®R; (Rz @rP*).

SinceRs @R P* is split exact i€ (Rs), we see thaB&rP* is also split exact ir¥’(S). This means that the ring
homomorphisns¢ is Z-exact.

(2) Assume thath; : Rx — Sis a ring homomorphism for= 1,2, such thatAs$; = As¢. It follows from
(1) thatAs¢; is Z-exact. By the property2) in Definition 3.4, we obtairp; = ¢2. This implies thafAs is a ring
epimorphism.

(3) Note thatP* is in °(R-proj). It follows from Lemma 2.4 that, for any homomorphigtn— S of rings,
there are the following isomorphisms of complexes:

Homg(P*,R) ®r S~ Homg(P*,S) ~ Homgr(P*,Homg(sSR, S)) ~ Homg(S®RrP*,S).

This implies that the complex HogiP*,R) ®r Sis (split) exact in&’ (S°P) if and only if so is the comple$®g P*
in €(S). Now, (3) follows immediately from the definition of generalized Itizations.

In the following, we shall establish a relation between fiexive subcategories a7 (R) and generalized lo-
calizations. In particular, the stateme(i83 and(4) in Lemma 3.6 below will be useful for discussions in the next
section and the proof of Theorem 1.1.

Lemma 3.6. Let = be a set of complexes i°(R-proj), and let j : Tria(Z) — 2(R) be the inclusion. Define
9 = Ker(Homy,g)(Tria(Z),—)). Then the following are true.
(1) There exists a recollement of triangulated categories:

VR
y —— 2(R)

where(i*,i.) is a pair of adjoint functors with.ithe inclusion.

(2) The associated ring homomorphigmR — A := Endy g, (i*(R)) induced by i admits the following prop-
erty: For anyX-exact ring homomorphism : R — S, there exists a ring homomorphispn A — S such that
¢ =ou.

(3) IfHO(i*(R)) € 7, thend is a generalized localization of R &t In particular, if the subcategory of Z(R)
is homological, the is a generalized localization of R at

(4) Definez* := {Homg(P*,R) € ¢°(R°P-proj) | P* € 5} and9’ := Ker( Homg,(rop) (Tria(2*),—)). Theny is
homological inZ(R) if and only if so iy’ in 2(R°P).

Proof. (1) can be concluded from [11, Lemma 2.6 and Lemma 2.8].

(2) The proof here is motivated by [22, Lemma 7.3]. letR — Sbe aZ-exact ring homomorphism. Since
S®RrP* is exact in%'(S) for P* € £, we haveS®i P* = SorP® ~ 0in Z(S). Further, the functoBog —: 2(R) —
2(S) commutes with arbitrary direct sums, Sk X*® ~ 0 for eachX® € Tria(Z).

Let 2(R)/Tria(Z) denote the Verdier quotient 6#(R) by the full triangulated subcategory T¢(H). It follows
from the recollement ifl) thati* induces a triangle equivalence:

2(R)/Tria(Z) = .
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SinceS®g— sends Trié>) to zero, there exists a triangle functry — 2(S) together with a natural isomorphism
of triangle functors:

®: Sek— — Fi*: 2(R) — 2(9).

This clearly induces the following canonical ring homontagms:
% F -
N :=Endyg)(i"(R)) — Endys (F(i (R)) ~ End@(s>(8®”§ R) ~ Endy (S ~S

where the first isomorphism is induced by the natural isotisrp ®g : S®gxR — F(i*(R)) in 2(S). Now, we
definey : A — Sto be the composite of the above ring homomorphisms. Thenaasy to check that = oy.
Consequently, thd has the property mentioned (8).

(3) Assume thaH®(i*(R)) € o. By Lemma 3.1 (3), the mapis a ring epimorphism. Combining this wifg),
we know that satisfies the conditio(R) in Definition 3.4. To see thdl is the generalized localization &at Z,
we have to show thal satisfies the conditiofil) in Definition 3.4, that is is Z-exact.

In fact, by Lemma 3.1 (2), we hav& ~ H(i*(R)) as R-modules. This gives rise taA\ € 7. Note that
Homg, ) (X®,Y*®) = 0 for X* € Tria(%) andY* € 7. In particular, we have Hopyg(P*,A[n]) = 0 for anyP* € =
andn € Z. It follows thatH"(Homg(P*,A\)) ~ Hom,, () (P*,A[n]) ~ Homy,g)(P*,A[n]) = 0, and therefore the
complex Hong(P*,A\) is exact. Sincé* € ¢°(R-proj), we have Hom(P*,A) € €°(A°-proj). This implies that
Homg(P*,A\) is split exact, and therefore the complex HeriHomg(P*,A),A) over A is split exact. Now, we
claim that the latter complex is isomorphic to the complexg P* in €' (A). Actually, this follows from the
following general fact in homological algebra:

For any finitely generated projecti®moduleP, there exists a natural isomorphism/gimodules:

A®RP — Hompoo(HoMr(PA),A),  x® p [f - x(p)f]

forxe A, pe Pandf € Homg(P,A\). Consequently, the compléxorP*® is exact iné'(A), and thus is Z-exact.
Henced is a generalized localization & at 3.

Clearly, the second part of Lemma 3.6 (3) follows from theiegjences of1) and(4) in Lemma 3.2.

(4) We shall only prove the necessity @) since the sufficiency of4) can be proved similarly.

Suppose that is homological inZ(R). It follows from Lemma 3.2 (4) and Lemma 3.6 (3) that the ring
homomorphisnd : R — A is not only a homological ring epimorphism, but also a geliwrd localization ofR at
>. Moreover, by Lemma 3.5 (3), the maps also a generalized localizationRfat >*.

Note thaty’ is a bireflective subcategory 6f(R°P) by Lemma 3.3. Now, let. be a left adjoint of the inclusion
7" — P(R°P). To show thaty’ is homological inZ(R°P), we employ the equivalences @) and(4) in Lemma
3.2, and prove that

(@) HO(L(R)) € v and

(b) the ring homomorphisr : R — A’ := Endyrop) (L (R)) induced byl is homological.

Clearly, under the assumptidn), we see from(3) thatd' is a generalized localization & at>*. Sinced is
also a generalized localization Bfat =*, there exists a ring isomorphispn A’ — A such thad = &p. Note that
dis homological. It follows thad’ is homological.

It remains to showa). In fact, sinceH%(L (R)) ~ A as rightR-modules by Lemma 3.1 (2), it is sufficient to
prove that the righR-module/\’ belongs tay’. However, by(1) and Lemma 3.3, we have

7" ={Y* € 2(R®) | Homy,gop) (Homz(P*,R), Y*[n]) = 0 for P* € T andn € Z},

and by the isomorphisimp andd = &p, we get/\’ ~ A as rightR-modules. Consequently, to shaw € 7/, it is
enough to show thar belongs toy’, that is, we have to prove that Hoskor) (Homg(P*,R), A[n]) = 0 for any
P* e X andne Z.

LetP* € 3, and seP** := Homg(P*,R). SinceP* is a complex ing®(R-proj), we see from Lemma 2.4 that
Homgen(P**,A) ~ A@RrP* as complexes if¢’(A), and therefore there exist the following isomorphisms:

Hom_@(Rop> (P'*, /\[n]) ~ Hom%/(Rop> (P'*, /\[n]) o~ Hn(HOITROp(P'*,/\)) ~ Hn(/\ ®R P.)

Sinced: R— Alis a generalized localization 8atZ, the complex\ ®rP* is exact in&’ (A), thatis,H"(A@rP®) =
0 for anyn € Z. Thus Hom,gop) (P**, A[n]) = 0 forn € Z. ThusAr € 9/, and the proof of the necessity @f) is
completed]

As an application of Lemma 3.6 (3), we have the following festhich says that generalized localizations can
be constructed from homological ring epimorphisms.
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Corollary 3.7. LetA : R— S be a homological ring epimorphism. Suppose {&has a finitely generated pro-
jective resolution of finite length. Let®e a complex irg’®(R-proj), which is isomorphic inZ(R) to the mapping
cone ofA. ThenA is a generalized localization of R at P

Proof. SinceA is homological andP® is isomorphic to the mapping cone dfin Z(R), it follows from [23,
Section 4] that there is a recollement of triangulated caieg:

ST I
/D(7>\ TN
2(S) 7(R) Tria(P®)
\_/ \_/
where ], is the inclusion. This shows that := Ker(Homy, g, (Tria(P*),—)) is equivalent toZ(S). Thuso is
homological. Note thaB®g R~ S and Eng(rS) ~ S. By Lemma 3.6 (3), we know that is a generalized
localization ofRatP*. [J

4 Ringel modules

This section is devoted to preparations for proofs of ourmmasults in this paper. First, we introduce a special
class of modules, called Ringel modules, which can be coctetdl from both good tilting and cotilting modules, and
then discuss certain bireflective subcategories (of deérvedule categories) arising from Ringel modules. Finally,
we shall describe when these subcategories are homologicalarticular, we shall establish a key proposition,
Proposition 4.4, which will be applied in later sections.

Throughout this section, I& be an arbitrary ringiV anR-module andSthe endomorphism ring gfM. Then
M becomes naturally aR-S-bimodule. Further, let be an arbitrary but fixed natural number.

Definition 4.1. The R-moduleM is called ann-Ringel moduleprovided that the following three conditions are
fulfilled:
(R1) there exists an exact sequence

O—Ph— - —P —P—M—70

of R-modules such thd € addrR) forall 0 <i <n,
(R2) Exty(M,M) =0 forall j > 1, and
(R3) there exists an exact sequence

0—rR— Mg ——M; —> - — My —0

of R-modules such tha¥l; € ProdgM) forall 0 <i <n.

An n-RingelR-moduleM is said to beperfectif the ring Sis right noetherian; andoodif
(R4) the rightS-moduleM is stronglyS-Mittag-Leffler (see Definition 2.6).

Classical tilting modules are good Ringel modules. Corelgr$or a Ringel modulé/, if eachM; in (R3) is
isomorphic to a direct summand of finite direct products gfies ofM, thenM becomes a classical tilting module
(see Introduction).

If a RingelR-moduleM has the property Pré¢dM) = Add(rM) (for exampleMs is of finite length), themM
is a tilting module. In this casgM is even classical (see Corollary 2.9).

Moreover, if the ringSis right noetherian (see the statements following Definific), then any righ&-module
is S-Mittag-Leffler. Thus each perfect Ringétimodule must be good.

It is worth noting that good tilting (or cotilting) modulesay not be Ringel modules because it may not be
finitely generated. For example, the infinitely generéfechoduleQ & Q/Z is a good tilting module, but not a
Ringel module. Clearly, the good 1-cotiltidymodule Hom (Q & Q/Z,Q/Z) is not a Ringel module.

Assume thakM satisfies(R1). ThenM is isomorphic inZ(R) to the following complex of finitely generated
projectiveR-modules:

It follows from Lemma 3.3 thay” := {Y* € Z(R) | Homy,g)(M, Y*[m]) = 0 for all me Z} is a bireflective sub-
category ofZ(R).
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Now, assume tha¥l satisfies botl{R1) and(R2). Then the functors
G:=rM®5—: 2(5) — 2(R) and H:=RHomg(M,—): 2(R) — 2(9)

induce a triangle equivalence?(S) — Tria(rM) (see [1, Chapter 5, Corollary 8.4, Theorem 8.5]). Moreover,
9 =Ker(H) sinceH™(RHomg(M,Y*)) ~ Homg,g (M, Y*[m]) for eachy* € 2(R) andme Z.

Thus, by Lemma 3.6 (1) and (3) as well as Lemma 3.2, we haveolt@mving useful result for constructing
recollements of derived module categories.

Lemma 4.2. Suppose that the R-module M satisfig$) and (R2). Then there exists a recollement of triangulated
categories:

where(i*,i,) is a pair of adjoint functors with.ithe inclusion.
If, in addition, the category’ is homological inZ(R), then the generalized localizatidn: R — Ry of R at M
exists and is homological, which induces a recollement o¥dd module categories:

In the following, we shall consider when the categorys homological. In general, this category is not homo-
logical since the category

& =9 NR-Mod= {Y € R-Mod | Ext3(M,Y) = 0 for all m> 0}

may not be an abelian subcategoryReMod. So, we need to impose some additional conditions omtbeuleM.
By Lemma 3.2, whethey is homological is completely determined by the cohomologugs ofi..i*(R). So,
to calculate these cohomology groups efficiently, we shaicentrate on good Ringel modules.
From now on, we assume thgltl is agoodn-Ringel module, and defind® to be the complex

00— Mg My — e —— My —>0— -

arising from(R3) in Definition 4.1, wheréV; is in degree for 0 <i <n.
First of all, we establish the following result.

Lemma 4.3. The following statements are true.

(1) For each Xe ProdrM), the evaluation mapx : M @sHomg(M, X) — X is injective andCoker6x) € &
(2)
. 0 ifj <O
I ~ _ ]
HI(.T(R) —{ HI+1(xM @sHome(M, M*)) i j > 0.

(3) For n= 0, the complex.i*(R) is isomorphic inZ(R) to the stalk compleoker(6y,). For n> 1, the
complex ji*(R) is isomorphic inZ(R) to a complex of the form

0—E’—E!'—... —E"1—o0
withEMe &for0<m<n-1.
Proof. Recall thatM is anR-S-bimodule withS= Endk(M). So we have a pair of adjoint functors:
rRM ®s—: SMod — R-Mod and Homg(M,—):R-Mod — S-Mod.
This can be naturally extended to a pair of adjoint triangtectors between homotopy categories:

RM®@s—: .72 (S)— #(R) and Homx(M,—): 7 (R) — #(9).
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By passing to derived categories, we obtain the derivedifusG andH, respectively. Further, let
0: M®sHOMR(M, —) — ldr-mod and €:GH — ldg R

be the counit adjunctions with respect(td ®s—,Homg(M,—)) and(G,H), respectively.
Note that, for eaciX*® € Z(R), it follows from the recollementx) in Lemma 4.2 that there exists a canonical
distinguished triangle i (R):

GH(X*®) X — 0" (X®) — GH(X®)[1].
(1) LetX € ProdrM). To verify thatBx is injective, it is sufficient to show that
By : M@sHomgr(M,M") — M!

is injective for any nonempty sét Since Hong(M,M') ~ Homg(M,M)', the injection of6), is equivalent to
saying that the canonical map: M®sS — M', defined in Definition 2.6, is injective. This holds exacfij is
S-Mittag-Leffler. However, the axionfR4) ensures thatl is S-Mittag-Leffler. ThusBx : M @ sHomg(M, X) — X
is injective.

To prove Cokeffx) € & := 9 NR-Mod, we demonstrate that there is the following commuéatiiagram in
2(R):

(a) GH(X) — %~ x i,i*(X) GH(X)[1]
M ©sHOMR(M, X) — %> X —> Cokel(Bx) —> M @sHomg(M, X)[1]
With the help of this diagram and the recolleméstin Lemma 4.2, we haviei*(X) € o, and therefore
i,i"(X) ~ Coker®8x) € ¥y NR-Mod = &.

This will finish the proof of(1). So we shall prove the existence of the above diag@m
In fact, we shall first show that there exists a commutatiegdim(b) in 2(R):

(b) GH(X) — X~ x

|

M ®@sHomg(M, X) ——= X

This can be seen as follows: In Corollary 2.2, we téke= gM ®s— andG := Homr(M,—). ThenG = LF
andH = RG. To prove the existence ¢b), it suffices to provX € 8 ¢ andG(X) € . For the definitions ok ¢
andzg, we referto Lemma 2.1. _

Observe thaX € R g if and only if Exty(M, X) = 0 for anyj > 0. SinceX € ProdgM), it suffices to show that
Exty(M,M') = 0 for any j > 0 and any set. This follows from Exk(M,M') ~ Ext4(M,M)" = 0 by the axiom
(R2). ThusX € % .

Note thatG(X) € £ if and only if Torf‘(M,G(X)) =0 for anyj > 0. SinceX € ProdrM) andG commutes
with arbitrary direct products ifR-Mod, we haveG(X) € ProdsS). This means that, to prow®(X) € £, itis
sufficient to check chr(M,g) =0 for anyj > 0 and any set. However, sincéM is a good Ringel module, the
right SmoduleM is stronglyS-Mittag-Leffler by the axion{R4), and therefore T(?(M,Q) =0byLemma2.7 (3).
This showsG(X) € L.

Hence, by Corollary 2.2, the diagra(in) does exist. Now, by the recollement) in Lemma 4.2, we can extend
€x to a canonical triangle i (R): GH(X) X — i.i*(X) — GH(X)[1]. Since each short exact sequence in
R-Mod induces a canonical triangle iA(R):

M @sHomg(M, X) 2 X — Cokel(8x) — M @sHoms(M, X)[1],

the diagram(a) follows from the commutative diagrafi).
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(2) SinceM is a RingelR-module, it follows from(R3) that there is a quasi-isomorphigti— M* in 27 (R).
Consequently, we can form the following commutative diayma 2 (R):

(c) GHR —2 =R

Next, using Corollary 2.2 again, we shall show that therstexa commutative diagram #(R):

(d) GH(M®*) — ™
T

M @sHomg(M, M*) ' e

By Corollary 2.2, we need only to show tHdt € £ g andG(M*®) € L.

On the one hand, by the axioffR3) of Definition 4.1,M*® is a bounded complex such that each term of it
belongs to Pro@v). On the other hand, by Lemma 2.1, the categakiesand 2 g are triangulated subcategories of
2 (R) and.# (S), respectively. Thus, to prove thislt® € x ¢ andG(M*®) € L, itis enough to prove thaf € R ¢
andG(X) € g for anyX € ProdrM). Clearly, the latter has been shown(ity. Thus(d) follows directly from
Corollary 2.2.

Note thatdx : M @sHomgr(M, X) — X is injective by(1). SinceM; € ProdrM) by the axiom(R3), each map
By, is injective for 0<i < n. This clearly induces a complex Cok@. ) of the form:

0 Cokel(By,) - Cokex@y,) 2% ... — CokeBy, ,) 2} CokefBy,) — 0 in Z(R)
such that there is an exact sequence of complexesover
0 — M ®sHomg(M,M* ) - M* — Coker(@ye) — 0.

Since each exact sequence of complexes Bwan be naturally extended to a canonical triangl@(iR), we obtain
atriangle inZ(R):

() M®sHomg(M,M* ) % M® — Coker(6y+) — M @sHomg(M,M*)[1].
Certainly, we also have a canonical triangleZiR) from the recollement«) in Lemma 4.2:
(f) GH(R) — R—i.i"(R) — GH(R)[1].
So, combiningc), (d), (e) with (f), one can easily construct the following commutative diagia 2 (R):

€R

GH(R) R ii*(R) —— GH(R)[1]

| b

M @sHomgr(M,M*) —— M®* —— Cokel(Bye) —— M @sHomg(M, M*)[1]

In particular, we have.i*(R) ~ CokerBy.) in Z(R), and therefore
H!(i.i*(R)) ~ HI (Cokely.)) for anyj € Z.

This implies thaH ! (i,i*(R)) =0 forj <0orj>n.
Now, combining(e) with R~ M* in Z(R), we obtain a triangle i (R):

M @sHomx(M,M") — R — Coker(8y-) — M @sHomR(M, M*)[1].
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Applying the cohomology functdtl! to this triangle, one can check that
HI(i.i*(R)) ~ H! (CokefBy.)) ~ HI"1(M ®sHomg(M,M*)) for anyj > 0.

Thus(2) follows.
(3) Forn = 0, the conclusion follows from.i*(R) ~ CokelBye-) trivially. So, we may assume> 1. By the
final part of the proof of2), we know that

i.i*(R) ~ Coker(@y+) in 2(R) and H"(Cokerys)) ~H"(M @sHomg(M,M*)).

Since the(n+ 1)-term of the comple ®sHomg(M,M*) is zero, we see that"(CokeBy.)) = 0. This im-
plies that the(n — 1)-th differentiald,_1 of the complex CokéBwe) is surjective. It follows that CokéBys) is
isomorphic inZ(R) to the following complex:

() 0— CokeBy,) % CokexBy,) 2L --- — CokeBy, ,) 23 Ker(dn 1) — O.

SinceMp € ProdrM) for 0 < m < n by the axiom(R3), we see from(1) that Coke(Bu,,) € &. Note that£’ is
always closed under kernels of surjective homomorphisnsslitod. Thus Ke(d,_1) € &. This means thatt) is
a bounded complex with all of its terms #

Consequently, the compléx*(R) is isomorphic inZ(R) to the complext) with the required form in Lemma
4.3 (3). This finishes the prodf]

Remark. By the proof of Lemma 4.3 (2), we see that the compidk ®@sHomg(M, M*®) is isomorphic in
2(R) to bothgM @5 Homg(M, M*) andGH(R). This implies that, up to isomorphism, the cohomology goup
Hi (RM ®sHomg(M, M')), for j € Z, are independent of the choice of the compl&kwhich arises in the axiom
(R3) of Definition 4.1.

With the help of Lemma 3.2 and Lemma 4.3, we can prove thevidlig key proposition.

Proposition 4.4. The following statements are equivalent:
(1) The full triangulated subcategory of Z(R) is homological.
(2) The category’ is an abelian subcategory ofRod.
(3) H! (RM @sHomg(M, M*)) = Ofor any j> 2.
(4) The kernel of the homomorphigig: Coker(6y,) — Coker(By, ) induced fromv belongs tof’.

Proof. The equivalences dfL) and(2) follow from those of(1) and(6) in Lemma 3.2 together with Lemma
4.3 (3), while the equivalences @) and(3) follow from those of(1) and(2) in Lemma 3.2 together with Lemma
4.3 (2). Now we prove thafl) and(4) are equivalent. By Lemma 4.3 (2) and the equivalencélpfand (3)
in Lemma 3.2, we see that (1) is equivalent8(i.i*(R)) € 7. By the proof of Lemma 4.3 (2), we infer that
HO(i,i*(R)) ~ HO(CokelBus )) ~ Ker(dp). Thus,(1) is equivalent to Ke@do) € 9 N-ModR = &. [

As a consequence of Proposition 4.4, we have the followimglhaharacterizations.

Corollary 4.5. Assume that the projective dimensiozbf is equal to n. Then the following are true.
(1) If n <1, theny is always homological.
(2) If n = 2, theny is homological if and only if MvsExti(M,R) = 0.
(3) Suppose that & 3 and Tor>(M, Exty(M,R)) =0 for 2<j<n-1 and 0<i<j—2 Theny is
homological if and only if
Torg(M, Ext}(M,R)) =0 for 0<k<n-2.

Proof. The key point in the proof is to check when tligh cohomology grougH! (RM ®sHomMR(M, M'))
vanishes foj > 2. Note thaH! (M @sHomg(M, M®)) =0 for all j > n.

Forn < 1, the conclusion in Corollary 4.5 is clear. So, we suppose2. By the axiom(R2), we have
Exty(M,M) =0 forall j > 1. It follows that Exk(M,M") ~ Exts(M,M)' = 0 for any nonempty sét and therefore
Extsy(M,X) = 0 for anyX € ProdM).

By the axiom(R3), there exists an exact sequenc&ivod:

0—R—My—M; — -+ —MH—0
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such thatVl; € ProdM) for 0 <i < n. Since Ex&(M,X) =0 for anyX € ProdM) andj > 1, we know that the
following complex Hong(M,M*) :

0 — Homg(M,Mg) — Homg(M,M;) — Homg(M,M3) — - — Homgr(M,M;;) — 0

satisfies thaH! (Homg(M,M*)) ~ Exty(M,R) for eachj > 1.
(2) Letn= 2. Consider the compleM @ sHomg(M, M®) :

0 — M®sHomgr(M, Mo) — M®sHomMgr(M,M1) — M ®sHomr(M, Mz) — 0.
Since the functogM ®s— : SMod — R-Mod is right exact, we have
H? (M ®sHomg(M, M*®)) ~ M @sH?(Homg(M, M*®)) ~ M ®@sEXt&(M,R).

Now, the statemer{2) follows from the equivalences ¢1) and(3) in Proposition 4.4.
(3) Under the assumption ¢8), we claim that

H™(M @sHomg(M, M*)) ~ Tory_ (M, Extx(M,R)) for 2<m<n.

Consequently, the stateme®) will follow from the equivalences of1) and(3) in Proposition 4.4.

In the following, we shall apply Lemma 2.5 to prove this claiDefineY* := Homg(M, M*®). This is a complex
overSwith Y = Homg(M,M;) for0<i <n andY' =0 fori > n+ 1. Moreover, since the rigl§-moduleM is
stronglyS-Mittag-Leffler by the axionm(R4), it follows from the proof of Lemma 4.3 (1) that

Torg(M,Homg(M, X)) =0 for allk > 1 andX € ProdM).

This implies that Tgf(M,Y') =0 for alli € Z andk > 1.
Recall thatH!(Y*) ~ Ext,(M,R) for all j > 1. By assumption, we obtain

Tor(M,HI(Y*))=0 for 2<j<n—1 and 0<i<j—2
Clearly, this implies that, foreach2 m< n-—1, we have
Torp(M,H™(Y*)) =0=TorZ ; (M,H™*(Y*)) for0<t<n-m-1

It follows from Lemma 2.5 thaH™(M @sY*) = Tor;_,(M,H"(Y*)) =~ Tory_,(M, Ext3(M,R)).

To finish the proof of the claim, it remains to prod8(M ®@sY*) ~ M @sExty(M, R). However, since the functor
M ®s— is right exact and sincé' = 0 fori > n+ 1, we see that"(M @sY*) ~ M@sH"(Y*) ~ M @sExti(M, R).
This finishes the proof of the above-mentioned claim. T{&)solds.OJ

As another consequence of Proposition 4.4, we mention ffeiiog result which is not used in this note, but
of its own interest.

Corollary 4.6. (1) If Mg € Add(rM), thengM is a classical tilting module.
(2) If M1 € Add(rM), theny is homological inZ(R).

Proof. (1) Suppos®p € Add(rM). We claim that CokeBy,) = 0. In fact, sinceM is finitely generated by the
axiom(R1), the functor Hom(M, —) : R-Mod — SMod commutes with arbitrary direct sums. It follows thag th
evaluation mafyx : M®@sHomg(M, X) — X is an isomorphism for eack € Add(rM). SinceMg € Add(rM), the
mapBby, : M ®@sHomr(M,Mg) — Mg is an isomorphism, and therefore Coés,) = 0. Combining this with the
proof of Proposition 4.4, we haw®(i.i*(R)) ~ Ker(dp) = 0. Note that Eng g, (i* (R)) ~ H%(i*(R)) = HO(i.i*(R))
asR-modules by Lemma 3.1 (2). This implies that Eng(i*(R)) = 0 and soy” = 0 by Lemma 3.1 (1). Now, it
follows from Lemma 4.2 thaRHomg(M, —) : Z(R) — Z(9) is a triangle equivalence. Consequengly] is a
classical tilting module by [1, Chapter 5, Theorem 4.1].

(2) It follows from the proof of (1) that Coké®y, ) = 0. Thus (2) follows from Proposition 4.4 and Lemma 4.3
1).0
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5 Application to tilting modules: Proofs of Theorem 1.1 and Wrollary 1.2

In this section, we first develop some properties of (godthdi modules, and then give a method to construct
good Ringel modules. With these preparations in hand, wéyfiapply Proposition 4.4 to prove Theorem 1.1 and
Corollary 1.2.

Throughout this sectioni will be a ring andn a natural number. In addition, we assume thas a good
n-tilting A-module with(T1),(T2) and(T3)". LetB:=Enda(T).

First of all, we shall mention a few basic properties of gatishg modules in the following lemma. For proofs,
we refer to [1, Chapter 11, Lemma 2.7], [6, Proposition 1&mima 1.5] and [5, Proposition 3.5].

Lemma 5.1. The following hold true for the tilting moduleT .

(1) The torsion class T := {X € A-Mod | Exty(T,X) = Ofor all i > 1} in A-Mod is closed under arbitrary
direct sums in AMod.

(2) The right B-module T has a finitely generated projective lkgg&m of length at most n:

0 — Homa(Ty, T) — -+ — Homa(T1, T) — Homa(To, T) — Tg — O

with T € addaT) forall 0 <i <n.

(3) The map R — Endyor(T), defined by a— [t — at] for ac A and te T, is an isomorphism of rings.
Moreover,ExfBop(T,T) =0foralli > 1.

(4) If T, = 0in the axiom(T 3)’, thenaT is an(n— 1)-tilting module.

Let us introduce some notation which will be used througttloistsection.
Define
G:=aAT®E—: 2(B) = 2(A), H:=RHoma(T,—): 2(A) — 2(B),

Q= — 00— Homa(T,To) — HOoma(T,T1) — -+ — HOmMa(T,Tp) — 0 — ---
where Hom\(T, T;) is of degree for 0 < i < n, andQ** := Homg(Q*,B) € ¥ (B°P-proj). Clearly,Q** is isomorphic
in € (B°P-proj) to the complex

<+ — 0 — Homa(Ty, T) — -+ — HOmMA(T1, T) — Homa(Tp, T) — 0 — ---

The following result is due to Bazzoni [6, Theorem 2.2], whgays that, in genera¥(A) is not equivalent to
2(B), but a full subcategory o¥(B).

Lemma 5.2. The functor H: Z(A) — 2(B) is fully faithful, andim(H) = Ker(Homy, g, (Ker(G), —)).

The next result supplies a way to understand good tiltingutesT by some special objects or by subcategories
of derived module categories. In particular, the categaey®) is a bireflective subcategory 6f(B).

Lemma 5.3. For the tilting A-module T, we have the following:

(1) H(A) ~ Q* in 2(B) andHomy, g (Q*,Q*[m]) = 0 for any mz 0.

(2) Ker(G) = {Y* € Z(B) | Homyg)(Q®, Y*[i]) = O for all i € Z}.

(3) Let ji : Tria(Q*) — 2(B) and i, : Ker(G) — 2(B) be the inclusions. Then there exists a recollement of
triangulated categories together with a triangle equivale:

(x) Ker(G) —" > 2(B) Tria(Q*) — 2~ %(A)
~N ~_ -

such that G j' is naturally isomorphic to G.

Proof. We remark that Lemma 5.3 is implied in [6]. For conveniencthefreader, we give a proof here.
(1) By the axiom(T3)’, the stalk compleX is quasi-isomorphic if¢’(A) to the compleXT ® of the form:

s 0—Top— T — o — Ty — 00— -
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whereT; € addT) is in degreed for 0 <i < n. Further, by the axionfT2), we haveT, € T* := {X € A-Mod |
Ext,(T,X) =0 for all i > 1}. It follows from Lemma 2.1 (1) thatl (A) ~ H(T*) ~ Homa(T,T*) = Q* in Z(B).
Since the functoH is fully faithful by Lemma 5.2, we obtain

Homy, g)(Q*, Q*[m]) ~ Homy, g)(H (A), H (A)[m]) ~ Homy,a) (A, Alm]) ~ Ext(A,A) =0

for anym= 0. This shows1).
(2) SinceQ* € € (B-proj) and sinceQ** is quasi-isomorphic tdg by Lemma 5.1 (2), we have the following
natural isomorphisms of triangle functors:

RHomg(Q*, —) — Q"' @5 — — 2T ®5 —: Z(B) — 2(Z),

where the first isomorphism follows from Lemma 2.4. Note tH8{RHom g (Q®,Y*)) ~ Homy, g (Q*,Y*[m])
forme Z andY® € 2(B). This showg2).
(3) SinceQ® € € (B-proj), we know from(2) and Lemma 3.6 (1) that there exists a recollement of trizatgdl
categories:
i* I
(»*)  Ker(G) —— 2(B) —— Tria(Q"*)
On the one hand, by the correspondence of recollements aRdt®iision, torsion-free) triples (see, for exam-
ple, [11, Section 2.3]), we infer fronixx) that Im(j.) = Ker(Homy,g)(Ker(G),—)) and that the functoy. :

Tria(Q*) — Im(j.) is a triangle equivalence with the restriction pfto Im(j,) as its quasi-inverse. On the
other hand, it follows from Lemma 5.2 that (M) = Ker(Homy,g)(Ker(G), —)) and the functoH : 2(A) —
Im(H) is a triangle equivalence with the restriction®fto Im(H) as its quasi-inverse. Consequently, we see that
Im(j.) = Im(H) and the compositio |, : Tria(Q*) — Z(A) of j, with G is also a triangle equivalence.
It remains to check
G—Gjj: 72(B)— 2(A).

In fact, for anyX® € 2(B), by the recollemenixx), there exists a canonical triangledn(B) :
L0 (X®) — X LX) — i (X)),

Since Infi.i') = Im(i..) = Ker(G), we know thalG(X*) — Gj.j'(X*) in 2(B). This proveg3). O

Next, we shall investigate when the subcategory(&gof Z(B) is homological. The following result conveys
that this discussion can be proceeded along the BghoduleT.

Lemma 5.4. The categoryer(G) is a homological subcategory &f(B) if and only if Ker(RHomgos(T, —)) is @
homological subcategory @# (B°P).

Proof. In Lemma 3.6, we tak® := B andX := {Q°}. ThenZ* = {Q**} whereQ** := Homg(Q"*,B). Since

Q** is quasi-isomorphic tdg by Lemma 5.1 (2), we infer tha@** — Tg in 2(B°P) and that there exists a natural
isomorphism of triangle functors:

RHomgop(T, —) — RHomgor(Q**, —) : 2(BP) — 2(Z).
This implies that
Ker(RHomgos(T, —)) = Ker(RHomgon(Q**, —)) = {Y* | Homy gop) (Q*, Y*[m]) = 0 form € Z}.

Thus Lemma 5.4 follows from Lemmas 3.3 and 3.6 (4).

Next, we point out that each good tilting module naturallgresponds to a good Ringel module. This guarantees
that we can apply Proposition 4.4 to show Theorem 1.1.

Lemma 5.5. The right B-moduledis a good n-Ringel module.
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Proof. By Lemma 5.1 (2), the axionjR1) holds forTg, and the projective dimension dg is at mostn.
Moreover, by Lemma 5.1 (3), the axiofR2) also holds foiTg. Now, we check the axiorfR3) for Tg.
In fact, according to the axioffT 1), the modulexT admits a projective resolution d¢modules:

O—Ph——P—P—T—0
with B, € Add(aA) for 0 <i <n. Since Ex,t(T,T) =0 for eachj > 1 by the axiom(T2), it follows that the sequence
0— B — Homa(Po, T) — Homa(P1,T) — --- — Homa(Py, T) — O

of right B-modules is exact. Note that Haif?,T) € ProdTg) due toR € Add(aA). This means that the axiom
(R3) holds forTg. Thus the righB-moduleTg is ann-Ringel module.

It remains to prove thalg is good, that isTg satisfies the axiontR4).

Actually, by Lemma 5.1 (3), the maf” — Endyoe(T), defined bya+— [t — at] forac Aandt € T, is an
isomorphism of rings. Further, it follows from Lemma 2.8 tthiae right A°P-moduleT is strongly A°P-Mittag-
Leffler. Hence, the right Enge (T )-moduleT is strongly Engor (T )-Mittag-Leffler. Thus, by definition, the-
RingelB°P-moduleT is good.O]

Remark. If AT is infinitely generated, then the rigBtmoduleT is not a tilting module. In fact, it follows
from Lemma 5.1 (2) thalg is finitely generated. Suppose contrarily tAgtis a tilting right B-module. Then, by
Corollary 2.9, the righB-moduleTsg is classical, and therefoi€T is classical by Lemma 5.1 (2)-(3). Thisis a
contradiction.

Now, with the previous preparations, we are in the positioprove Theorem 1.1.

Proof of Theorem 1.1.We shall use Proposition 4.4 to show the equivalences inEned.1.
Recall that we denote by* the complex which is the deleted projective resolutiop Df

i 0—P— o —P Py —0— -

appearing in the axiorfiT 1). Here,P is in degree-i for 0 <i <n.
By Lemma 5.5, we know thak is a goodn-Ringel B°*-module and that the exact sequence in the axiB#)
can be chosen as

0 — Bg — Homa(Po, T) — HOMa(Py,T) — -+ — Homa(P,,T) — O.
In particular, the complek*® in Proposition 4.4 can be chosen to be the following complex:
Homa(P*,T): --- — 0 — Homa(Po, T) — Homa(Py,T) — --- — HOoma (P, T) — 0 — - -+
Now, in Proposition 4.4, we take := B°P, S:= A°® andM := rTs. Further, let
H = RHomgon (T, —) : 2(B°?) — 2(AP).

It follows from Lemma 5.4 that Ké() is homological inZ(R) if and only if so is KefH) in 2(B°P). In other
words, the statemet(l) in Theorem 1.1 is equivalent to the following statement:

(1") The category KeiH) is a homological subcategory 6f(B°F).

In the following, we shall show thdfl’) is equivalent tq2), (3) and(4), respectively.

We first show thaf1’) and(2) are equivalent. In fact, it follows form Proposition 4.4tl#) is equivalent to

(2') The category’ := {Y € B°*-Mod | Exts(T,Y) = 0 for all m> 0} is an abelian subcategory Bf*-Mod.
So, we will show thaf?') is equivalent tq2). For this aim, we set/ := {X € B-Mod | Torg,(T,X) = 0 for all m>
0}, and establish a connection betweshand&. Let ()Y be the dual functor Hop(—,Q/Z) : Z-Mod —
Z-Mod.

Now, we claim that—)" induces two exact functors:

() — & and ()& — o

such thaX € .« if and only if XY € &, and thalY € & if and only if YV € .7, whereX € B-Mod andY € B°°-Mod.
In fact, it is known thatQ/Z is an injective cogenerator f@-Mod, and tha{—)" admits the following proper-
ties:
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(a) For eachM € Z-Mod, if MY = 0, thenM = 0.

(b) A sequence 6~ X; — Xp — X3 — 0 of Z-modules is exact if and only if 8 (X3)¥ — (X2)¥ — (X1)V — 0
is exact.

On the one hand, for eache B-Mod, it follows from Lemma 2.3 (1) that

(TorB(T, X))V ~ Extihy(T, X") forall m> 0.

This implies thaX € .« if and only if XV € &. This is due tqa).
On the other hand, sinck has a finitely generated projective resolutionBtP-Mod by Lemma 5.1 (2), it
follows from Lemma 2.3 (2) that

(Extibe(T,Y))Y ~ TorE(T,Y") forall m> 0 and for anyy € B°*-Mod.

This means that € & if and only if YV € .«7, again due tda). This finishes the proof of the claim.

Recall thater always admits the “2 out of 3" property: For an arbitrary shexact sequence iB-Mod, if any
two of its three terms belong te7, then so does the third. Moreovey, is an abelian subcategory BfMod if
and only if &7 is closed under kernels (respectively, cokerneld8-iod. Clearly, similar statements hold for the
subcategory’ of B°P-Mod.

By the above-proved claim, one can easily show ti¥ais closed under kernels iB-Mod if and only if & is
closed under cokernels B°P-Mod. It follows that. is an abelian subcategory BfMod if and only if & is an
abelian subcategory &°P-Mod. Thus(2') is equivalent tq2), and thereforél’) and(2) are equivalent.

Next, we shall verify thatl’) and(3) are equivalent. Actually, it follows form Proposition 4t (1) is also
equivalent to the following statement:

(3) HI(Homgoo(T,M*) ®AT) = 0 for all j > 2, where Horgop(T, M*) := Homgon(T,Homa(P*, T)) is the
complex of the form:

0— HOH‘BOP(T,HomA(P(),T)) — HomBop(T,HomA(Pl,T)) —_— e — HomBop(T,HomA(Pn,T)) — 0,

with Homgop(T,Homa (P, T)) in degred for 0 <i <n.

So it suffices to verify that3') and (3) are equivalent. Clearly, for this purpose, it is enough tovslhat
Homa(P*,A) ~ Homgeo(T,Homa(P®, T)) as complexes ovex°P.

Note that there exists a natural isomorphism of additivetfors:

Homgop(T,Homa(—, T)) — Homgop(Homa (A, T), Homa(—, T)) : A-Mod — A°P-Mod.
Moreover, the functo® := Homa(—, T) yields a natural transformation:
Homa(—,A) — Homgop(P(A), ®(—)) : A-Mod — A°P-Mod.
Now we shall show that this transformation is even a natshiorphism. Clearly, it is sufficient to prove that
® : Homa(X,A) — Homgop(®(A), d(X))

for any projectiveA-moduleX. In the following, we will show that this holds even for aAymoduleX.

In fact, sinceT is a good tiltingA-module, it follows from the axionfT3)’ that there exists an exact sequence
0—A—To— Ty with T €addT) fori=0,1. By Lemma5.1 (2), we obtain another exact sequ&r(de) —
®(Tp) — ®(A) — 0 of B°*-modules. This gives rise to the following exact commuttiagram:

00— Homa(X,A) ——————— Homa(X,To) ————— Homa(X, T1)
I | |
0 —— Homgop(P(A), ®(X)) —— Homgop(P(To), (X)) —— Homeen(P(T1), (X))
where the isomorphisms in the second and third columns agedally € addT) andT; € addT), respectively.
Consequently, the : Homa(X,A) — Homgop(P(A), P(X)) in the first column is an isomorphism. This implies

that
Homa(—,A) — Homgop(P(A), D(—)) — Homgop(T,Homa(—,T)) : A-Mod — A°P-Mod.
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Thus Hom\(P*,A) ~ Homgop(T,Homa(P*,T)) as complexes ovex°P. Thus(3') is equivalent tq3).

It remains to show thatl’) is equivalent tq4).

For each righB-moduleY, let 8y : Homgop(aTg, Y) @4 T — Y be the evaluation map. Then it follows from
the equivalence ofl) and(4) in Proposition 4.4 thatl’) is equivalent to the following statement:

(4") The kernel of the homomorphisdg : COker(qu(pO)) — COkel’(eq)(pl)) induced from the homomorphism
®(0) : d(Pg) — d(P1) belongs ta?.

Now, we claim thaK ~ Ker(do) as rightB-modules (see the definition &fin Theorem 1.1 (4)). This will show
that(1’) and(4) are equivalent.

To check the above isomorphism, we first define the followirggpior eachA-moduleX:

{x Homa(X,A) @A T — Homa(X,T), f @t — [x— (X)ft]

for f € Homa(X,A),t € T andx € X. This yields a natural transformatién Homa(—,A) AT — Homa(—,T)
from A-Mod to B°P-Mod. Clearly, by definition, we hawg; = {p, fori =0, 1.

Recall that, under the identification @A) with T asA-B-bimodules, the functo® induces an isomorphism
Homa(X,A) — Homgon(T, ®(X)) of A°P-modules. In this sense, one can easily construct the falpaommu-
tative diagram:

Homa(X,A) @aT % Homa(X,T)

~J{¢®1

0
Homgop(T, D(X)) @A T il

®(X)
This implies that Cok€Lx) is naturally isomorphic to Cok(a@q,(x)) asB°P-modules. Sinceé; = {p, fori=0,1,
we show thakK ~ Ker(dp) asB°P-modules.

Hence, we have proved that the stateméhts4) in Theorem 1.1 are equivalent.
Now, suppos@& = 2. Then the compleR* is of the following form:

—0—P—P—Ph—0—--

which is a deleted projective resolutiongif. Since(1) and(3) in Theorem 1.1 are equivalent, we see tfiatholds
if and only if HZ(HomA(P',A) ®ATB) = 0. However, since the tensor functeroa Tg : A°P-Mod — B°P-Mod is
always right exact, we have

H?(Homa(P*,A) ®aTg) ~ H?(Homa(P®,A)) @A T ~ EXG(T,A) @aT.
This finishes the proof of Theorem 11

Remarks. (1) If the category KefaT ®§ —) in Theorem 1.1 is homological i®Z(B), then it follows from
Lemma 4.2 (see also Lemma 5.3 (3)) that the generalizedzatiahA : B — Br of B at the moduld exists and
is homological, which gives rise to a recollement of derimeatlule categories:

‘/D(_m @
7(Br) 7(8) (M)
N N

(2) Combining the remark following Lemma 4.3 with the proof ofédnem 1.1, we infer that the complex
Homa(P®,A) ®aTg in Theorem 1.1 is isomorphic i&(B°?) to both Hom\(P*,A) @ Ts and RHomgor(T, B) ®%

T. This implies that, up to isomorphism, the cohomology grb{E'i?(HomA(P',A) ®ATB) in Theorem 1.1 (3) is
independent of the choice of the projective resolutionglofor all m € Z.

(3) By the proof of the equivalence ¢f) and(4) in Theorem 1.1, we know that CoKéx ) ~ Cokel(Bp(x)) as
B°P-modules foiX € A-Mod. If X € Add(aA), then®(X) € ProdTg), and therefore it follows from Lemma 4.3 (1)
that Coke(Bq(x)) belongs tog := {Y € B°*-Mod | Extgos(T,Y) = 0 for all m> 0}. Particularly, in Theorem 1.1
(4), we always have Cokepi) € & fori = 1,2. Note that?’ is closed under kernels of surjective homomorphisms
in B°’-Mod. Hence, if the homomorphism: Coker$pg) — Coker(¢1) induced fromo : P, — Py is surjective,
then the kerneK of G does belong t@’, and therefore the category K&rg —) is homological inZ(B) by the
equivalence of1) and(4) in Theorem 1.1.

Clearly, the mapst andw in the definition of tilting modules induce two canonical gisssomorphismgt:
P* — T andw:A— T*in % (A), respectively. Consequently, baitandw are isomorphisms i&Z (A).

As a preparation for the proof of Corollary 1.2, we shall festablish the following lemma.
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Lemma 5.6. The complexloma(P°,A) is isomorphic inZ(Z) to the following complex:
Homa(T,T®): -+ — 0 — Homa(T, To) — HOMA(T, T1) — --- — HOMA(T, Tp) — 0 — -
In particular, if A is commutative, theHoma(P®,A) @ Tg =~ Homa(T, T*) ®% Tg in 2(B°P).

Proof. Sincemtandw are chain maps if#’(A), we can obtain two chain mapsi(Z):

Horma (P*,A) ~ Hormf,(P*, T*) <" Homa(T, T*).
Now, we claim that both chain maps are quasi-isomorphisms.

To check this claim, we apply the cohomology fundtt( —) to these chain maps for Z, and construct the
following commutative diagram:

i o H@Y @ .
H'(Homa(P*,A)) —— H'(Homy(P°*, T )) =—— H'(Homa(T, T°))

Homg (P, Ali]) — 2 Homg () (P*, T*[i]) < Homy () (T, T*[i])

T S

(@) (T

PQ

a1

Hom@(A>(P.,A[i]) — Hom@(A)(P',T.[i]) -~ Hom@(A>(T,T'[|])

where the mapsj, for 1 < j < 3, are induced by the localization functqr. 2 (A) — 2(A), and where the
isomorphisms in the third row are due to the isomorphienesdTtin Z(A).

SinceP* is a bounded complex of projectivemodules, botly; andq, are bijective. This implies thad! ((©)*)
is also bijective, and thereforey)* is a quasi-isomorphism.

Note that(1).. is a quasi-isomorphism if and only k' ((T7)..) is bijective for each € Z. This is also equivalent
to saying thatys is bijective in the above diagram. Actually, to prove thesbijon ofqgs, it is enough to show that,
for X € addaT) andi € Z, the canonical map Hompa) (T, X[i]) — Homga) (T, X[i]) induced byqg is bijective
sinceT* is a bounded complex with each term in §g). However, this follows directly from the axiorfT 2).
Thus(T).. is a quasi-isomorphism.

Consequently, the complexes Ha(R*, A) and Hom (T, T*) are isomorphic irZ(Z).

Now, assume thah is commutative. Then eacdlkmodule can be naturally regarded as a righhodule and
even as am\-A-bimodule. In particular, the compléix® can be regarded as a complexfefA-bimodules. In this
sense, botf: P* — T andw: A — T* are quasi-isomorphisms of complexesfeA-bimodules. Moreover, one
can check that the chain mafs)* and(Ti).. are quasi-isomorphisms igf(A°P). This implies that Homm(P®,A) ~
Homa(T,T*) in 2(A°). Note that Homa(P*, A) ®aTg ~ Homa(P*, A) @k Tg in 2(B°P) (see the above remark (2)).
As a result, we have HogtP®, A) ®a Tg ~ Homa(T, T*) ®% Tg in 2(B°P). OJ

Proof of Corollary 1.2. (1) By the remark (3) at the end of the proof of Theorem 1.1, we kitwat if the
homomorphisno : Cokel(¢pg) — Coker(d;) induced fromo : P, — Py (see Theorem 1.1 (4)) is surjective, then
Ker(aT @ —) is homological inZ (B).

Now, we verify this sufficient condition for the good tiltimgoduleaT which satisfies the assumption(ih).

/
In fact, by assumption, we can assume tkidt has a projective resolution: -6— P] 2, Py — aAM — 0

with Pj,P; € Add(aA), and thataN has a projective presentatioRy — Py 9", AN — 0 with Py € Add(aA)
/
% (?u ) :Pl® P — P& Pj]. Recall that :
Homa(—,A) ®a T — Homa(—,T) is a natural transformation frod&Mod to B°P-Mod (see the proof of Theorem
1.1). Certainly, ifX € add aA), thenlx is an isomorphism, and so Cokéx) = 0.
Letd’: Cokel(Zp,) — Coker(lp) ando” : Coker(Zpy) — Cokel(Zpy) be the homomorphisms induced from
o’ ando”, respectively. By definition, we havg = {p fori = 0,1, and

andP} € addaA). SinceaT =M@ N, we can choose =

o= ( % 62/ ) : Coker({p;) @ CokexZpy) — CokelLp;) & Cokelpy).
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Now, we show thab is surjective, or equivalently, botii andc” are surjective. In fact, sindg/ € addaA),
we see that Cokeipi/) = 0. Thuso” is surjective. AsM is a direct summand fT and of projective dimension
at most 1, it follows from the axior(il 2) that the map Hom(o’, T) : Homa(P), T) — Homa(P;, T) is surjective.
This implies that' is a surjection. Consequentlyjs surjective. Thus KéaT @ —) is homological inZ(B). This
finishes the proof of1).

(2) Suppose that KEKT @g —) in Theorem 1.1 is homological. By Theorem 1.1, we hietHoma (P®, A) ®a
Tg) =0 for allm> 2. In the sequel, we shall show thatif"(Homa(P*,A) @A Tg) = 0, thenT, = 0.

In fact, sinceA is commutative, it follows from the proof of Lemma 5.6 thatHg(P°®,A) ~ Homa(T,T*®) in
2(AP). Note that the tensor functer ®a Tg : A°-Mod — B°P-Mod is right exact. This means that

0= H"(Homa(P*,A) @aTs) = H"(Homa(P*, A)) @A T =~ H"(Homa(T, T*)) @aT.

In particular, we havél"(Homa(Tn, T*)) ®aTn = 0, due toT, € add aT).
Recall that the complex Hog(T,, T*) is of the form

-+ — 00— Homa(Tn, To) — - - — HOoma(Tn, Th—1) — HOoma(Tp, Th) — 0 — - -

As Homu(Ty, Th-1) = 0 by our assumption in Corollary 1.2 (2), we obt&iff(Homa(T,, T®)) = Homa(Ts, Tp)-
Thus End(T,) ®aTn = 0. It follows from the surjective map

Enda(Th) @aTh — Ty, f@Xx+— (X)f for f € Enda(Ty) and x € Ty

thatT, = 0. This finishes the proof of the above claim.

By our assumption, we have HafTi1,Ti) = 0 for 1L <i < n—1. Now, we can proceed by induction arto
show thafT; =0 for 2< j <n. Thus, by Lemma 5.1 (4] is a 1-tilting module, that is, the projective dimension
of AT is at most 1.

The sufficiency of Corollary 1.2 (2) follows from Theorem J1ske also [11, Theorem 1.1 (1)]. This finishes the
proof of Corollary 1.2

Let us end this section by constructing an example of infingeneratea-tiltting modulesT such that Ke(T ®§
—) are homological.

Let A be an arbitrary ring with a classicaitilting A-moduleT’. Suppose T’ = M @& N with M a nonzeroA-
module of projective dimension at most 1. lldte an infinite set, and 18t := M) & N. ThenT is a goodh-tilting
module. Sincd satisfies Corollary 1.2 (1), we see that KER§ —) is homological inZ (B).

6 Applications to cotilting modules

Our main purpose in this section is to show Theorem 1.3 andldpsome conditions which can be used to decide
if subcategories induced from cotilting modules are homiglal or not. We also provide an example to show that
recollements provided by cotilting modules depend uporcttace of injective cogenerators.

6.1 Proof of Theorem 1.3

In this section, we shall apply the results in Section 4 td déh cotilting modules. First, we shall construct Ringel
modules from good cotilting modules, and then use Propwsiti4 to show the main result, Corollary 6.3, of this
section, and finally give the proof of Theorem 1.3.

Suppose thaf is a ring and thatV is a fixed injective cogenerator férMod. Recall that a\-moduleW is
called acogeneratoffor A-Mod if, for any A-moduleY, there exists an injective homomorphism- W' in A-Mod
with | a set. This is also equivalent to saying that, for any nol-b@momorphisnt : X — Y in A-Mod, there
exists a homomorphisge Homa(Y,W) such thatfg is non-zero.

Let us recall the definition af-cotilting modules fon a natural number.

Definition 6.1. An A-moduleU is called am-cotilting moduleif the following three conditions are satisfied:
(C1) there exists an exact sequence

9
0—U—lg—l1— - —1y—0
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of A-modules such that is an injective module for every @i <n;
(C2) ExtL(U ' .U) =0 for eachj > 1 and for every nonempty sktand
(C3) there exists an exact sequence

0—Up— - —U —Uy—W-—0

of A-modules, such th&t; € ProdaU) forall 0 <i<n.

An n-cotilting A-moduleU is said to begoodif it satisfies C1), (C2) and
(C3)’ there is an exact sequence

0—Up——U —Uy—W-—0

of A-modules, such th&t; € addaU) forall 0<i <n.
We say that is a (good) cotiltingA-module if U is (good)n-cotilting for somen € N.

We remark that if both\y andWs, are injective cogenerators fé-Mod, then Prod\;) = ProdWs). This
implies that the definition of cotilting modules is indepentiof the choice of injective cogenerators feMod.
However, the definition of good cotilting modules relies ba thoice of injective cogenerators fasMod.

As in the case of tilting modules, for a givencotilting A-moduleU with (C1)-(C3), the A-moduleU’ :=
@', VUi is a goodh-cotilting module which is equivalent to the given one in fease that Pr¢d ) = ProdU’).

From now on, we assume thidtis agood n-cotilting A-module with(C;y), (Cz) and(Cs)’, where the module
W in (C3)' is referred to the fixed injective cogenerator feMod. In this event, we shall call agood n-cotilting
A-module with respect to W

LetR:=Endy(U), M := Homa(U,W) andA := Enda(W). ThenM is anR-A-bimodule.
First of all, we collect some basic properties of good datijiimodules in the following lemma.

Lemma 6.2. The following hold for the cotilting module U.
(1) The R-module M has a finitely generated projective resatutidength at most n:

00— HomA(U,Un) — e —— HomA(U,Ul) —_ HOIT]A(U,UQ) — M —0

such that U, € addaU) forall 0<m<n.

(2) The Hom-functoHoma(U, —) : A-Mod — R-Mod induces an isomorphism of ringgs ~ Enck(M), and
Extg(M,M) =0foralli > 1.

(3) The module M is an n-Ringel R-module.

Proof. (1) Applying the functor Hom(U, —) to the sequence
0—Up——U —Uy—W-—0

in the axiom(Cg)’, we obtain the sequence (i) with all Homa(U,U;) € addrR). The exactness of this sequence
follows directly from the axiom{C2). This also implies that the projective dimensiorkM is at mosi.
(2) Denote by the Hom-functor Horg(U, —) : A-Mod — R-Mod. ThenW(U) = R, W(W) =M and, for every
X € addaU), we have
Homa (X, W) —= Homg(W(X), W(W)).
Clearly, ifn= 0, thenW = Up, M = Homa(U,Up) asR-modules. In this case, one can easily chggk
Supposen > 1. By (1), theR-moduleM = W(W) has a finitely generated projective resolution

0— YUy — - —W¥YU;) — YUy — PYW)—0

with Up, € ad U? for all 0 < m < n. Applying the functor Hom(—,W) to the resolution ofV in (C3)’, we can
construct the following commutative diagram:

0 ——— Hom(W,W) ——— = Homa (Ug,W) ———— = Homa (U1, W) Homa(Up, W) ——= 0




where the isomorphisms in the diagram are dugqcs add AU ) for m < n. SinceaW is injective, the first row in
the diagram is exact. Note that the following sequence

0 — Homg(W(W),W(W)) — Homg(¥(Uo), P(W)) — Homg(W(U1), ¥(W))

is always exact sinc&(U;) — W (Ug) — W(W) — 0 is exact inR-Mod. This implies that the maj :
Enda(W) — Endk(W(W)) is an isomorphism of rings and that the second row in the diags also exact. Thus
Extz(M,M) = Extg(W(W),¥Y(W)) =0 foralli > 1.

(3) We check the axiom@R1)-(R3) in Definition 4.1 forM. Clearly, the axiom$R1) and(R2) follow from (1)
and(2), respectively. It remains to show the axidf3) for M. In fact, by the axiom(C1), there exists an exact
sequence of-modules:

0—U—lp—Ilf— - —1h—0

wherel; is an injective module for & i < n. SinceW is an injective cogenerator fé«Mod, we have; € Prod aW).
Moreover, from the axioniC2), we see that E*(U,U) =0forall j > 1. This implies that the following sequence

0— R— Homa(U,lp) — Homa(U,11) — -+ — Homa(U,1n) — O

is exact. Since the functor HiU, —) commutes with arbitrary direct products, it follows frdme Prod W)
that Homy (U, 1;) € Prod rRHoma(U,W)) = ProdgM). This shows thagM satisfies the axioriR3). ThereforeM
is ann-RingelR-module.]

Observe that, by Lemma 6.2 (2), the ring (M) can be naturally identified with (up to isomorphism of
rings). Now, we define

G:=rM&X—: 2(\) — 2(R) and H:=RHomg(M,—-): 2(R) — 2(N).

SincerM is a RingelR-module satisfying bottiR1) and (R2) in Definition 4.1, it follows from Lemma 4.2 that
there exists a recollement of triangulated categories:

Ker(H) —— 2(R) Z(N)
~_ ~__

where(i*,i.) is a pair of adjoint functors with. the inclusion.
If Ker(H) is homological, then it follows from Lemma 4.2 that the getiged localizatiorh : R — Ry of Rat
M exists and induces a recollement of derived module categfori

G
Eon>, A >

H  2(Rw)
\_/ N

Thus we may construct recollements of derived module caiiegyfrom good cotilting modules. Here, a problem
arises naturally:

Problem: When is Ke(H) homological inZ(R)?

This seems to be a difficult problem because we cannot dirapplly Proposition 4.4 to the Ringel modyiél.
The reason is that we do not know whethdft is good Actually, we do not know whether the rightmoduleM
is stronglyA-Mittag-Leffler. Certainly, ifA is right noetherian, thell is a perfect RingeR-module (see Definition
4.1), and must be good.

Though we cannot solve this problem entirely, we do have guantal solutions to the problem.

Corollary 6.3. Suppose that A is a ring together with an injective cogeroerdét for AMod. Let U be a good
n-cotilting A-module with respect to W. Suppose that Enda(W) is a right noetherian ring. Then the following
are equivalent:

(a) Ker(H) is homological inZ (R).
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(b) Hm(RHomA(U W) @ Homa (W, I')) = Ofor all m> 2, where P is a deleted injective coresolution gl :

5
00— gl —s =g — 00— -

with | in degree i for allo <i < n.

(c) The kernel K of the homomorphistokerq@y) — Coker(q;) induced from the map : I — |1 satisfies
Ext¥(M,K) = 0 for all m > 0, where@ : Homa(U,W) ®x Homa(W, I;) — Homa (U, 1;) is the composition map
fori=0,1.

Proof. By the proof of Lemma 6.2 (3), the modulé := Homa (U, W) is ann-RingelR-module. Moreover, the
sequence in the axioffiR3) can be chosen as follows:

0— R— Homa(U,lg) — Homa(U,11) — --- — Homa (U, I,;) — 0.
In this case, the compleéd*® can be defined as the following complex:
Homa(U,1*): 0 — Homa(U,lp) — Homa(U,11) — --- — Homa(U, 1) — 0.

Under the assumption thatis right noetherian, we know th is a good RingeR-module. So it follows from
Proposition 4.4 thafa) is equivalent to the following:

(b') HI (RM @a Homg(M, M*)) = 0 for any | > 2, whereM® := Homa(U, 1°).

To prove thaia) and(b) in Corollary 6.3 are equivalent, it is sufficient to show ttia) and(b) are equivalent.
For this purpose, we shall show that Hgflvl, M*) ~ Homa (W, 1°) as complexes oveX.

Let¥ = Homy(U, —) : A-Mod — R-Mod. Then¥ (W) = M andM*® = W¥(I°*). Clearly, the functok induces a
natural transformation

Homa (W, —) — Homg(W(W),W(-)) : A-Mod — A-Mod.
This yields a chain map from HogW, 1°) — Homg(W(W),W(I*)) = Homg(M,M*®) in € (), that is,
0——— Homa(W, o) Homa (W, 11) Homa (W, I)

l l |

0 —— Homg(WY(W),¥(lg)) —— Homg(W(W),¥(I1)) —— --- —— Homg(W(W),¥(ly)) ——= 0

Note that alll; are injectiveA-modules. To verify that this chain map is an isomorphismashplexes, it is enough
to show that¥ induces an isomorphism éf-modules:

Homa(W, X) — Homg(W(W), W(X))

for any injectiveA-moduleX. In the following, we shall prove that this holds even for @aynoduleX.

Supposen = 0. By the axiom(C3)’, we know thatW = Uy asA-modules withUp € addaU). It is clear that
Homa(Ug, X) — Homg(W(Up), W(X)) sinceUp € addaU). Thus Hom (W, X) — Homg(W(W), ¥(X)).

Now, suppose > 1. By the axiom(C3)’ and Lemma 6.2 (1), there exists an exact sequehce— Uy —
W — 0 of A-modules witHJp,U; € add aU ) such that?(U;) — W(Up) — W(W) — 0 is also exact ifR-Mod.
From this sequence, we may construct the following exactootative diagram:

0 —— Homa(W,X) ——————— Homa (Ug,X) —————— Homa (U1, X)

: ! !

0 —— Homgr(W(W), ¥ (X)) —— Homg(W(Up), W(X)) — Homg(W(U1), ¥ (X))

where the last two vertical maps are isomorphisms shg®); € addaU). This means that Hogiw, X) —
Homg(W(W),W(X)) for everyA-moduleX.

Consequently, we see that HafWV, | *) ~ Homg(M, M*) as complexes ovéx. Thus(b’) and(b), and therefore,
also(a) and(b), are equivalent.

Note that if we identify Hora(M, M*) with Homa (W, *) as complexes ovéX, then the equivalence ¢&) and
(c) in Corollary 6.3 can be concluded from that(d and(4) in Proposition 4.4. Here, we leave the details to the
reader[]

As a consequence of Corollary 6.3 (see also Corollary 4.8have the following result.
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Corollary 6.4. LetU be a good n-cotilting A-module with respect to the itijgccogeneratopW. Suppose that
A := Enda(W) is a right noetherian ring.

(1) If AU =M@ N such thaiyM has injective dimension at makaind thataN has an injective copresentation
0 — AN — Eq — Ej with E; € add aW), thenKer(H) is homological inZ (R).

(2) If n = 2, thenKer(H) is homological inZ(R) if and only ifHoma(U,W) @ Ext (W,U) = 0.

Proof. The idea of the proof ofl) is very similar to that of Corollary 1.2 (1). Here, we justgia sketch of the
proof.

Note that&’ := {Y € R-Mod | Ext}(M,Y) = 0 for all m> 0} is closed under kernels of surjective homomor-
phisms inR-Mod, and that Cokémy) and Cokefg;) (see Corollary 6.3 (c)) always belong &by Lemma 4.3
(1). Thus, according to the equivalence(aj and(c) in Corollary 6.3, if we want to showl), then it suffices to
verify that the homomorphisi: Cokel(@y) — Coker(@r) induced fromd: 1o — |1 is surjective. Actually, this is
guaranteed by the assumption that the injective dimendigMas at most 1 and; € add aW). For more detalils,
we refer the reader to the proof of Corollary 1.2 (1).

As to (2), we keep the notation in the proof of Corollary 6.3. Suppose2. Then the complek in Corollary
6.3 (b) has the following form

—0—lpg—l1—lp—0—---

By Corollary 6.3, the category Kétl) is homological if and only iﬂ-|2(RM ®@a Homa (W, I')) =0, whereM ;=
Homa(U,W). Note that the tensor functaM @ — : A-Mod — R-Mod is right exact. Consequently, we have

H?(rM @ Homa(W, 1°)) ~ M @a H2(Homa(W, 1°)) ~ M @ EX (W, U).

This shows2). O

Finally, we point out a special case for which the rihgn Corollary 6.3 is right noetherian.

Letk be a commutative Artin ring. Let rék) be the radical ok (that is, the intersection of all maximal ideals of
k), and letJ be the injective envelope &frad k). We say that &-algebraA is anArtin k-algebra or Artin algebra
for short, if A is finitely generated aslamodule.

Suppose thaf is an Artink-algebra. It is well known that the functor He(s-,J) is a duality between the
categoryA-mod of finitely generated-modules and that of finitely generat&®P-modules. In particular, the dual
module Hom(Aa,J) of the rightA-moduleA, is an injective cogenerator fé-mod, or even foA-Mod. In this
case, we shall call HoplAa, J) theordinary injective cogeneratdor A-Mod.

Note that End(Hom(Aa,J)) ~ Endaor(A)°P ~ A as rings. So, if the moduM/ in Corollary 6.3 is chosen to
be the module HortAa,J), then the ring\ := Enda(W) is isomorphic tA. SinceA is an Artin algebra, it is a
left and right Artin ring, and certainly a right noetheriang. ThusA is right noetherian and always satisfies the
assumption in Corollary 6.3.

Proof of Theorem 1.3.Recall thaiyW is the ordinary injective cogenerator over the Artin algefrAccording
to the above-mentioned facts, the ring= Enda(W) is isomorphic toA, and therefore right noetherian. Since
aU is a good 1-cotilting module with respect¥d, we know from Corollary 6.4 (1) that the category Kdj is
homological. Now, Theorem 1.3 follows from the diagré&b) above Corollary 6.31

Let us end this section by a couple of remarks related to thdteein this section.

Remarks.(1) If Aiis a commutative ring and is an injective cogenerator féx-Mod, then the dual module
Homa(T,W) of a tilting A-moduleT is always a cotiltingA-module. However, there exist cotilting modules over
Prufer domains, which are not equivalent to the dual madafeany tilting modules (see [1, Chapter 11, Section
4.16]). This means that the investigation of infinitely gexted cotilting modules cannot be carried out by using
dual arguments of infinitely generated tilting modules.

(2) Corollary 6.3 provides actually a recollement®@{Endy(U)) with Z(Rw) on the left-hand side an@ (A)
on the right-hand side (s€g) for notation). This recollement depends upon the choicajettive cogenerators
for A-Mod. That is, for a fixed cotilting modulgU, if different injective cogeneratol%' for A-Mod are chosen in
the axiom(C3)’, then one may get completely different recollement¥¢Enda (U )).

For example, l1eQp), Q, Zp andQ,, denote the rings op-integers, rational numberp;adic integers ang-
adic numbers, respectively. Recall thigy,) is the localization ofZ at the prime ideapZ. In particular, it is a local
Dedekind domain. Moreover, |&(7Z/pZ) be the injective envelope &/ pZ, which is an injective cogenerator for
the category of),)-modules.
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Now, we takeA := Q(y), T := Q@ E(Z/pZ) andU := Homa(T,E(Z/pZ)). Due to [11, Section 7.1], we have

(a) the module€T is a Bass 1-tilting module ové, and therefor&) is an 1-cotiltingA-module.

(b) ENch(E(Z/pZ)) ~ Zp and Hom\(Q,E(Z/pZ)) ~ Q RAEN(E(Z/PZ)) ~ Q®@aZp ~ Qp. ThusU =~
Zp® Qp asA-modules.

(c) By [11, Lemma 6.5(3)], there exists an exact sequen@&eahodules (and als-modules):

(*) 0—Zp - Qp — E(Z/pZ) — O.

Note thatQp is an injective and flaA-module and that+") is an injective coresolution &, as anA-module.
This also implies thatV := Q, & E(Z/pZ) is an injective cogenerator fé+Mod.

On the one hand, we may considieas a good 1-cotiltind:-module with respect t&/. Applying Hom (U, —)
to the sequencg’), we get a projective resolution of HatJ,E(Z/pZ)) as an Eng(U)-module:

0 — Homa(U, Zp) 2 Homa(U,Qp) — Homa(U, E(Z/pZ)) — 0.

Since bothQp andE(Z/pZ) belong to adthW), one can use Lemma 6.2 to show that H@bh, W) is a classical
1-tilting Enda (U )-module such that Ergg, y)(Homa(U,W)) ~ Enda(W) as rings. It follows that EngU ) and

Enda(W) are derived equivalent. In this case, we get a trivial reroéint: 2(Enda(U)) — Z(A) with A =
Enda(W). Note that this derived equivalence can also be seen fronTf2&rem 1.1].

On the other hand, we considéras a good 1-cotilting-module with respect t&/’ := E(Z/pZ). Clearly, the
sequencéx’) can paly the role in the axiofC3)’. Since Eng(E(Z/pZ)) ~ Zp, we know from [16, Corollary
2.5.16] that End(E(Z/pZ)) is a noetherian ring. This implies tHdtsatisfies the assumptions in Corollary 6.4 (1).

By [16, Theorem 3.4.1], one can check that

Ench(Zp) ~ Zp, HOMa(Qp, Zp) = 0 = EXtx(Qp, Zp) = Homa(E(Z/ pZ), Qp),
and further that

_( Zp End(Qp)  ( Enda(Qp) Enda(Qp)
)= ( 5" Enaay ) e = (ST G )

Moreover, the universal localization of Ex@) ) at the mag*, or at the module Hog(U, E(Z/pZ)), is isomorphic
to M2(Enda(Qp)), the 2x 2 matrix ring over Eng(Qp).

Now, we can construct the following non-trivial recollemerf derived module categories from the cotilting
moduleU with respect toV' = E(Z/pZ):

T = T
Z(Endh(Qp)) —— Z(Enda(V)) —— Z(Zp)
\/ N~—

Thus, the recollemeritf) above Corollary 6.3 constructed from a cotilting modulelepends on injective cogen-
erator with respect to which thé is defined.
6.2 Necessary conditions of homological subcategories frocotilting modules

We keep the notation in Section 6.1. For the cotilting modlleve denote by
on 02 01 do
0—Uy—Up 11— —=U —Ug—W-—0

the exact sequence in the axid@s)’, and byU* the following complex
on 02 01
-+—0—U—Uypg—-—=U —Ug—0—---

with U; in degree-i for all 0 <i < n. Thendg induces a canonical quasi-isomorphiggmnuU® — W in ' (A). Recall
that the complex® in Corollary 6.3 (b) also yields a canonical quasi-isomasptt, : U — 1°in € (A).

Furthermore, by the proof of the first part of Lemma 5.6, one stleow thaty and do induce the following
quasi-isomorphisms

%) :
(+)  Homa(W,1*) 2% Homs (U, 1°) <~— Homa(U*,U)
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in ¢(Z). Here, we leave checking the details to the reader.

Consequently, the morphis@o).(£*)~ : Homa(W,1*) — Homa(U*,U) in 2(Z) is an isomorphism (com-
pare with Lemma 5.6). Due to theeA-bimodule structure oV, the former complex belongs @ (A). However,
the latter complex might not be a complex/dimodules sinc&)® is not necessarily a complex 8fA-bimodules
in general. This means that this isomorphism may not be dettto an isomorphism i (A). Nonetheless, for
some special cotilting modules, we do have this isomorplis#(A). For instance, in the case described in the
following lemma.

Lemma 6.5. Suppose thatloma(U;,Ui+1) =0for0<i <n. N

(1) There exist a series of ring homomorphigms A — Enda(Uj) for 0 < j <n, such thatg : U®* — W is
a quasi-isomorphism i (A7 A°P). In particular, the complexedoma (W, *) andHoma(U*,U) are isomorphic
in Z(N).

(2) If Ext§(W,Uy) = Ext{™1(W,Uy) = 0for all 0 < k < n, thenpn : A — Enda(Uy) is an isomorphism.

Proof. (1) SetKp :=W, Ky := Uy andKpy, := Ker(dm-1) for 1 < m< n. Then, for each X i < n, we have

a short exact sequence-6- Kj 1 — U; S, Ki — 0 of A-modules. In the following, we shall define two ring
homomorphisms; : Enda(K;j) — Enda(U;) andy; : Enda(Kj) — Enda(Kit1).
By Lemma 6.2 (1), the sequence

o
0 — Homa (U, Kj41) — Homa(U,U;) — Homa(U,Kj) — 0

is exact. In particular, fod; € addU ), the sequence

P
00— HOFT]A(Ui,Ki+1) — HomA(Ui,Ui) -, HOI’ﬂA(Ui7 Ki) —0

is exact. Letf € Endy(K;). Then there is a homomorphiggre Enda(U;) such thad; f = gdi. We claim that such
agis unique. Actually, if there exists anothgre Enda(U;) such thad; f =g 9;. Then(g—d)d; =0, and so the
mapg — ¢ factorizes througk. ;. Note that each homomorphidsn— K; 1 also factorizes througti, 1 via dj 1.
This implies thag — ¢’ : U; — U; factorizes througlJi.1. However, since Hog(U;,U;1) = 0 by assumption, we
haveg = g'. Hence, for a giverf, such agis unique.

Now, we defing); : f — gandyj : f — hwhereh is the restriction ofy to Kj, 1. This can be illustrated by the
following commutative diagram:

Ai 0
O - Ki+l i+1 Ui i Ki O
| |
I'h 19 lf
\i A \ i
0 Kij1 —= U — = K| 0

where;, 1 is the inclusion for < i < n— 2 andA,, := dy. Clearly, bothd; andy; are ring homomorphisms.
Recall that\ := Enda(W) = Enda(Ko). Furthermore, for &< j < n, we definep; : A — Enda(U;) as follows:
If j =0, thenpg := ¢o; if j > 1, thenp; is defined to be the composite of the following ring homomdspts:

A, Enda(K1) 2 Enda(K) — - — Enca(K; 1) =2 Enca(K;) 25 Ench(U))

where¢, stands for the identity map. By definition, for eakle A, there exists an exact commutative diagram of
A-modules:

on ) ad )
0 Un Un-1 2 Ui Lo Up—2=W 0
(}\)Pnl lo‘)f)nl l(Mpl l(A)po lx
9 a ) )
0 Un "> Un-1 2 Up = Uo 0 W 0

Note thatU; is a naturalA-Enda(U;)-bimodule and can be regarded asfan-bimodule viapj. It follows from the

above commutative diagram thait is a homomorphism of-A-bimodules. This implies ttho :U®* — W can
be viewed as a quasi-isomorphismdt{A @z A°P). In this sense, the quasi-isomorphismssinactually belong to
%' (N). Thus Hom (W, 1°) and Hom\(U*,U) are isomorphic irZ(A). This finisheg1).

36



(2) To show thatpy is an isomorphism of rings, it suffices to prove thiatis an isomorphism for & i <
n—1. Leti be such a fixed number. If Ho(K;,U;) = 0, theny; is injective. If the induced mapAi 1), :
Homa (U, Uj) — Homa(Kiy1,U;) is surjective, then so i;. Thus, by our assumptions in (2), to show ttpats an
isomorphism, it suffices to show that Ha(i;, U;) ~ Ext, (W, U;) and that there exists an exact sequence of abelian
groups:

() Homa(Uy, Up) M2 Homa(Kiy1,Ui) — Exty L(W,U;) — 0.

In fact, sinceUs € addaU) for 0 < s < n, we have EX{(Us,X) = 0 for eachr > 1 andX € addaU) by the

axiom(C2). Now, for 1< j < nandX € addaU), one can apply Hog(—, X) to the long exact sequence

)\.
0—K;—-Ujg— - —U —Ug—W-—0,
Aj * i .
and get an exact sequence Hdij_1,X) (4)> Homa(Kj,X) — Exty(W,X) — 0 of abelian groups. If we take
j :=iandX :=Uj, then Hom (K, U;) ~ Ext, (W, U;) since Hom (U;_1,U;) = 0 by assumption. If we takp:=i+1
andX := U, then we get the required sequeriee). This finishes the proof of (2]

The following result will be used for getting a counterexdenphich demonstrates that, in general, the category
Ker(H) in Corollary 6.3 may not be homological.

Corollary 6.6. Keep all the assumptions in Corollary 6.3. Further, suppibse¢ n> 2 and U has injective dimen-
sion exactly equal to n. IHoma(U;, Uit 1) = Exty(W,U;) = Exl‘A“(W,Ui) =0forall 0 <i < n, then the category
Ker(H) is not a homological subcategory 6f(R).

Proof. Suppose contrarily that K@) is homological inZ(R). Then, by Corollary 6.3, we certainly have
H”(RHomA(U,W) ®a Homa (W, I')) = 0. Furthermore, since HogU;,Uj;1) =0 forall 0<i < n-—1, we know
from Lemma 6.5 (1) that Hog{W,I*) ~ Homa(U*,U) in 2(A). Thus

0=H"(Homa(U, W) ®x Homa(W, 1*)) ~ Homa(U, W) @ H" (Homa (W, 1)) ~ Homa(U, W) @A H" (Homa(U*, U)).

In particular, we have Hog{U, W) @, H"(Homa(U®, Uy)) = 0, due toU, € addaU). Recall that the complex
Homa(U*,Uy) is of the form
(01)+ (On-1)+ (0n)+

0— HOmA(UO,U) I HomA(ULUn) I HomA(Un—Zyun) I HomA(Un—lyun) I HomA(UmUn) —0
with Homa(Up,Up) in degreen. Since Hom(Un-1,Un) = 0, we obtainH"(Homa(U*®, Up)) = Enda(Up), and so
Homa (U, W) ®x Enda(Un) = 0. Note that the leff\-module structure of EndUy) is defined by the ring homo-
morphismpy, : A — Enda(Un) (see Lemma 6.5 (1)). Since BEXWV,U;) = Exl‘,jl(W7Ui) =0forall0<i<n-1,
we see from Lemma 6.5 (2) that is an isomorphism. This implies that

Homa (U, W) ®a Enda(Un) ~ Homa (U, W) @ A ~ Homa(U, W)

and therefore Hog(U, W) = 0. SinceaW is an injective cogenerator, we must h&le= 0. This is a contradiction.
Thus Ke(H) is not homological iz (R). O

7 Counterexamples and open questions

In this section, we shall apply results in the previous sedtito give two examples which show that, in general, the
category KefaT ®§ —) for ann-tilting moduleT, or the category KeéH) for ann-cotilting moduleU may not be
homological. At the end of this section, we mention a few opeestions related to some results in this paper.
Throughoutthis section, we assume th#& a commutative, noetheriamGorensteion ring for a natural number
n. Recall that a ring is called-Gorensteirif the injective dimensions of the regular left and right rates are at
mostn.
For anA-moduleM, we denote by (M) its injective envelope. Itis known thatifandg are two prime ideals of
A, then Hom(E(A/p),E(A/q)) # 0if and only ifp C q (see [16, Theorem 3.3.8]). In particul&(A/p) ~ E(A/q)
ifand only ifp = q
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7.1 Higher n-tilting modules

In the following, we shall apply Corollary 1.2 to provide axaenple of a gooah-tilting A-moduleT for which the
category KefaT ®§ —) in Theorem 1.1 is not homological.

For then-Gorenstein ring\, it follows from a classical result of Bass that the reguladule A has a minimal
injective coresolution of the form:

0—A— @E(A/p)—>---—> @E(A/p)—>0,

PEP PEPn

where®; stands for the set of all prime ideals Afwith heighti (see [4, Theorem 1, Theorem 6.2]). It was pointed
out in [24, Introduction] that th&-module

T:=6 PEMA/)

0<i<npewp

is an (infinitely generatedj-tilting module.

Clearly, the tilting moduleT is good if we defin€li := @, E(A/p). Observe that, for & i < j <n, we
have Hom(E(A/p),E(A/q)) =0 forp € P; andg € B, and therefore Hog(Tj, Ti) = 0.

Now, we suppose that > 2 and the injective dimension @& is exactly equal to (or equivalently, the Krull
dimension ofA is exactlyn).

Note thatT; £ 0 for all 2<i < n and thatT satisfies the assumptions in Corollary 1.2 (2). Since ther@bo
injective coresolution ofA is minimal, the moduleT has projective dimension equal to(see [5, Proposition
3.5]). By Corollary 1.2 (2), the category KT ®g —) is not homological irZ(B). This means that for this tilting
moduleT, the subcategory KE&T @ —) cannot be realized as the derived module catego(@) of a ringC
with a homological ring epimorphistB — C. Thus, for highem-tilting modules, the answer to the question in
Introduction is negative in general.

7.2 Higher n-cotilting modules

Next, we apply Corollary 6.6 to present an example of a geaotilting A-moduleU, for which the category
Ker(H) in Corollary 6.3 is not homological iZ(R).

Assume further that the ring is local with the unique maximal ideah. In this caseT, is an injective cogen-
erator forA-Mod since®y, is just the se{m}. This follows from a general statement in commutative algelf S
is a commutative noetherian ring, théh,, E(S/m) is an injective cogenerator f@&Mod, wherem runs over all
maximal ideals ofs.

Now, we take

n
W:=T, and U :=Homa(T,W) =5 Homa(T;,W).
j=0
SinceaT is ann-tilting A-module, the modulgU is ann-cotilting A-module. Furthermore, applying Haifx-, W)
to the minimal injective coresolution @fA, we get the following exact sequencefmodules:

0 — Homa(Th,W) — Homa(Th—1,W) — --- — Homa(T1,W) — Homa(To,W) — W — 0.

This implies that the cotilting\-moduleU is good if we defindJ; := Homa(T;,W) for 0 < j < n (see the axiom
(C3)" in Definition 6.1).

To see that\ := Endy (W) is a right noetherian ring, we note th&t= E(A/m) and that\ is isomorphic to the
m-adic complete ofA (see [16, Theorem 3.4.1 (6)]). Sinfes noetherian, the ringd\ is also noetherian (see [16,
Corollary 2.5.16]).

In the following, we shall prove thalJ satisfies all the assumptions in Corollary 6.6. In fact, ffises to show
that, for anym > 0, we have

(a) Ext(Ur,Us) =0for0<r <s<n.

(b) EXt{(W,U;) =0for0<i<n-—1,and Ex{(W,Uy) # 0.

The reason is the following: According tb), the injective dimension dil, is at leasin, and therefore exactly.
This means thatU is a cotilting module of injective dimensian Moreover, from/a) and(b) we can conclude that
the assumptions in Corollary 6.6 hold true fér It then follows from Corollary 6.6 that, for this cotiltinmodule
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U, the category Ké€H) in Corollary 6.3 is not homological iZ(R) with R:= Enda(U). In other words, KeH)
cannot be realized as the derived module categ(i§) of a ringSwith a homological ring epimorphisiR — S.
So, let us verify the abovi@) and(b). First, we need the following results abeuGorenstein rings:
(1) The flat dimension of th&-moduleT; is exactlyj.
(2) Any flat A-moduleF admits a minimal injective coresolution of the form

O—aAF —lg—Il1— - —lp1— 1 —0

such thatj € Add(Tj) forall0< j <n.

(3) Letp andq be prime ideals oA. If p & q orq & p, then Tofy(E(A/p), E(A/q)) = 0 for allm> 0. Moreover,
TorM\(E(A/p), E(A/p)) # 0 if and only ifm equals the height of in A.

Here,(1) and(2) follow from [26, Proposition 2.1 and Theorem 2.1], whi® is taken from [16, Lemma 9.4.5
and Theorem 9.4.6].

Since the duah-module Hom(F,W) of a flat A-moduleF is injective, we know from(1) that the injective
dimension ofaU; is at mostj. Since the duah-module Hom(l,W) of an injectiveA-modulel is always flat (see
[16, Corollary 3.2.16 (2)]), we see that tAemoduleU; is flat sinceT; is injective. It then follows fron(2) thatU;
admits a minimal injective coresolution of the form

0 —Uj—ljo—lj1——ljj1—1;;—0

with Ik € Add(Ty) forall 0 <k < j.
Now, we show(a). Actually, by Lemma 2.3 (1), we have

Extx(Ur,Us) = ExtR (Ur, Homa(Ts,W)) ~ HomA(Torﬁ](Ts,Ur),W) for m> 0.

Note that the flatness &f; implies that Ext'(U;,Us) = 0 form> 1. It remains to show Hog{U,, Us) = 0. For
this aim, it is sufficient to shows ®aU; = 0. SinceTs = GBPE,PSE(A/}J) and the functor- ®a U, commutes with
arbitrary direct sums, we have to proéA/p) ®aU; = 0 for everyp € 2s. In fact, since < s by assumption, we
know thatp ¢ q for eachq € 2y with 0 < k <r. It follows from (3) that Tof*(E(A/p), E(A/q)) =0 forall j >0,

and therefore
Torf(E(A/p), Tu) ~ €D Tor (E(A/p), E(A/q)) =

qEPK

Sincel; x € Add(T), we obtain To'f (A/p), Iy k) =0forall j > 0. Now, by applying the tensor functBfA/p) ®a
— to the minimal injective coresolution &f;, we can prové&E(A/p) ®aUy = 0. ThusTs®a U, = 0. This finishes
the proof of(a).
Finally, we show(b). Let 0<i < n— 1. Recall that); = Homa(T;, W). According to Lemma 2.3 (1), we have

EXtR (W, Homa(Ti, W)) =~ Homa (Torm(Ti, W), W) =~ Homa ( D Torm(E(A/p), W), W) ~ M Homa (Torfy(E(A/p), W), W).

peP; peP

Since the ideai is maximal (or of heighn), it holds thatm ¢ p for everyp € 2;. Hence it follows from(3) that
Torh(E(A/p), W) = 0, and therefore E{W,U;) = 0. Similarly, one can show that

Exth(W,Up) = Exta(W, Homa(W,W)) ~ Homa(Tors (W, W), W).

Since Tofy(W,W) = Tory(E(A/m), E(A/m)) # 0 by (3) and sinceaW is an injective cogenerator, we infer that
EXtA(W,Up) # 0. Thus(b) follows.
Consequently, for thae-cotilting A-moduleU, the subcategory K& ) is not homological inZ(R).

Let us end this paper by the following open questions reletedir results in this note.

Question 1. Let A be a ring with identity. Is there a goadtilting A-moduleT for n > 2 such thafl is not
equivalent to any classical tilting-module and that KéT ®§ —) is homological?

Question 2.Is the converse of Corollary 1.2 (1) always true?

For tilting modules over commutative noetheria®Gorenstein rings, Silvana Bazzoni even guesses a stronger
answer: If KetT @ —) is homological inZ(B), thenaT should be a 1-tilting module, that is, the moduNé in
Corollary 1.2 (1) should be zero.
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Question 3.Given a good 1-cotilting moduld over anarbitrary ring A, is there a homological ring epimor-
phismA : Endy(U) — C and a recollement of the following form?

S T
7(C) — L 9 (Endw(0)) 9 (A)

\_/ \_/
Note that this reccollement does not involve the derivedgmaties of the endomorphism rings of any injective
cogenerators related t.

Question 4.Given an arbitrary ring\, how to parameterize homological subcategorie® 0A)? Equivalently,
how to classify homological ring epimorphisms startingifira?

Question 5.Is the RingelR-moduleM in Lemma 6.2 always good?
A positive answer to this question would lead to a genertdinaf Corollary 6.3.
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