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Derived equivalences of algebras

Changchang Xi

Abstract

Derived categories and equivalences between them are the pièce de résistance of modern
homological algebra. They are widely used in many branches of mathematics, especially in
algebraic geometry and representation theory. In this note, we shall survey some recently
developed construction methods of derived equivalences for algebras and rings, with applications
to homological conjectures, such as Broué’s abelian defect group conjecture and the finitistic
dimension conjecture, and to computation of higher algebraic K-groups of algebras and rings.
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1. Introduction

Derived categories (or more generally, triangulated categories) and derived equivalences,
introduced by Grothendieck around the 1960s and developed substantially by his student
Verdier in 1977 (see [121]), have nowadays connections with many branches of mathematics
and physics, from algebraic geometry, representation theory of groups and algebras to mirror
symmetry in string theory [23, 65, 78, 99]. In representation theory, Rickard’s Morita theory
for derived categories of rings (see [108, 110]) and Keller’s Morita theory for differential graded
algebras (see [71, 73]) provide powerful tools to understand derived module categories and
equivalences of both rings and differential graded rings. However, the following fundamental
question in the study of derived categories and derived equivalences still remains:

Main question: How can we construct derived equivalences for algebras?

Of course, by Rickard’s Morita theory for derived categories of rings [108], this question is
reduced to the question of both finding tilting complexes and determining their endomorphism
rings. But the latter seems quite difficult to be realized in practice. This can be seen from
one open problem, namely the famous Broué’s abelian defect group conjecture in the modular
representation theory of finite groups, which says that the module categories of a block algebra
A of a finite group algebra and its Brauer correspondent B should have equivalent derived
categories if their common defect group is abelian (see [111]). This conjecture is considered as
one of the central, but also hardest, problems in the modular representation theory of finite
groups. Though this conjecture is verified for symmetric groups by Chuang and Rouquier in
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[34] and for many other cases (for instance, see [79, 85, 93, 98, 127]), it seems to be far away
from being solved completely. From this conjecture one may get a little flavor of the difficulty
about finding suitable tilting complexes and determining their endomorphism algebras. For
further information on the developments of Broué’s abelian defect group conjecture, we refer
the reader to [116].

In the last few decades, there are many attempts made toward constructions of a class of
or all tilting complexes and derived equivalences for special algebras. For example, for self-
injective algebras with radical-square zero, every tilting complex is a shift of a free module.
For representation-finite, standard self-injective algebras, a derived classification was presented
in [5]. For Brauer tree algebras, a lot of tilting complexes were constructed in [113] (see also
the references therein). For preprojective algebras of Dynkin type, a complete determination of
tilting complexes was given in [1]. Also, from some idempotent ideals, tilting complexes were
constructed and their endomorphism rings were described (see, for example, [56, 57, 80, 129]).
There are also individual efforts toward constructing new derived equivalences from given ones
by applying operations on algebras. For instance, Rickard used tensor products and trivial
extensions to produce new derived equivalences in [108, 109], Barot and Lenzing employed
one-point extensions to transfer a derived equivalence to a new one in [11]. Regrettably, I
cannot pursue all references here.

In this note we shall survey some general methods for constructions of derived equivalences
of algebras. We mainly concentrate on the following aspects:

(1) Given a kind of short ‘exact’ sequences, we construct derived equivalences of the
endomorphism rings of objects involved in the sequences. This includes constructing derived
equivalences from almost split sequences (see [8] for definition) and certain Nakayama-stable
idempotent elements. The construction reveals actually an intrinsic connection among almost
split sequences, BB-tilting modules and derived equivalences. In this aspect, we also present
Dugas’ and Grant’s methods for constructing derived equivalences of symmetric algebras.

(2) Given a derived (or stable) equivalence of algebras, we construct (or lift it to) a new
derived equivalence of resulting algebras, according to information of the given equivalences.
This includes lifting a stable equivalence of Morita type to a derived equivalence, passing to
quotient algebras and extending a derived equivalence between corner algebras to a derived
equivalence between given algebras.

(3) Construction of tilting complexes over pullback algebras through the ones over their
constituent algebras. This includes a kind of gluing idempotent elements of derived equivalent
algebras.

Finally, we survey advances in applications of derived equivalences to Broué’s abelian defect
group conjecture and the finitistic dimension conjecture, and to calculations of higher algebraic
K-groups of matrix subrings.

The note is organized as follows: In Section 2, we fix some notation and recall necessary
definitions needed in the paper. In Section 3, we recall briefly the history of developments
about derived categories and equivalences applied in the representation theory of algebras.
In particular, we quote Rickard’s theorem on derived equivalences for rings and display some
derived invariants. In this section, we also mention two conjectures: Broué’s abelian defect
group conjecture and the Bondal–Orlov conjecture. In Section 4, we present a variety of
methods for constructing titling complexes and derived equivalences of algebras and rings.
In particular, we construct derived equivalences between the endomorphism rings of objects
involved in short exact sequences, including almost split sequences and certain triangles. We
restate Hoshino–Kato’s construction of tilting complexes using ν-stable idempotents. Also, we
present constructions of derived equivalences for Auslander–Yoneda algebras by using almost
ν-stable derived equivalences and by passing to quotient algebras. In Section 5, we survey
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methods of lifting stable equivalences of Morita type to derived equivalences for Frobenius-
finite algebras. Also, we extend derived equivalences between smaller algebras of the form
eAe with e an idempotent in an algebra A to derived equivalences between the whole algebras
themselves. Finally, we mention constructions of derived equivalences for tensor products given
by Ladkani in [80] and for Milnor squares by Hu-Xi in [62]. In Section 6, we mention three
applications of derived equivalences of algebras and rings. This includes an approach to Broué’s
abelian defect group conjecture and to the finitistic dimension conjecture on finite-dimensional
algebras, and to higher algebraic K-groups of subrings of matrix rings. In this section, derived
equivalences between subrings of matrix rings are also given.

2. Triangulated categories and equivalences

We briefly recall some definitions and fix notation needed in this paper.

2.1. Notation

Let C be an additive category.
By a subcategory of C we mean a full subcategory B of C closed under isomorphisms, that

is, if X ∈ B and Y ∈ C with Y � X, then Y ∈ B.
Given two morphisms f : X → Y and g : Y → Z in C, we denote the composition of f

with g by fg : X → Z. The induced morphisms HomC(Z, f) : HomC(Z,X) → HomC(Z, Y ) and
HomC(f, Z) : HomC(Y, Z) → HomC(X,Z) are denoted by f∗ and f∗, respectively. As in [48],
the composition of a functor F : C → D between categories C and D with another functor
G : D → E between categories D and E is denoted by GF which is a functor from C to E .

If M is an object of C, we denote by add(M) the full subcategory of C consisting of objects
that are direct summands of direct sums of finitely many copies of M , and by EndC(M) the
endomorphism ring of M .

A complex X• = (Xi, diX)i∈Z over C is a sequence of objects Xi in C with morphisms
diX : Xi → Xi+1 such that diXdi+1

X = 0 for all i ∈ Z. These diX are called the differentials of
X•. A complex X• = (Xi, diX) over C is called a radical complex if all differentials diX are
radical morphisms. Recall that a morphism f : X → Y in C is called a radical morphism if, for
any object Z and morphisms h : Z → X and g : Y → Z in C, the composition hfg is not an
isomorphism.

As usual, a morphism f• : X• → Y • between two complexes X• and Y • is a family f• = (f i :
Xi → Y i)i∈Z of morphisms in C such that f idiY = diXf i+1 for all i ∈ Z. Note that morphisms
between complexes are also called cochain maps in the literature. Two morphisms can be
composed degreewise. Let C (C) be the category of all complexes over C with cochain maps,
and K (C) the homotopy category of C (C). If C is an abelian category, we denote by D(C) the
derived category of C which is, by definition, the localization of K (C) at all quasi-isomorphisms.
It is well known that both K (C) and D(C) are triangulated categories (see the next section
for definition).

We denote by C b(C), C +(C) and C−(C) the categories of bounded, lower-bounded and upper
bounded complexes over C, respectively. Similarly, we have the categories K b(C), K +(C) and
K −(C) as well as Db(C), D+(C) and D−(C).

Now, we fix some terminology on approximations in the sense of Auslander–Smalø.
Let D be a subcategory of C, and X be an object in C. Recall that a morphism f : D → X

in C is called a right D-approximation of X if D ∈ D and the induced map f∗ = HomC(−, f):
HomC(D′, D) → HomC(D′, X) is surjective for every object D′ ∈ D. A morphism f : X → Y in
C is said to be right minimal if any morphism g : X → X with gf = f is an automorphism. A
minimal right D-approximation of X is a right D-approximation of X, which is right minimal.
Dually, there are the notions of left D-approximations and minimal left D-approximations. The
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subcategory D is said to be functorially finite in C if every object in C has a right and left
D-approximation. Note that the right and minimal right approximations were termed precover
and cover, respectively, in ring theory.

2.2. Triangulated categories and derived functors

The original impulse to develop the ‘derived’ formalism came from the need to find a
suitable formulation of Grothendieck’s coherent duality theory. Let us recall the definition
of triangulated categories.

Again, let C be an additive category. Suppose that [1] is an automorphism of C. The
automorphism [1] is usually called a shift functor of C. A sextuple (X,Y, Z, u, v, w) in C is given
by objects X,Y, Z ∈ C and morphisms u : X → Y, v : Y → Z and w : Z → X[1]. A morphism of
sextuples from (X,Y, Z, u, v, w) to (X ′, Y ′, Z ′, u′, v′, w′) is a triple (f : X → X ′, g : Y → Y ′, h :
Z → Z ′) of morphisms in C such that fu′ = ug, gv′ = vh,w(f [1]) = hw′.

If in this situation f, g and h are isomorphisms in C, then the morphism of the sextuple is
called an isomorphism.

Definition 2.1 [121]. An additive category C with a shift functor [1] and a set Σ of
sextuples is called a triangulated category if Σ satisfies the following conditions. The elements
of Σ are then called triangles.

(TR1)
(a) Every morphism u : X → Y in C can be embedded into a triangle (X,Y, Z, u, v, w).
(b) The sextuple (X,X, 0, 1X , 0, 0) is a triangle, where 1X denotes the identity morphism
from X to itself.
(c) Every sextuple isomorphic to a triangle is a triangle.

(TR2) If (X,Y, Z, u, v, w) is a triangle, then (Y, Z,X[1], v, w,−u[1]) is a triangle.
(TR3) Given two triangles (X,Y, Z, u, v, w) and (X ′, Y ′, Z ′, u′, v′,W ′) and morphisms f :

X → X ′, g : Y → Y ′ such that fu′ = ug, there exists a morphism (f, g, h) from the first triangle
to the second.

(TR4) (The octahedral axiom) Given triangles (X,Y, Z ′, u, i, i′), (Y, Z,X ′, v, j, j′) and
(X,Z, Y ′, u.v, k, k′), there exist morphisms f : Z ′ → Y ′, g : Y ′ → X ′ such that the following
diagram commutes and the third row is a triangle.

Throughout the note, for a triangulated category, its shift functor is denoted by [1]
universally.

To compare one triangulated category with another triangulated category, we also have the
notion of ‘exact’ functors.
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Definition 2.2. (1) Let T = (T ,Σ) and T ′ = (T ′,Σ′) be two triangulated categories. An
additive functor F : T → T ′ between T and T ′ is called a triangle functor if there is an
invertible natural transformation α : F [1] → [1]F such that (FX,FY, FX,Fu, Fv, (Fw)αX , ) ∈
Σ′ whenever (X,Y, Z, u, v, w) ∈ Σ.

(2) Two triangulated categories T and T ′ are said to be triangle-equivalent if there is a
triangle functor F : T → T ′ which is an equivalence of categories. In this case, we say that
F is a triangle equivalence, or T and T ′ are triangle-equivalent or equivalent as triangulated
categories.

If F is a triangle equivalence, then its quasi-inverse is also a triangle equivalence, and F
sends triangles to triangles. Triangle functors between triangulated categories may have some
surprising properties. For example, any full triangle functor between triangulated categories
is faithful so long as it does not take any non-zero object to zero (see [108]). For further
information on triangulated categories and derived categories, we refer the reader to [55] or
to the original book of Verdier [121]. Also, Hartshorne [53], Beilinson, Bernstein and Deligne
[15] and Iversen [66] give introductions to these concepts.

A general method to get triangulated categories is to form quotients of Frobenius categories
by their projective objects (an exact category is Frobenius if it has enough injectives and enough
projectives and the two classes coincide). Here, the shift functor is just the Heller operator and
the triangles are constructed by using the Heller operator on the quotient category. For more
details of this construction, we refer the reader to [48] where all techniques are presented. Such
a class of triangulated categories was called algebraic triangulated categories in [76]. As an
example of Frobenius categories, we mention that the category of finite-dimensional A-modules
over a self-injective algebra A is a Frobenius category. Recall that a k-algebra A over a field k
is said to be self-injective if the regular left module is injective. Another general way to obtain
triangulated categories is from algebraic topology. These are triangulated categories which
are equivalent to full triangulated subcategories of the homotopy categories of stable model
categories. Such triangulated categories were termed topological and may not be algebraic
[118]. There are also triangulated categories which are neither algebraic nor topological
(see [94]).

The notion of algebraic triangulated categories is somewhat relevant to the axiom (TR3).
Note that the morphism h in (TR3) is not unique relative to a given pair (f, g) with fu′ = ug.
Even for the homotopy category K (A) of an additive category A, Neeman pointed out in [95]
that, given a pair (f, g) between distinguished triangles (that is, triangles induced from mapping
cones of u : X → Y in K (A)), there is a natural set of choices for the third map h in K (A),
which is closed under addition and composition. The construction of these naturally good
completions uses the fact that K (A) is a quotient of the category of complexes and cochain
maps. Since an algebraic triangulated category is the quotient B of a Frobenius category B, the
triangle induced from a morphism u : X → Y in B can be described explicitly by the pushout
of a morphism u : X → Y and an injective ‘envelope’ iX : X → I(X) of X in B. Following the
idea of Neeman in [95], Dugas constructed a unique good completion h for each pair (f, g) in
an algebraic triangulated category T . For more details, we refer to [40, Section 3; 95]. The
uniqueness of h relative to a pair (f, g) gives a way to identify the endomorphism ring of the
two-term complex X

u−→ Y of objects in T with the endomorphism ring of the object Z in the
triangle (X,Y, Z, u, v, w).

Examples of algebraic triangulated categories are homotopy categories and derived categories
of schemes and abelian categories. Keller showed in [76] that differential graded categories are a
source of algebraic triangulated categories. Namely homotopy and derived categories of modules
over differential graded algebras and differential graded categories are algebraic triangulated
categories. We refer the reader to [71] for further details on differential graded categories
and derived categories over them. By a theorem of Porta [103, Theorem 1.2], every algebraic



950 CHANGCHANG XI

triangulated category which is well generated in the sense of [96, Definition 1.15, p. 15] is
equivalent to a localization of the derived category of a small differential graded category. An
analogous result of Porta’s theorem for topological triangulated categories has recently been
proved by Heider in [54].

2.3. Derived categories of rings

In this note, we are mainly interested in a special class of algebraic triangulated categories,
namely derived categories of abelian categories or more restrictively the derived categories of
the module categories over algebras and rings. Since they are the main objects in this note, we
recall a few details of derived module categories.

All rings considered in the note are associative and with identity, and all ring homomorphisms
preserve identity. Unless stated otherwise, modules are referred to left modules.

Let R be a ring. We denote by R-Mod the category of all unitary R-modules. By our
convention of the composition of two morphisms, if f : M → N is a homomorphism of
R-modules, then the image of x ∈ M under f is denoted by (x)f instead of f(x). Thus
HomA(M,N) is naturally an EndA(M)-EndA(N)-bimodule.

Let R-mod be the full subcategory of R-Mod consisting of all finitely generated R-modules.
We denote by R-mod the stable module category of R-mod. By definition, R-mod has the same
objects as R-mod, but the hom-sets HomR(X,Y ) are given by the quotients of HomR(X,Y )
modulo those morphisms that factorize through a projective R-module.

Two finite-dimensional algebras A and B over a fixed field (or generally, two Artin algebras
A and B) are said to be stably equivalent if their stable module categories A-mod and B-mod
are equivalent. By an Artin algebra we mean an algebra A over a commutative Artin ring k
such that A is a finitely generated k-module.

We shall simply write C (R) for the categories of all complexes of R-modules. Let K (R) and
D(R) be the homotopy and derived categories of R-Mod, respectively. The module category
R-Mod is fully embedded into D(R) by considering modules as stalk complexes concentrated
in degree zero.

Note that C (R) is an abelian category and that K (R) and D(R) are triangulated categories.
Similarly, one has the triangulated categories Db(R),D+(R) and D−(R). The triangles in these
categories are given as follows. If (X•, d•X) and (Y •, d•Y ) are two complexes over R-Mod, then
the mapping cone of a morphism h• : X• → Y • of complexes, denoted by Con(h•), gives rise
to a sextuple

X• h•
−→ Y • −→ Con(h•) −→ X•[1]

in K (R), called a distinguished triangle. The triangles in K (R) and D(R) are exactly those
sextuples which are isomorphic to distinguished triangles.

For each n ∈ Z, the nth cohomology functor from D(R) to R-Mod is denoted by Hn(−).
Certainly, this functor is naturally isomorphic to the Hom-functor HomD(R)(R,−[n]).

Now, we recall some basic facts about derived functors of derived module categories of rings.
For details and proofs, we refer to [71, 123].

Let K (R)P (respectively, K (R)I) be the smallest full triangulated subcategory of K (R)
which

(i) contains all bounded above (respectively, bounded below) complexes of projective
(respectively, injective) R-modules, and

(ii) is closed under arbitrary direct sums (respectively, direct products).

It is known that K (R)P is contained in K (R-Proj), where R-Proj is the full subcategory
of R-Mod consisting of all projective R-modules. Moreover, the composition functors

K (R)P ↪→ K (R) −→ D(R) and K (R)I ↪→ K (R) −→ D(R)
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are equivalences of triangulated categories. Thus, for each complex X• in D(R), there exists a
complex pX

• ∈ K (R)P together with a quasi-isomorphism pX
• → X•, and a complex iX

• ∈
K (R)I together with a quasi-isomorphism X• → iX

•. The complex pX
• is called the projective

resolution of X• in K (R). For example, if X is an R-module, then there is an exact sequence
of R-modules

· · · −→ P−n −→ P−n+1 −→ · · · −→ P−1 −→ P 0 −→ X −→ 0

with all Pj projective R-modules and we can take pX to be the complex:

· · · −→ P−n −→ P−n+1 −→ · · · −→ P−1 −→ P 0 −→ 0,

which is called a deleted projective resolution of the module RX.
If either X• ∈ K (R)P or Y • ∈ K (R)I , then the canonical localization functor from K (R)

to D(R) induces an isomorphism: HomK (R)(X•, Y •) � HomD(R)(X•, Y •).
For any triangle functor H : K (R) → K (S), there is a total left-derived functor LH :

D(R) → D(S) defined by X• �→ H(pX•), and a total right-derived functor RH : D(R) → D(S)
defined by X• �→ H(iX•). Observe that, if H preserves acyclicity, that is, H(X•) is acyclic
whenever X• is acyclic, then H induces a triangle functor D(H) : D(R) → D(S) defined by
X• �→ H(X•). In this case, LH = RH = D(H) up to natural isomorphism. As usual, D(H) is
called the derived functor of H.

Let M• be a complex of R-S-bimodules. Then the tensor functor and Hom-functor

M• ⊗•
S − : K (S) −→ K (R) and Hom•

R(M•,−) : K (R) −→ K (S)

form an adjoint pair of triangle functors. Denote by M• ⊗L
S − the left-derived functor of

M• ⊗•
S −, and by RHomR(M•,−) the right-derived functor of Hom•

R(M•,−). Then (M• ⊗L
S

−,RHomR(M•,−)) is an adjoint pair of triangle functors.
If M• is just a bimodule, we simply write M ⊗L

S − for M• ⊗L
S − and RHomR(M,−) for

RHomR(M•,−).
Note that the tensor functor and Hom-functor defined on homotopy categories of R-modules

can be extended to functors on derived module categories.

3. Derived categories and derived equivalences of algebras

In this section we briefly recall the history of developments of derived equivalences in the
representation theory of algebras. In particular, we recall Rickard’s Morita theory for derived
categories and collect some invariants of derived equivalences. Also, we mention two important
conjectures which are in terms of derived equivalences, in order to have a feeling on the ubiquity
and importance of derived equivalences.

3.1. Tilting modules

The notion of tilting modules of projective dimension at most 1 played an important role in
the development of tilting theory. It was first introduced by Brenner and Butler in [21]. One of
the main aims in [21] was to generalize systematically some results of Auslander, Platzeck and
Reiten in [7] where they studied the reflection functors without diagrams, while the reflection
functors was initiated by Bernstein, Gelfand and Ponomarev in [17]. This might be considered
as the first step toward the general notion of tilting modules. After the work of Brenner and
Butler on tilting modules, Happel and Ringel simplified the axioms of tilting modules defined
in [21] and gave a much simple formulation of the definition of tilting modules (see [51]), and
Bongartz gave another treatment of some results in [51]. Further generalization of the notion
of tilting modules of finite projective dimension was given in [91].
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Definition 3.1 [21, 51, 91]. Let A be a finite-dimensional algebra over a field. An
A-module T ∈ A-mod is called a tilting module if the following conditions are satisfied.

(1) pdA(T ) � n < ∞,
(2) ExtiA(T, T ) = 0 for all i � 1, and
(3) there is an exact sequence 0 → AA → T0 → T1 → · · · → Tn → 0 with Ti ∈ add(T ).

If n = 1, Condition (3) can be replaced by

(3’) the number of non-isomorphic indecomposable direct summands of T equals the number
of non-isomorphic simple A-modules (see [51; 114, Chapter 4]).

Tilting modules have many applications in and connections with other algebraic areas. For
instance, tilting modules appears in the study of highest weight categories of semisimple Lie
algebras and algebraic groups, where tilting modules are described as modules with filtrations
by standard modules and by co-standard modules, respectively. For more details, we refer the
reader to [2, 37, 38].

3.2. Happel’s investigation of derived module categories of algebras

Tilting modules may be regarded as a starting point of the general Morita theory of derived
categories of algebras. Around 1986, Happel published his works [47, 48] and initiated
investigations of the representation theory of finite-dimensional algebras from the view point
of derived categories. Since then there have been discovered lots of beautiful results in this
direction. We will survey some of them in the following sections.

Recall that two rings R and S are called derived equivalent if their derived categories Db(R)
and Db(S) are equivalent as triangulated categories. For finite-dimensional algebras (or more
generally, Artin algebras) A and B, they are derived equivalent if and only if Db(A-mod) and
Db(B-mod) are equivalent as triangulated categories (see [108, Corollary 8.3]).

For tilting modules over finite-dimensional algebras, Happel proved the following result.

Theorem 3.2 [47]. Let A be a finite-dimensional algebra over a field and T be a tilting
A-module, and let B := EndA(T ). Then

(1) A and B are derived equivalent.
(2) |gl.dim(A) − gl.dim(B)| � pdA(T ).

Also, the derived categories Db(H-mod) of finite-dimensional hereditary algebras H over
algebraically closed fields were completely described by the Auslander–Reiten quivers of H in
terms of indecomposable H-modules in H-mod (see [47]). Roughly speaking, Db(H-mod) can
be obtained by suitable gluing of Z copies of the category of indecomposable H-modules in
H-mod.

3.3. Happel’s Theorem extended by Cline–Parshall–Scott

Happel’s result, Theorem 3.2, was proved for finite-dimensional algebras and finite-dimensional
modules. In [35], Cline, Parshall and Scott extended Happel’s result to arbitrary rings and
tilting modules. For an arbitrary ring R, the notion of tilting modules is defined in a very
similar way.

Definition 3.3 [35]. Let R be a ring. An R-module T is called a tilting module if the
following conditions are satisfied:
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(1) There is a projective resolution 0 → Pn → · · · → P1 → P0 → T → 0 of T , where all Pj

are finitely generated projective R-modules,
(2) ExtiR(T, T ) = 0 for all i � 1, and
(3) there is an exact sequence 0 → RR → T0 → T1 → · · · → Tn → 0 with Ti ∈ add(T ).

For tilting modules over rings, it was shown in [35] that Happel’s result, Theorem 3.2, remains
true. We point out that, if one extends the definition of finitely generated tilting modules to that
of infinitely generated tilting modules, then Condition (2) was strengthened and Theorem 3.2
is no longer true (see [13]). In this case, the derived category of the endomorphism ring of
an infinitely generated tilting R-module is much bigger than the derived category of R, and
actually forms a recollement (see [13, 24, 25]).

3.4. Rickard’s Morita theory of derived categories and equivalences

In a very general setting, Rickard furthered the notion of tilting modules and dealt with derived
equivalences between arbitrary rings. He introduced the key notion of tilting complexes and
established a beautiful Morita theory for derived categories of rings. This provides a more
general framework for understanding algebraic and homological properties of algebras from
the view point of derived module categories.

To describe derived equivalent rings, we first recall Rickard’s definition of tilting complexes
(see [108]), which generalize the notion of tilting modules.

Definition 3.4. Let R be a ring. A complex T • ∈ K b(R-proj) is called a tilting complex
over R if

(1) HomD(R)(T •, T •[n]) = 0 for all n �= 0, and
(2) add(T •) generates K b(R-proj) as a triangulated category, that is, the smallest triangu-

lated subcategory of K b(R-proj) containing add(T •) coincides with K b(R-proj).

Thus a deleted projective resolution P • of a tilting R-module T is a tilting complex, and
we have T � P • in D(R), and EndR(T ) � EndD(R)(P •). In this sense, the notion of tilting
complexes is a natural generalization of tilting modules.

The following theorem, due to Rickard, is a very useful description of derived equivalences
for rings.

Theorem 3.5 [108, Theorem 6.4]. For two rings A and B, the following are equivalent:

(a) Db(A) and Db(B) are equivalent as triangulated categories.
(b) D−(A) and D−(B) are equivalent as triangulated categories.
(c) K b(A-proj) and K b(B-proj) are equivalent as triangulated categories.
(d) K b(A-Proj) and K b(B-Proj) are equivalent as triangulated categories.
(e) There is a tilting complex T • ∈ K b(A-proj) such that B � EndK b(A-proj)(T

•).

Thus, given a derived equivalence F between A and B, there is a unique (up to isomorphism)
tilting complex T • over A such that FT • = B by Theorem 3.5(c). This complex T • is called a
tilting complex associated to F . Transparently, the two conditions in Definition 3.4 are satisfied
by a deleted projective resolution of a tilting module (see Definition 3.3(2) and (3)). Also, the
stack complex B satisfies the two conditions in Definition 3.4. Since F is a triangle equivalence,
T • also satisfies the two conditions. This may explain why the conditions in the definition of
tilting complexes are naturally required.
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Theorem 3.5 is, in fact, an analog of the Morita theorem on module categories of rings.
Recall from [92] that two rings R and S are Morita equivalent (that is, R-Mod � S-Mod) if
and only if there is a finitely generated projective R-module RP such that

(1) P generates R-Mod (or R-proj), that is, every R-module (or finitely generated projective
R-module) is a homomorphic image of a direct sum of copies of P .

(2) S � EndR(P ).

Thus Theorem 3.5(e) can be regarded as a derived version of Morita theorem. Also, it
follows from Theorem 3.5(b) that D(R) and D(S) are equivalent as triangulated categories if
(b) holds true since every R-module M has a projective resolution P • which is isomorphic to
M in D−(R).

Slightly general formulation of the above Morita Theorem is as follows: if A is an abelian
category admitting all set-indexed coproducts and P is a compact (that is, HomA(P,−)
commutes with all set-indexed coproducts) projective generator of A, then the functor
HomA(P,−) : A → EndA(P )-Mod is an equivalence. An analog of this result for triangulated
categories T was given by Keller in [71], in which T is assumed to be algebraic, P is replaced
by a compact generator T of T and EndA(P ) is replaced by the differential graded algebra
RHom(T, T ), where the homology of RHom(T, T ) is

⊕
p∈Z

HomT (T, T [p]). In particular, if the
algebraic triangulated category T is the closure of T under forming extensions, shifts (in both
directions) and direct summands. Then T is equivalent to the category of perfect complexes
over RHom(T, T ) as triangulated categories. Recall that an object T is a generator in T if, for
any object M with HomT (M,T [n]) = 0 for all n ∈ Z, we have M = 0.

Morita equivalences of rings can be described by tensor products of bimodules, as shown by
the following theorem, due to Morita [92].

Theorem 3.6. Let R and S be two rings. The following are equivalent.

(1) R and S are Morita equivalent.
(2) There are two R-S-bimodule RPS and SQR and isomorphisms of bimodules

θ : P ⊗S Q −→ R and φ : Q⊗S P −→ S

such that for all x, y ∈ P and f, g ∈ Q,

((x⊗ f)θ)y = x((f ⊗ y)φ) and f((x⊗ g)θ) = ((f ⊗ x)φ)g.

Compared with Theorem 3.6, derived equivalences can also be characterized in terms of
tensor products of complexes of bimodules.

Theorem 3.7 [110]. Let A and B be two k-algebras over a commutative ring k such that
they are flat over k. Then the following are equivalent:

(1) A and B are derived equivalent.
(2) There are two complexes P • ∈ Db(A⊗k B

op
) and Q• ∈ Db(B ⊗k A

op
) such that

P • ⊗L
B Q• � AAA in Db(A⊗k A

op
) and Q• ⊗L

A P • � BBB in Db(B ⊗k B
op

).

Note that the functor Q• ⊗L
A − : Db(A) → Db(B) is an equivalence. It is not known if this

equivalence coincides with the given derived equivalence in (1) of Theorem 3.7, but they have
the isomorphic images on objects (see [110, Corollary 3.5]).

The above description of derived equivalences suggests the following definition: Let A and
B be two k-algebras over a commutative ring k such that they are flat over k. A complex
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P • ∈ Db(A⊗k B
op

) is called a two-sided tilting complex over A⊗k B
op

if there is a complex
Q• ∈ Db(B ⊗k A

op
) such that

P • ⊗L
B Q• � AAA in Db(A⊗k A

op
) and Q• ⊗L

A P • � BBB in Db(B ⊗k B
op

).

A derived equivalence F between k-algebras A and B is said to be standard if there is a two-
sided tilting complex Q• over B ⊗k A

op
such that F and Q• ⊗L

A − are naturally equivalent.
For a discussion on standard derived equivalences, one may see [110]. In general, we have the
following fact: let A and B be algebras over a commutative ring k such that A is a projective
k-module. If A and B are derived equivalent, then Keller gave an explicit construction of
a two-sided tilting complex P • such that P • ⊗L

B − : D(B) → D(A) is a triangle equivalence
(see [72, 74] for details).

3.5. Invariants of derived equivalences of algebras

For two derived equivalent algebras, one algebra may be representation-finite, and the other
may be representation-infinite. They may also have different global dimensions. Though derived
equivalent algebras may have significant differences in homological aspects and in algebraic
structures, they can still have many common features in many other aspects. Here we shall list
some of invariants of derived equivalences, which will be useful to adjudge whether two algebras
are not derived equivalent. A property P is said to be invariant under derived equivalences
provided that if a ring (or an algebra) A has the property P then so do all rings (or algebras)
B which are derived equivalent to A.

The next theorem collects a few invariants of derived equivalences.

Theorem 3.8. The following are invariants of derived equivalences between rings.

(1) The Hochschild (co-) homology and cyclic homology. In particular, the centers of rings
(see [73, 110]).

(2) The number of non-isomorphic simple modules if we are restricted to Artin algebras.
(3) Finiteness of global (or finitistic) dimensions (see [48, 69, 102]).
(4) The Cartan determinants, and the characteristic polynomials of Coxeter matrices if the

Cartan matrices of Artin algebras are invertible (see [50, Lemma 4.1]; for a detailed proof, see
[128, Proposition 6.8.9]).

(5) Algebraic K-groups and G-theory (see [41]).
(6) Symmetry of algebras over an arbitrary field (respectively, self-injectivity of algebras

over an algebraically closed field) (see [3, 108]).
(7) Finite-dimensional gentle algebras over a field (see [117]).
(8) The identity component of the algebraic group of outer automorphisms of finite-

dimensional algebras (see [64]).

Thus, in order to understand some property of a given algebra (or mathematical object), one
may pass to its derived equivalent algebras (or mathematical objects) which might be easy to
handle. For example, to understand properties of coherent sheaves over weighted projective
lines X, Geigle and Lenzing employed Ringel’s tubular algebras (see [114] for definition)
because the derived category of coherent sheaves over X is triangle-equivalent to the derived
module category of a tubular algebra (see [43, 82]). Another example is the well-known work of
Beilinson who reduced the study of derived category of coherent sheaves over Pn to the one of
a triangular matrix algebra (see [14]). Further examples of applications of derived equivalences
can be found in Section 6.

Derived equivalences were initiated from algebraic geometry and also widely used in
algebraic geometry. Many geometric invariants were discovered to be preserved under derived
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equivalences. Let us just mention one of them. For the proof of the following result, one may
see [65, Proposition 4.1]

Proposition 3.9. Let X and Y be two smooth projective varieties over a field, and let
Db(X) denote the bounded derived category of coherent sheaves over X. If Db(X) � Db(Y )
as triangulated categories, then

(1) X and Y have the same dimension.
(2) The canonical rings of X and Y are isomorphic and in particular, the Kodaira dimension

of X and Y are equal (see [65, Proposition 6.1; 99] for a proof).

For the definitions of the dimension and canonical ring of a variety, we refer to
[65, Section 6.5].

3.6. Broué’s abelian defect group conjecture and Bondal–Orlov conjecture

Derived equivalences appear in different branches of mathematics. To get a feeling of the
ubiquity of derived equivalences, we mention two conjectures from the modular representation
theory of finite groups and algebraic geometry, respectively. Both of them may reflect the
importance of derived equivalences and difficulty of how to find (suitable) tilting complexes
such that their endomorphism algebras have the desired properties, even though we have the
Morita theory of derived categories in hand (see Theorem 3.5). Note that each of the conjectures
requires just to prove an existence of a derived equivalence.

Broué’s abelian defect group conjecture is considered as one of the central problems in the
modular representation theory of finite groups, and remains unsolved.

Let k be an algebraically closed field of characteristic p > 0, and let G be a finite group with
p dividing the order of G. Suppose that B is a block of the group algebra kG with the defect
group P . By a result due to Brauer, there is a unique block b of the group algebra kNG(P ) of
NG(P ), the normalizer of P in G, such that b has the same defect group P and the restriction
from Db(B) to Db(b) is faithful. This is the Brauer correspondence, which provides a bijection
between blocks B of kG with the defect group P and blocks b of kNG(P ) with the defect group
P . Motivated by the study of isometry of finite groups, Broué introduced a conjecture [23].

Broue’s Abelian Defect Group Conjecture: If P is abelian, then B and b are derived
equivalent.

Roughly speaking, Broué’s conjecture predicates that two symmetric algebras are derived
equivalent under a ‘commutativity’ condition. This conjecture was verified for symmetric groups
in [34] and for alternating groups in [85], where the proof is based on the consideration in [34].
For more examples, we refer to the recent paper [127] and to the old preprint [98] as well as
the papers [79, 93] and the references therein. For further information on the developments
of the conjecture, we refer to [116] and the home page of Rickard: https://people.maths.
bris.ac.uk/∼majcr/adgc/adgc.html. In general, the conjecture seems to be far away from being
completely solved.

Now, we mention the conjecture of Bondal–Orlov on derived equivalences in (non-
commutative) crepant resolutions.

Let Y and Y + be three-dimensional smooth varieties related by a flop. One may consider
the derived categories Db(coh(Y )) and Db(coh(Y +)) of coherent sheaves over Y and Y +,
respectively. In a paper (see [20]), Bondal and Orlov proposed the following conjecture.

Bondal–Orlov conjecture: The bounded derived categories Db(coh(Y )) and Db(coh(Y +))
are equivalent.

This conjecture was proven by Bridgeland (see [22]), and later extended to non-commutative
crepant resolutions by Van den Bergh in [16].

https://people.maths.bris.ac.uk/
https://people.maths.bris.ac.uk/
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Suppose that k is an algebraically closed field and R is an integral Gorenstein k-algebra.
Van den Bergh defined a non-commutative crepant resolution of R to be an algebra A =
EndR(M) where M is a reflexive R-module, A has finite global dimension, and A is a maximal
Cohen–Macaulay R-module.

Theorem 3.10 (van den Bergh [16]). If R is three-dimensional and has terminal
singularities, then all crepant resolutions of R (commutative as well as non-commutative) are
derived equivalent.

4. Constructions of tilting complexes and derived equivalences for algebras

By Theorem 3.5, one important ingredient of constructing derived equivalences is to find tilting
complexes. In this section, we survey a variety of methods for constructing derived equivalences
and tilting complexes for algebras and rings.

4.1. Hoshino–Kato’s construction of tilting complexes

We first mention a construction of tilting complexes obtained from idempotent elements
initiated by Okuyama [98], and further developed by Hoshino–Kato [56, 57]. This gives rise,
in fact, to a two-term tilting complex. Note that two-term tilting complexes are often used to
study Brauer tree algebras (for example, see [129]).

Assume that A is a finite-dimensional algebra over a field and e ∈ A is an idempotent element.
Let f : P → A be a right add(Ae)-approximation of A. We consider f as a complex P • of
projective A-modules with A in degree 0 and P in degree −1, that is, P • is the mapping cone
of f . Note that P can be chosen as a direct sum of finitely many copies of Ae and that the
cokernel of f is A/AeA. We define T • := Ae[1] ⊕ P •. Then the following result holds.

Proposition 4.1 [56]. Let A be a finite-dimensional algebra over a field k and e
an idempotent element in A. Then T • = Ae[1] ⊕ P • is a tilting complex if and only if
HomA(A/AeA,Ae) = 0.

A special case of Proposition 4.1 is that an idempotent element e ∈ A satisfies ν(Ae) � Ae,
where ν is the Nakayama functor DHomA(−, A) with D the usual k-duality. In this situation,
it follows from the natural isomorphism HomA(P,M) � DHomA(M,νP ) for P a projective
A-module that

HomA(A/AeA,Ae) � DHomA(A/AeA, ν(Ae)) � HomA(Ae,A/AeA) = 0.

This case appears for symmetric algebras A (for example, group algebras of finite groups over a
field) because we always have ν(Ae) � Ae for any idempotent element e in a symmetric algebra
A.

This construction is closely related to mutations in a triangulated category studied in [67],
see also [19, 52]. But we warn the reader that mutations in [67] do not have to produce
derived equivalences of algebras in general. For conditions of when a mutation gives a derived
equivalence, we refer the reader to, for instance, [58, Corollary 4.11] and the preprint [81].

For constructions of two-term tilting complexes over symmetric algebras, one may also see
[112, 129].

4.2. Derived equivalences from short exact sequences

In this section, we present a general method to construct derived equivalences of rings from
each short exact sequence in an additive category. The rings involved in this construction are



958 CHANGCHANG XI

defined by the objects in the sequence. In particular, we get a nice relation between almost
split sequences (see [8] for definition) and derived equivalences.

Now let us recall the definition of relatively split sequences from [60]. Throughout this
section, we assume that C is an additive category and D is a full subcategory of C.

Definition 4.2. A sequence

X
f−→ M

g−→ Y

of morphisms between objects in C is said to be D-split if the following three conditions are
satisfied:

(1) M ∈ D;
(2) f is a left D-approximation of X, and g is a right D-approximation of Y ; and
(3) f is a kernel of g, and g is a cokernel of f .

Typical examples of D-split sequences are almost split sequences introduced by Auslander
and Reiten, these sequences are the most important ones in the representation theory of Artin
algebras (see, for example, [8] for more details). Let A be an Artin algebra and 0 → X → M →
Y → 0 be an almost split sequence in A-mod. If we take C = A-mod and D = add(M), then the
sequence X → M → Y is a D-split sequence in C. This follows immediately from properties
of almost split sequences. Another example of D-split sequences reads as follows: If P is a
projective-injective A-module, then any exact sequence 0 → X → P ′ → M → 0 of A-modules
with P ′ ∈ add(P ) is an add(P )-split sequence in A-mod.

The significance of D-split sequences is given by the following result.

Theorem 4.3 [60]. Let M be an object in C. Suppose that X → M ′ → Y is an add(M)-
split sequence in C. Then the endomorphism rings EndC(M ⊕X) and EndC(M ⊕ Y ) are derived
equivalent.

In fact, we can say more about the derived equivalence in Theorem 4.3, namely the
derived equivalence between the endomorphism rings is given by a tilting module of projective
dimension at most 1. Thus, by Brenner–Butler’s Theorem in [21], we have two torsion pairs,
defined by the tilting module, for the module categories of the endomorphism rings.

Let A be an Artin algebra. Recall from [60, Section 4] that an A-module T is called an
n-BB-tilting module (after the names of Brenner and Butler) if it is of the form T = P ⊕ τ−(S),
where τ is the Auslander–Reiten translation, S is a simple, non-injective A-module such that
ExtiA(D(A), S) = 0 for 0 � i � n− 1 and ExtjA(S, S) = 0 for 1 � j � n and P is the direct sum
of all indecomposable projective A-modules which are not isomorphic to the projective cover
of S. In case that S is projective, a 1-BB-tilting module is called an APR-tilting module (after
the name of Auslander, Platzeck and Reiten).

Corollary 4.4. Let A be an Artin algebra. If 0 → X → M → Y → 0 is an almost split
sequence in A-mod and N ∈ A-mod such that X,Y �∈ add(N), then EndA(X ⊕M ⊕N) is
derived equivalent to EndA(M ⊕ Y ⊕N) via a 1-BB-tilting module.

In Corollary 4.4, if N = 0, then EndA(X ⊕M) is derived equivalent to EndA(M ⊕ Y )
by a 1-BB-tilting module. Thus Corollary 4.4 reveals a substantial relation among almost
split sequences, BB-tilting modules and derived equivalences. Note that n-BB-tilting modules
appear in constructions of derived equivalences by several consecutive almost split sequences
(see [60, Proposition 4.3]).

The proof of Theorem 4.3 is based on a general fact.
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Lemma 4.5 [60]. Let M be an object in C. Suppose

X
f−→ Mn −→ · · · −→ M2

t−→ M1
g−→ Y

is a (not necessarily exact) sequence of morphisms in C with Mi ∈ add(M), satisfying the
following conditions.

(1) The morphism f : X → Mn is a left add(M)-approximation of X, and the morphism
g : M1 → Y is a right add(M)-approximation of Y ;

(2) Put V := M ⊕X and W := M ⊕ Y . There are two induced exact sequences

0 −→ HomC(V,X)
f∗−→ HomC(V,Mn) → · · · → HomC(V,M1)

g∗−→ HomC(V, Y ),

0 −→ HomC(Y,W )
g∗
−→ HomC(M1,W ) → · · · → HomC(Mn,W )

f∗
−→ HomC(X,W ).

Then the endomorphism rings EndC(M ⊕X) and EndC(M ⊕ Y ) are derived-equivalent via a
tilting module of projective dimension at most n.

Observe that triangles in a triangulated category are a natural generalization of exact
sequences in an abelian category and that Auslander–Reiten triangle (see [48]) in a derived
category is a natural generalization of almost split sequences in a module category. So one may
ask whether the above result, Corollary 4.4, holds true for triangles. Unfortunately, if almost
split sequences are replaced by Auslander–Reiten triangles in Corollary 4.4, then the result is
no longer true in general. To get a more general statement, two generalizations of Theorem 4.3
were done in different directions. One is to use subalgebras of the endomorphism algebras, and
the other is to pass to quotient algebras of the endomorphism algebras.

The first case was carried out by Yiping Chen in [32] for exact sequences in abelian categories,
and then extended to triangles in triangulated categories by Shengyong Pan in [100]. The
second case will be discussed in Section 4.3. Recently, two further generalizations are given in
[28] for relatively exact sequences in additive categories and in [101] for a class of Beilinson–
Green algebras, respectively. Now, we first pursue the construction in [28].

The following is a slight generalization of D-split sequences.

Definition 4.6 [28]. Let D be a full subcategory of C. A sequence

X
f−→ M0

g−→ Y

of objects and morphisms in C is called a D-exact sequence provided that

(1) M0 ∈ D.
(2) The following two sequences of abelian groups are exact:

(†) 0 −→ HomC(X ⊕M, X)
f∗
−→ HomC(X ⊕M, M0)

g∗
−→ HomC(X ⊕M, Y )

(‡) 0 −→ HomC(Y, M ⊕ Y )
g∗−→ HomC(M0, M ⊕ Y )

f∗−→ HomC(X, M ⊕ Y )

for every object M in D.

Note that D-split sequences in C are D-exact sequences in C because Condition (2) in
Definition 4.6 implies fg = 0 and, moreover, if f is a kernel of g and g is a cokernel of f , then
Condition (2) holds automatically. But the converse is not true: Since every short exact sequence
0 → X → M → Y → 0 in an abelian category is an add(M)-exact sequence, we get not only
the ubiquity of relatively exact sequences, but also examples of D-exact sequences which are
not D-split sequences. For instance, we take A = k[T1, T2]/(T 2

1 , T
2
2 , T1T2) with k a field, C = A-

mod and X = A/rad(A), then the canonical sequence 0 → X → A → A/(T1) → 0 is exact, but
Condition (2) in Definition 4.2 is not satisfied. Thus this sequence is not add(AA)-split.
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In the following, we shall focus on the most interesting case where D = add(M) for M
an object in C. Compared with Theorem 4.3, an add(M)-exact sequence (not necessarily
an add(M)-split sequence) does not have to provide a derived equivalence between the
endomorphism rings of the objects in the sequence. However, we shall prove that there does
exist a derived equivalence between certain subrings of the corresponding endomorphism rings.

Proposition 4.7 [28]. Let M be an object in C, and let X
f−→ M0

g−→ Y be an add(M)-
exact sequence in C. Set

R :=
{(

h1 h2

fh3 h4

)
∈
(

EndC(M) HomC(M,X)
HomC(X,M) EndC(X)

)∣∣∣∣h3 ∈ HomC(M0,M) and there exists
h5 ∈ EndC(M0) such that h4f = fh5

}

and

S :=
{(

h1 h2 g
h3 h4

)
∈
(

EndC(M) HomC(M,Y )
HomC(Y,M) EndC(Y )

)∣∣∣∣h2 ∈ HomC(M,M0) and there exists
h5 ∈ EndC(M0) such that gh4 = h5g

}
.

Then R and S are subrings of EndC(M ⊕X) and EndC(M ⊕ Y ), respectively, and are derived
equivalent.

Recall that the dominant dimension of an Artin algebra A is defined to be the supremum of
the numbers n in a minimal injective resolution

0 −→A A −→ I0 −→ I1 −→ · · · −→ In−1 −→ · · ·

of A such that I0, . . . , In−1 is projective.
Proposition 4.7 can be applied to construct derived equivalent algebras such that one algebra

is of dominant dimension at least 2 and the other has dominant dimension 1. Thus one can
construct examples to show that derived equivalences do not preserve generalized symmetric
algebras in general. This answered a question by Fang and Koenig (see [28, Section 5] for
details). Recall that an algebra is called a generalized symmetric algebra if it is of the form
EndA(A⊕M) with A a symmetric algebra and M an A-module (see [42]). We reminded the
reader that derived equivalences preserve symmetric algebras over a field (see Theorem 3.8(6)).

4.3. Derived equivalences from triangles and cohomological approximations

Almost split sequences in module categories were naturally generalized to Auslander–Reiten tri-
angles in derived module categories (see [48]). As mentioned, we cannot get derived equivalence
from an Auslander–Reiten triangle just by forming the corresponding endomorphism algebras.
On the other hand, when dealing with Yoneda algebras or Koszul duality of algebras (or more
generally, the endomorphism algebras of objects in an orbit category), we not only confront
an endomorphism algebra, but also need higher cohomological groups (or homomorphisms
of higher dimensional shifts). For example, the Koszul dual Ext∗(k, k) of k[X]/(X2) is the
endomorphism algebra End(k) plus higher cohomologies Exti(k, k), i � 1, and therefore it is
the polynomial algebra k[X]. Thus a natural question is how to modify the construction in
the previous section to get derived equivalences, in a general context, for a kind of Yoneda
algebras, including trivial extensions, Veronese algebras and quotients of Yoneda algebras.

In this section, we present a method for constructing derived equivalences from triangles by
forming certain quotient algebras of generalized Yoneda algebras, that is, Φ-Auslander–Yoneda
algebras. Let us first recall some relevant notions and notation in [61].

Let Φ be a subset of N := {0, 1, 2, . . .}. Following [61], Φ is called an admissible subset of N
if 0 ∈ Φ and, for any a.b, c ∈ Φ with a + b + c ∈ Φ, we have a + b ∈ Φ if and only if b + c ∈ Φ.

Examples of admissible subsets in N are {0, 1, . . . , n}, nN := {nx | x ∈ N} for any n, and the
subset {0, a, b} of N for any a, b ∈ N. But {0, 1, 2, 4} is not an admissible subset of N.
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Clearly, the definition of admissible sets in N can be extended to the one in Z (or more
generally, in a monoid). For simplicity of our presentation in this note, we will work almost
exclusively with admissible subsets of N. Now, let us define an associative algebra with identity
for each admissible subset Φ of N and each object X in a triangulated category.

Let T be a triangulated k-category with k a commutative ring, and let X be an object in
T . For any admissible subset Φ of N, we define

R(T ,Φ, X) :=
⊕
i∈Φ

HomT (X,X[i]).

The multiplication on R(T ,Φ, X) is given by

(fi)i∈Φ · (gj)j∈Φ = (hl)l∈Φ, where hl =
∑

u,v∈Φ
u+v=l

fu(gv[u]).

The associativity of the multiplication on R(T ,Φ, X) is guaranteed by the admissibility
of Φ. The condition 0 ∈ Φ ensures that this algebra has identity. Following [61], the algebra
R(T ,Φ, X) is called the Φ-Auslander–Yoneda algebra of X.

Auslander–Yoneda algebras capture many known classes of algebras. Let T = D(A) with A a
ring, and let X be an A-module, if Φ = N, then R(T ,N, X) is just the Yoneda algebra Ext∗A(X)
of X with the usual concatenation of exact sequences as its multiplication. If Φ = {0, 1, . . . , n},
then R(T ,Φ, X) is the quotient algebra of the Yoneda algebra Ext∗A(X) of X by the ideal⊕

i>n ExtiA(X,X). If Φ = {0, a}, then R(T ,Φ, X) is precisely the trivial extension of EndA(X)
by the bimodule ExtaA(X,X). If Φ = nN, then R(T ,Φ, X) is just the nth Veronese algebra of
Ext∗A(X). For properties of Veronese algebras of graded algebras in commutative algebra, we
refer to [9].

We warn the reader that, in general, R(T ,Φ, X) is neither a subalgebra nor a quotient algebra
of the Yoneda algebra R(T ,N, X) of X. For example, if we take Φ = {0, 1, 3}, A = k[t]/(t2) and
X = k, then R(T ,Φ, X) is neither a subalgebra nor a quotient of the Yoneda algebra Ext∗T (X)
of X.

Given an admissible subset Φ of N (or Z), one may define a Φ-orbit category T /Φ of T in a
natural way: The objects of T /Φ are the same as the objects of T , the Hom-set of two objects
X and Y is defined as

HomT /Φ(X,Y ) :=
⊕
i∈Φ

HomT (X,Y [i]),

and the composition of morphisms is defined in an obvious way: For f ∈ HomT (X,Y [i]), g ∈
HomT (X,Y [j]), with i, j ∈ Φ, we define

f · g =

{
f · g[i] if i + j ∈ Φ,

0 otherwise.

Now, one has to check the associativity of this composition, but this is guaranteed by the
admissibility of Φ (see [61] for details). So the Auslander–Yoneda algebra R(T ,Φ, X) is nothing
else than the endomorphism algebra of X in the Φ-orbit category T /Φ of T . Here, an open
question arises naturally and is left to the interested reader:

Question: For which admissible sets Φ of Z are the orbit categories T /Φ of the triangulated
category T again triangulated?

This seems to be a hard question. For further information on orbit triangulated categories,
we refer to the paper [75].

Now, we fix an admissible subset Φ of N, a triangulated k-category T with k a field, an
object M in T and a triangle in T :

X
α−→ M1

β−→ Y −→ X[1].
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Then we define a diagonal morphism α̃ and a skew-diagonal morphism β̃.

α̃ =
(
α 0
0 1

)
: X ⊕M → M1 ⊕M, β̃ =

(
0 β
1 0

)
: M1 ⊕M → M ⊕ Y.

Recall from [61] that a morphism f : X → D in T is called a left (add(M),Φ)-approximation
of X if D ∈ add(M) and for any i ∈ Φ and any morphism h : X → D′[i] with D′ ∈ add(M),
there is a morphism h′ : D → D′[i] such that h = fh′. Similarly, we have the definition of right
(add(M),Φ)-approximations. So an (add(M),Φ)-approximation of X must be an add(M)-
approximation of X in the sense of Auslander–Smalø (see Section 2.1). Thus (add(M),Φ)-
approximations might be considered as a kind of cohomological approximation if we think of
HomD(A)(X,Y [n]) being just the cohomological group ExtnA(X,Y ) for A-modules X and Y .

Compared with Theorem 4.3, the following result provides a derived equivalence between
quotient algebras of Auslander–Yoneda algebras, which is constructed from triangles in a
triangulated category.

Theorem 4.8 [58]. For the above-given triangle in T , assume that the two conditions are
satisfied.

(i) HomT (M,X[i]) = HomT (Y [−i],M) = 0 for all 0 �= i ∈ Φ, and
(ii) the morphism α is a left (add(M),Φ)-approximation of X and β is a right (add(M),−Φ)-

approximation of Y .

Let I be the ideal of R(T ,Φ,M ⊕X) consisting of all elements (xi)i∈Φ such that xi = 0 for
0 �= i ∈ Φ, x0 factorizes through add(M) and x0α̃ = 0, and let J be the ideal of R(T ,Φ,M ⊕ Y )
consisting of all elements (yi)i∈Φ such that yi = 0 for 0 �= i ∈ Φ, y0 factorizes through add(M)
and β̃y0 = 0. Then R(T ,Φ,M ⊕X)/I and R(T ,Φ,M ⊕ Y )/J are derived equivalent.

Theorem 4.8 supplies a large class of derived equivalences by flexible choices of Φ. Moreover,
there are many cases where both I and J vanish. For example, when dealing with exact
sequences in the module categories of rings, we have I = 0 and J = 0.

Corollary 4.9 [58]. Let A be an Artin algebra and M ∈ A-mod. Suppose

0 → X
α−→ M1

β−→ Y → 0

is an exact sequence in A-mod such that α is a left (add(M),Φ)-approximation of X and
β is a right (add(M),−Φ)-approximation of Y in Db(A-mod), and that ExtiA(M,X) = 0 =
ExtiA(Y,M) for all 0 �= i ∈ Φ. Then the Φ-Auslander–Yoneda algebras of X ⊕M and M ⊕ Y
are derived equivalent.

If Φ = {0} and the sequence in Corollary 4.9 is an almost split sequence, then we recover
the derived equivalence in Corollary 4.4. Another special case of Corollary 4.9 is the situation
of self-injective algebras. So we re-obtain the result [61, Corollary 3.4].

Corollary 4.10 [61]. If A is a self-injective Artin algebra and X is an A-module, then
the Φ-Auslander–Yoneda algebras of A⊕X and A⊕ Ωi(X) are derived equivalent for any
admissible subset Φ of N and any integer i, where Ω is the syzygy operator.

Starting with an algebraic triangulated category T , a triangle endofunctor F : T → T and
a finite admissible subset Φ of N, Pan and Peng defined the Φ-Beilinson–Green algebra
G(Φ, X) associated to an object X of T : It is a lower triangular matrix ring with (i, j)-entry
HomT (X,F i−jX) when i− j ∈ Φ and 0 otherwise. In a way similar to Corollary 4.9, it was
shown in [101] that one can get a derived equivalence of Φ-Beilinson–Green algebras from a
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triangle in T with certain approximation properties. The assumption that the triangulated
category considered is algebraic has played a role in the discussion in [101]. The interested
reader can consult the details in [40, 101].

There are further generalizations of Theorem 4.8 in two directions: One is to extend it to
n-angulated categories which are more general than triangulated categories. This was carried
out in [31]. The other is to introduce one or two auto-functors of T into the definition of
Φ-Auslander–Yoneda algebras, so that results on derived equivalences can be applied in a more
general context (see [61, Appendix A]). For example, when the Auslander–Reiten translation
on derived module categories of hereditary algebras is involved, then preprojective algebras,
introduced by Gelfand and Ponomarev in [44], are covered (see, for example, [10]). For further
details of these generalizations, the interested reader is referred to the papers [31, 61].

Very recently, Yiping Chen and Wei Hu use ghost ideals and further the construction of
derived equivalences from short ‘exact’ sequences to a very wide variety of triangles. For details,
we refer to the paper [33].

4.4. Derived equivalences for symmetric algebras

In this section, we present two constructions of derived equivalences for symmetric algebras
given by Dugas in [40] and Grant in [45], respectively.

Suppose that T is an algebraic, Krull–Remak–Schmidt triangulated k-category. Let D be a
full subcategory of T . We denote by 〈D〉 the smallest additive subcategory of T containing
∪i∈ZD[i]. In [40], a slightly different approximation was introduced and the following result
was proved.

Theorem 4.11 [40]. If T contains a triangle

X
f−→ M ′ g−→ Y −→ X[1],

with M ′ ∈ 〈M〉 for some M ∈ T , satisfying the two conditions

(a) f is a left 〈M〉-approximation of X; and
(b) g is a right 〈M〉-approximation of Y ,

then

(1) R(T ,Z, X ⊕M) and R(T ,Z,M ⊕ Y ) are derived equivalent.
(2) For any M ′′ ∈ 〈M〉 with M ′ ∈ add(M ′′), the rings Λ := EndT (M ′′ ⊕X) and Γ :=

EndT (M ′′ ⊕ Y ) are derived equivalent.

One ingredient of the proof of Theorem 4.11 is based on an analysis of uniqueness of the
completion of h in (TR3) of Definition 2.1. Here, the assumption that the triangulated category
considered is algebraic plays a role in the discussion.

Compared with Theorem 4.8, Theorem 4.11 provides derived equivalences between two
endomorphism algebras instead of quotient algebras, and can also be applied to get derived
equivalences between symmetric algebras.

Corollary 4.12 [40, Theorem 5.2]. Suppose that A is a finite-dimensional, symmetric
k-algebra over a field k and that X and M are any complexes in K b(A-proj). Then there
exists a left 〈M〉-approximation f : X → M ′ of X in K (A). If Y is the mapping cone of f ,
then

(1) R(K (A),Z, X ⊕M) and R(K (A),Z, Y ⊕M) are derived equivalent, symmetric
algebras.
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(2) EndK (A)(X ⊕M ′′) and EndK (A)(Y ⊕M ′′) are derived equivalent, symmetric algebras
for any M ′′ ∈ 〈M〉 with M ′ ∈ add(M ′′).

A surprising point in this result is the symmetry of the endomorphism algebras. However,
this follows from the following simple but very interesting observation.

Proposition 4.13 [40, Proposition 5.1]. Let A be a finite-dimensional, symmetric k-algebra
over a field k. Then, for any X• ∈ K b(A-proj), the rings EndK (A)(X•) and R(K (A),Z, X•)
are finite-dimensional, symmetric k-algebras.

For applications of this construction in Calabi–Yau categories, one may find details in [40].
Now, we mention another construction of derived equivalences given by Grant in [45]. Let

A be a symmetric algebra and P a projective A-module. Suppose that E := EndA(P ) is a
twisted-periodic algebra of period n, that is, there exists an integer n � 1, an automorphism
σ of the algebra E and an exact sequence

Pn−1
dn−1−→ Pn−2 −→ · · · −→ P2

d2−→ P1
d1−→ P0

of projective E-E-bimodules such that Coker(d1) = E and Ker(dn−1) is the σ-twisted bimodule
Eσ. Here the underlying k-space of Eσ is E, the left E-module structure on Eσ is the regular
one and the right E-module structure is induced from the automorphism σ. We define P ∗ :=
HomA(P,A) and denote by Y • the complex

Pn−1
dn−1−→ Pn−2 −→ · · · −→ P2

d2−→ P1
d1−→ P0,

where Pi is in degree −i. Let f : Y • → E be the morphism of chain complexes of E-E-bimodules
given by the isomorphism Coker(d1) � E, and let g be the following composition of morphisms
of complexes of A-A-bimodules:

P ⊗E Y • ⊗ P ∗ P⊗f⊗P∗
−→ P ⊗E E ⊗E P ∗ −→ P ⊗E P ∗ ev−→ A,

where ev is the evaluation map. Now, one defines X• to be the mapping cone of g and puts
ΨP := X• ⊗L

A − : Db(A) → Db(A).

Theorem 4.14 [45, Theorem 3.9]. If A is a symmetric algebra over a field, P is a
projective A-module and E := EndA(P ) is a twisted-periodic algebra of period n, then
ΨP : Db(A-mod) → Db(A-mod) is an equivalence of triangulated categories.

This result tells us that for a symmetric algebra, there are many possibilities to get auto-
equivalences of its derived module category. By choosing a special class of projective modules
P , some groups can be realized by the corresponding auto-equivalences if one passes to the
Grothendieck group of Db(A-mod). This provides a kind of categorifications of these groups.
It would be interesting to know how all of the functors ΨP for all P ∈ A-proj are related to
each other. For relations of this construction to the auto-equivalences given by Seidel–Thomas
and Huybrechts–Thomas, one is referred to the original paper [45].

4.5. Derived equivalences for Auslander–Yoneda algebras and quotient algebras

In this section, we introduce two methods to construct new derived equivalences from given
ones. One is to form endomorphism algebras, or more generally, Φ-Auslander–Yoneda algebras,
and the other is to form quotient algebras of derived equivalent algebras.

Throughout this section, we consider T = Db(A-mod) with A an Artin algebra. In this case,
the Φ-Auslander–Yoneda algebra of X ∈ A-mod has the underlying k-space

⊕
i∈Φ ExtiA(X,X).
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To distinguish which module category we are working with, the Φ-Auslander–Yoneda algebra
of X will be written simply as R(A,Φ, X).

Suppose that F : Db(A-mod) → Db(B-mod) is a derived equivalence between two Artin
algebras A and B, with the quasi-inverse functor G. Further, suppose

T • : · · · −→ 0 −→ T−n −→ · · · −→ T−1 −→ T 0 −→ 0 −→ · · ·

is a radical, tilting complex over A associated to the functor F , and suppose

T̄ • : · · · −→ 0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄n −→ 0 −→ · · ·

is a radical, tilting complex over B associated to the functor G. We say that the functor F is
almost ν-stable if add(

⊕−n
i=−1 T

i) = add(
⊕−n

i=−1 νAT
i), and add(

⊕n
i=1 T̄

i) = add(
⊕n

i=1 νBT̄
i),

where νA is the Nakayama functor for A.
Given an almost ν-stable derived equivalence F : Db(A) → Db(B) between Artin algebras

A and B, it was shown in [59] that there exists an equivalence functor F̄ , associated to F ,
between the stable module categories A-mod and B-mod.

Theorem 4.15 [61, Theorem 1.1]. Suppose that F is an almost ν-stable derived equivalence
between Artin algebras A and B. Let F̄ : A-mod → B-mod is the stable equivalence associated
to F . Let X be an A-module, and define M := A⊕X and N := B ⊕ F̄ (X). Further, let Φ be
an admissible subset of N. Then

(1) R(A,Φ,M) and R(B,Φ, N) are derived equivalent.
(2) If Φ is finite, then there exists an almost ν-stable derived equivalence between the Φ-

Auslander–Yoneda algebras R(A,Φ,M) and R(B,Φ, N). In particular, there is an almost
ν-stable derived equivalence and a stable equivalence between EndA(M) and EndB(N).

Recall that an Auslander algebra is an Artin algebra A such that its global dimension of A is
at most 2 and its dominant dimension is at least 2 (for the definition of dominant dimensions,
see Section 4.2). Auslander algebras have played an important role in studying representation-
finite algebras. In fact, Auslander proved that an Artin algebra A is an Auslander algebras if and
only if it is Morita equivalent to an algebra of the form EndB(X), where B is a representation-
finite Artin algebra and X is the direct sum of all non-isomorphic indecomposable B-modules.
In this case, X is called an additive generator for B-mod. Since Auslander algebras and Yoneda
algebras are special classes of Φ-Auslander–Yoneda algebras, Theorem 4.15 supplies a lot of
examples of derived equivalences between Auslander algebras, and between Yoneda algebras.
For instance, we have the following corollary for self-injective algebras.

Corollary 4.16 [61]. Suppose that A and B are self-injective Artin algebras of finite
representation type with AX and BY additive generators for A-mod and B-mod, respectively.
If A and B are derived equivalent, then

(i) the Auslander algebras of A and B are both derived and stably equivalent.
(ii) The Yoneda algebra Ext∗A(X) of X and the Yoneda algebra Ext∗B(Y ) of Y are derived

equivalent.

Note that for self-injective algebras, every derived equivalence between them is almost
ν-stable (up to shift), and the syzygy functor on stable categories is closely related to the
auto-equivalence functor K ⊗A −, where K is a kernel of the multiplication map A⊗k A → A.
This explains why Theorem 4.15 can be applied to self-injective algebras.

Another natural idea for getting derived equivalences from given ones is to pass to quotient
algebras.
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Suppose that A is an Artin algebra and I is an ideal in A. Let A := A/I. Then the category
A-mod can be regarded as a full subcategory of A-mod. Moreover, there is a canonical functor
from A-mod to A-mod which sends X ∈ A-mod to X := X/IX. This functor induces a functor
− : C (A) → C (A), which sends X• to the quotient complex X

•
:= X•/IX•, where IX• =

(IXi)i∈Z is a sub-complex of X•. The action of − on a chain map can be defined canonically.
For a complex X• ∈ C (A), there is a canonical exact sequence of complexes of A-modules:

0 −−→ IX• i•−−→ X• π•
−−→ X

• −−→ 0.

Thus, for a complex Y • of A-modules, there is the exact sequence:

0 −−−→ HomC (A)(X
•
, Y •) π∗

−−−→ HomC (A)(X•, Y •) i∗−−−→ HomC (A)(IX•, Y •).

Now, it follows from Y • ∈ C (A) that the map i∗ = 0, and consequently π∗ is an iso-
morphism. Moreover, π∗ actually induces an isomorphism between HomK (A)(X

•
, Y •) and

HomK (A)(X•, Y •).
Let X• and X ′• be two complexes of A-modules. Then there is a natural map

η : HomK (A)(X•, X ′•) −→ HomK (A)(X
•
, X ′•),

which is the composition of π•
∗ : HomK (A)(X•, X ′•) → HomK (A)(X•, X ′•) with the map

(π∗)−1. In particular, if X• = X ′•, then we get a homomorphism of algebras

η : EndK (A)(X•) −→ EndK (A)(X
•
).

Now, let T • be a tilting complex over A, and let B := EndK (A)(T •). By the above discussion,
there is an algebra homomorphism

η : EndK (A)(T •) −→ EndK (A)(T
•
).

Let JI be the kernel of η, which is an ideal of B. We define B := B/JI . Then we have the
following derived equivalence for quotient algebras.

Theorem 4.17 [61]. Let A be an Artin algebra and I an ideal in A, and let T • be a

tilting complex over A with the endomorphism algebra B = EndK b(A)(T •). Then T
•

is a

tilting complex over A and induces a derived equivalence between A and B if and only if
HomK b(A)(T •, IT •[i]) = 0 for all i �= 0 and HomK b(A)(T

•
, T

•
[−1]) = 0.

Applying Theorem 4.17 to self-injective algebras, we can obtain derived equivalences between
quotient algebras.

Corollary 4.18 [61]. Let F : Db(A-mod) → Db(B-mod) be a derived equivalence
between two self-injective, basic Artin algebras A and B. Suppose that P is a direct summand
of AA, and Q is a direct summand of BB such that F (soc(P )) is isomorphic to soc(Q), where
soc(P ) denotes the socle of the module P . Then the quotient algebras A/soc(P ) and B/soc(Q)
are derived equivalent.

Note that the socle of an indecomposable, projective left ideal of a basic algebra A is always
an ideal of A.

In [89] the author considered the question of constructing tilting complexes over an algebra
A from the ones over its subalgebra B of A. In this case, one assumes conditions on given
tilting complexes or on the extension B ⊆ A of algebras. For details, we refer to the original
paper [89].
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4.6. Ladkani’s construction of derived equivalences

We mention a systematic tool to construct new tilting complexes from existing ones using
tensor products. This construction is due to Ladkani (see [80]) and generalizes a result of
Rickard [110]. Here, we follow the approach in [80].

Suppose that A and B are k-algebras over a commutative ring k such that B is projective
as a k-module. Fix a tilting complex U• of projective B-modules such that the endomorphism
algebra of U• is projective as a k-module. Then, for any tilting complex T • of A-modules,
Rickard showed in [110, Theorem 2.1] that T • ⊗k U• is a tilting complex over the tensor
product A⊗k B, with the endomorphism algebra of the form EndDb(A)(T •) ⊗k EndDb(B)(U•).
Here the tensor product T • ⊗k U• of two complexes T • and U• means the total complex of
the double complex with (i, j)-term U i ⊗k T j .

Now, assume that U• decomposes as U• = U•
1 ⊕ U•

2 ⊕ · · · ⊕ U•
n. Then T • ⊗k U• = (T • ⊗k

U•
1 ) ⊕ (T • ⊗k U•

2 ) ⊕ · · · ⊕ (T • ⊗k U•
n). Instead of taking just one tilting complex T •, one may

take n tilting complexes over A, say T •
1 , T

•
2 , . . . , T

•
n , and replace each T • ⊗k U•

i by T •
i ⊗k U•

i .
Ladkani proved the following result.

Theorem 4.19 [80, Theorem A]. Let k be a commutative ring and let A and B be two
k-algebras, with B projective as a k-module. Let U•

1 , U
•
2 , . . . , U

•
n be complexes in Db(B)

satisfying the conditions:

(i) U• = U•
1 ⊕ U•

2 ⊕ · · · ⊕ U•
n is a tilting complex in Db(B);

(ii) the terms U i of the complex U• = (U i) are projective as k-modules;
(iii) the endomorphism k-algebra EndD(B)(U•) is projective as k-module.

Let T •
1 , T

•
2 , . . . , T

•
n be tilting complexes over A such that, for any 1 � i, j � n, HomDb(A)(T •

i ,
T •
j [r]) = 0 for any r �= 0, whenever HomDb(B)(U•

i , U
•
j ) �= 0. Then the complex (T •

1 ⊗k U•
1 ) ⊕

(T •
2 ⊗k U•

2 ) ⊕ · · · ⊕ (T •
n ⊗k U•

n) is a tilting complex over A⊗k B, and its endomorphism algebra
is given by the matrix algebra ⎛

⎜⎜⎜⎝
M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mn1 Mn2 · · · Mnn

⎞
⎟⎟⎟⎠

where Mij := HomD(A)(T •
i , T

•
j ) ⊗k HomD(B)(U•

i , U
•
j ) and the multiplication maps Mij ⊗k

Mjl → Mil are given by the obvious compositions.

We should notice that, in general, the above matrix algebra is not a tensor product of two
matrix algebras, but rather a componentwise tensor product.

Theorem 4.19 has quite a lot of applications, showing that algebras with quivers being
lines can be derived equivalent to algebras with quivers ‘rectangle’. As another consequence of
Theorem 4.19, we mention the following corollary.

Theorem 4.20 [80, Theorem B]. Let A be a ring, and let T •
1 , T

•
2 , . . . , T

•
n be tilting

complexes over A satisfying HomDb(A)(T •
i , T

•
j [r]) = 0 for all 1 � i < j � n and r �= 0. Then

the upper-triangular matrix algebra Tn(A) over A is derived equivalent to the matrix algebra⎛
⎜⎜⎜⎝

EndDb(A)(T •
1 ) HomDb(A)(T •

1 , T
•
2 ) · · · HomDb(A)(T •

1 , T
•
n)

0 EndDb(A)(T •
2 ) · · · HomDb(A)(T •

2 , T
•
n)

...
. . .

. . .
...

0 · · · 0 EndDb(A)(T •
n)

⎞
⎟⎟⎟⎠.
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For more sophisticated applications and calculations of Calabi–Yau dimensions of derived
equivalent algebras constructed in this way, we refer the reader to the paper [80].

4.7. Derived equivalences for pullback algebras

Pullbacks of algebras were used widely in mathematics. In particular, they were applied by
Milnor to establish a Mayer–Vietoris exact sequence of algebraic K-groups of rings involved in
a pullback diagram. A key ingredient in Milnor’s investigation is that projective modules over a
pullback algebra can be patched from the ones over constituent algebras (see [88, Chapter 2]).
In this section, we survey methods of constructing tilting complexes and derived equivalences
for pullback algebras through the ones over their constituent algebras. For the details of proofs,
we refer the reader to [62].

Given homomorphisms π1 : A1 → A0 and π2 : A2 → A0 of algebras, we may form the
pullback algebra A of π1 and π2:

that is, A := {(x, y) ∈ A1 ⊕A2 | (x)π1 = (y)π2}, and for any homomorphisms fi : B → Ai of
algebras with f1π1 = f2π2, there is a unique homomorphism f : B → A of algebras such that
fi = fλi for i = 1, 2.

Recall that a Milnor square of algebras is a pullback diagram of homomorphisms of algebras
such that one of π1 and π2 is surjective.

Concerning construction of derived equivalences for pullback algebras, the following result
is proved in [62].

Theorem 4.21 [62]. Given the above Milnor square of Artin algebras with π1 surjective,
let T •

i be a basic, radical tilting complex over Ai with Bi := EndK b(Ai)(T
•
i ) for 0 � i � 2. If

there is an isomorphism A0 ⊗•
Ai

T •
i � T •

0 of complexes for i = 1, 2, such that T •
0 is a direct

sum of shifts of projective A0-modules (for example, A0 is semisimple), then there exist

homomorphisms B1
η1−→ B0

η2←− B2 of Artin algebras with η1 surjective such that the pullback
algebra B of η1 and η2 is derived equivalent to the pullback algebra A of π1 and π2.

Theorem 4.21 provides us with a machinery to produce many new derived equivalences from
given ones. For example, one can glue vertices or unify arrows or identify socle elements to
produce new derived equivalences for resulting algebras (see [62, Sections 4] for details). In the
following we shall survey the case of gluing vertices as an illustration of Theorem 4.21.

Let A = kQ/〈ρ〉 be a finite-dimensional algebra over a field k given by quiver Q = (Q0, Q1)
with relations ρ. Let X be a subset of Q0, we denote by eX the idempotent element

∑
i∈X ei

in A, where ei is the primitive idempotent element of A corresponding to the vertex i in Q.
Suppose that σ = {σ1, . . . , σm} is a partition of X, that is, σ1, . . . , σm are subsets of X such
that X = ∪iσi and σi ∩ σj = ∅ for i �= j. Let Qσ be the quiver obtained from Q by just gluing
the vertices in σt into one vertex, denoted also by σt, for 1 � t � m, and keeping all arrows.
This means that an arrow in Q1 with the starting vertex in σi and the ending vertex in σj

becomes an arrows in Qσ with the starting vertex σi and the ending vertex σj . Thus the vertex
set of Qσ is the union of the set Q0 \X and the set {σ1, σ2, . . . , σm}, while the arrow set
of Qσ is Q1 (but the starting and ending vertices may be changed). Then there is a natural
homomorphism of algebras:

λσ : kQσ −→ kQ/〈ρ〉
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which sends ei to ei for i �∈ X, eσt
to

∑
i∈σt

ei for 1 � t � m and preserves all arrows. Clearly,
the kernel of λσ is contained in 〈Qσ

2 〉 ⊆ kQσ, where Qσ
2 stands for the set of all paths of length 2

of the quiver Qσ. Let ρσ be a set of relations on Qσ such that 〈ρσ〉 = Ker(λσ). The relations ρσ

can be obtained in the following way: For each t, let ρσt be the set of relations on Qσ consisting
of all αβ with α, β being arrows in Q1 such that the ending vertex of α and the starting vertex
of β are different in σt. Then ρσ = ρ ∪ ρσ1 ∪ · · · ∪ ρσm . The algebra Aσ := kQσ/〈ρσ〉 is called
the σ-gluing algebra of A. The above homomorphism λσ induces a homomorphism from Aσ

to A, denoted again by λσ. Observe that λσ : Aσ → A is injective and the image of λσ is the
subalgebra of A generated by all arrows in Q, the idempotents

∑
i∈σt

ei for 1 � t � m and
{ei | i ∈ Q0\X}. Note that Aσ and A have the same Jacobson radical. This construction has
been used in the study of the finitistic dimension conjecture (for example, see [124]).

From the definition of gluing algebras, we have the pullback diagram of algebras:

where π : kQ/〈ρ〉 → kX is the canonical homomorphism of algebras, which sends ei to ei for
i ∈ X, all other idempotents and all arrows to zero. Note that kX is the semisimple algebra⊕

i∈X k and kσ is just the σ-gluing of kX .

Corollary 4.22. Let F be a derived equivalence from an algebra A := kQ/〈ρ〉 to another
algebra A′ := kQ′/〈ρ′〉. Suppose that X is a subset of Q0 such that the simple A-modules
corresponding to the vertices in X are sent by F to simple A′-modules. Let X ′ be the set of
vertices in Q′

0 corresponding to these simple A′-modules. Let σ be a partition of X and σ′ be

the corresponding partition of X ′. Then the algebras Aσ and A′σ′
are derived equivalent.

In Corollary 4.22, we require that F sends some simple modules to simple modules. How can
we check this condition? The following proposition provides a solution. For a bounded complex
X• = (Xi, diX) over A-mod and an indecomposable A-module Y , let [Xi : Y ] be the number of
indecomposable direct summands Z in a decomposition of Xi into indecomposable A-modules,
such that Z is isomorphic to Y . Define

[X• : Y ] :=
∑
i∈Z

[Xi : Y ].

Note that [X• : Y ] is well defined in C b(Λ) by the Krull–Remak–Schmidt theorem.

Proposition 4.23 [62, Lemma 2.4]. Let T • be a basic, radical tilting complex over an
Artin algebra A, and let B := EndK b(A)(T •). Suppose that F : Db(A-mod) → Db(B-mod) is
a derived equivalence induced by T • and that P is an indecomposable projective A-module
with top S. Then F (S) is isomorphic in Db(B-mod) to S′[n] for a simple B-module S′ and an
integer n if and only if [T • : P ] = 1.

A special case of Corollary 4.22 is to attach an algebra simultaneously to derived equivalent
algebras. In this way, the resulting algebras are again derived equivalent.

Corollary 4.24. Let F be a derived equivalence between algebras A := kQ/〈ρ〉 and A′ :=
kQ′/〈ρ′〉 such that F sends the simple A-modules corresponding to vertices in Q̄0 ⊆ Q0 to the
simple A′-modules corresponding to vertices in Q̄′

0 ⊆ Q′
0 and |Q̄0| = |Q̄′

0|. Suppose that C :=
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kΓ/〈ρ′′〉 is an arbitrary algebra. Let σ be a partition of Q̄0 ∪̇ Γ0 and let σ′ be the corresponding
partition of Q̄′

0 ∪̇ Γ0. Then the algebras (A× C)σ and (A′ × C)σ
′
are derived equivalent.

Let us display a concrete example to visualize the procedure in Corollary 4.24.

Example 4.25. Suppose that A and B are algebras given by quivers with relations,
respectively:

Then dimk(A) = 12 and dimk(B) = 13. By [62, Example 5.6], there is a derived equivalence
between A and B, which sends the simple A-module corresponding to the vertex 3 to the simple
B-module corresponding to the vertex 3′. Now, we take an algebra C, for example, C is given
by the following quiver with a relation

and glue it at the vertices 3 and 3′ in A and B, respectively. In this case, the partition σ in
Corollary 4.24 is the one such that the vertex 3 in A and the vertex 3 in C form a part and
all other parts consist of only one single vertex. Similarly, the partition σ′ in Corollary 4.24 is
defined. Then, by Corollary 4.24, the gluing algebras Λ and Γ, given by the following quivers
with relations, respectively, are derived equivalent:

There are other two specific operations for algebras presented by quivers with relations in
[62], namely unifying arrows and identifying socle elements (see [62, Sections 4.2 and 4.3] for
details). Both of them are special cases of Theorem 4.21. Here, we just mention an example
of identifying socle elements. Observe that the socle element αδ in A is a complete e3-cycle,
α′β′γ′ in B is a complete e′3-cycle and εn−1 in C is a complete e3-cycle (see [62, Section 4.3]
for terminology). Thus we may identify αδ with εn−1 in A× C and α′β′γ′ with εn−1 in B × C,
respectively. By [62, Theorem 4.8], we get a derived equivalence between the following two
algebras Λ and Γ which are quotients of Λ and Γ, respectively.

Thus, through these operations, we can construct derived equivalences for resulting algebras.
Moreover, these operations can be applied repeatedly. The interested reader is referred to [62]
for explicit descriptions of these operations.
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5. Derived equivalences and stable equivalences of Morita type

Rickard showed that if two finite-dimensional, self-injective algebras A and B are derived
equivalent then they are also stably equivalent of Morita type. The converse is not true in
general. So a natural question is:

How can we get a derived equivalence from a stable equivalence of Morita type between
finite-dimensional algebras?

On the one hand, a positive answer to this question will provide a new way to construct
derived equivalences. On the other hand, to be able to lift a stable to derived equivalence is of
particular interest in an approach to Broué’s abelian defect group conjecture and Auslander–
Reiten conjecture on stable equivalences. Concerning the former, we refer the reader to
Section 6.1. For the latter, we will have a discussion right now in Section 5.1.

For self-injective algebra A, we have A-mod � Db(A)/K b(A-proj) (see [77, 109]). But, for
a general algebra A, we could not always get A-mod � Db(A)/K b(A-proj). This obstacle leads
us to introduce the notion of almost ν-stable derived equivalences (see Section 4.5), which can
induce stable equivalences of Morita type (see [59]).

In this section we first present a method to lift stable equivalences of Morita type to
derived equivalences, and then give a general method of extending derived equivalences between
algebras of the form eAe to derived equivalences between given algebras A. For convenience, an
algebra of the form eAe with e an idempotent in an algebra A will be called a corner algebra.

5.1. Lifting stable to derived equivalences

In the previous sections, we have seen that new derived equivalences can be constructed from
given ones. In this section, we consider how to lift a stable equivalence of Morita type to a
derived equivalence.

In [6] Asashiba showed a very interesting result which says that, for representation-finite,
standard self-injective k-algebras A and B not of type (D3m, s/3, 1) with m � 2 and 3 � s, each
individual stable equivalence from A to B can induce a derived equivalence from A to B. His
proof is essentially based on the classification of derived equivalences for representation-finite,
standard self-injective algebras in his earlier work [5]. The case left by Asashiba is handled
recently by Dugas in [39]. Thus, for representation-finite, standard self-injective algebras over
an algebraically closed field, every stable equivalence can be lifted to a derived equivalence.

In the following, we shall survey some further developments in this direction from [63],
where the Asashiba–Dugas’ result is somehow extended to a large class of algebras, namely
Frobenius-finite algebras, including, for example, representation-finite (not necessarily self-
injective) algebras and Auslander algebras.

Let A be an Artin algebra. Recall from [86] that an A-module X is said to be ν-stably
projective if νiAX is projective for all i � 0, where νA stands for the Nakayama functor of A. The
full subcategory of all ν-stably projective A-modules is denoted by A-stp. An idempotent e ∈ A
is said to be projectively ν-stable if Ae is ν-stably projective. Clearly, there is an idempotent
element e ∈ A such that Ae is a basic A-module with add(Ae) = A-stp. The algebra eAe is
then called the Frobenius part of A. It is a Frobenius algebra, of course, a self-injective algebra.
For a proof, one may see [63, Lemma 2.5; 86]. Note that a Frobenius part of A is uniquely
determined by A (up to isomorphism). An algebra A is said to be Frobenius-finite (-tame, or
-wild) if its Frobenius part eAe is representation-finite (-tame, or -wild).

Observe that Frobenius-finite algebras include Auslander algebras and cluster-tilted algebras
(see [63, Proposition 5.5]). For more examples of Frobenius-finite algebras, we refer the reader
to [63, Section 5]. Unfortunately, derived equivalent algebras may have different Frobenius
parts that are not derived equivalent (see [62]).

For Frobenius-finite algebras, a special type of stable equivalences can always be lifted to
derived equivalences. They are the so-called stable equivalences of Morita type introduced by
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Broué (see [23]). Recall that two finite-dimensional algebras A and B over a field is said to be
stably equivalent of Morita type if there are bimodules AMB and BNA such that

(1) M and N all are projective and finitely generated as one-sided modules; and
(2) M ⊗B N � A⊕ P as A-A-bimodules for some projective A-A-bimodule P , and N ⊗A

M � B ⊕Q as B-B-bimodules for some projective B-B-bimodule Q.

Note that P = 0 if and only Q = 0. In this case, we have a Morita equivalence (see
Theorem 3.6). Clearly, the bimodule M in the definition induces an equivalence between the
stable module categories of A and B. Thus the notion of stable equivalences of Morita type is
a kind of combinations of Morita equivalences with stable equivalences.

In general, the two notions of derived equivalences and stable equivalences of Morita type are
independent. That is, two derived equivalent algebras may not be stably equivalent of Morita
type. Conversely, two stably equivalent algebras of Morita type may not be derived equivalent.
However, almost ν-stable derived equivalences between algebras A and B always introduce
stable equivalences between them (see [59]).

Definition 5.1. A stable equivalence Φ : A-mod → B-mod between finite-dimensional
algebras A and B is lifted to a derived equivalence between A an B if there is an almost ν-stable
derived equivalence F : Db(A-mod) → Db(B-mod) such that the induced stable functor F̄ is
naturally isomorphic to Φ.

The following result shows that one can always get a derived equivalence from a stable
equivalence of Morita type between Frobenius-finite algebras.

Theorem 5.2 [63]. Let A and B be finite-dimensional k-algebras over an algebraically
closed field k and without non-zero semisimple direct summands. If A is Frobenius-finite, then
every individual stable equivalence of Morita type between A and B gives rise to a derived
equivalence between A and B.

The proof of Theorem 5.2 is reduced to the following technical result which provides an
induction procedure to lift stable equivalences of Morita type to derived equivalences (see
Section 6.1).

Theorem 5.3 [63]. Let A and B be finite-dimensional algebras over an algebraically closed
field and without non-zero semisimple direct summands. Let e and f be projectively ν-stable
idempotent elements in A and B, respectively. Suppose that Φ : A-mod → B-mod is a stable
equivalence of Morita type, satisfying the two conditions:

(1) For each simple A-module S with e · S = 0, Φ(S) is isomorphic in B-mod to a simple
module S′ with f · S′ = 0.

(2) For each simple B-module T with f · T = 0, Φ−1(T ) is isomorphic in A-mod to a simple
module T ′ with e · T ′ = 0.

If the stable equivalence Φ1 : eAe-mod → fBf -mod, induced from Φ, lifts to a derived
equivalence between eAe and fBf , then Φ lifts to an iterated almost ν-stable derived
equivalence between A and B.

Here, an iterated almost ν-stable derived equivalence between A and B is a finite zigzag
sequence of almost ν-stable derived equivalences, starting from A and ending at B.

Roughly speaking, Theorem 5.3 means that, for a stable equivalence Φ of Morita type
between A and B, if it sends some simple modules to simples, then we may throw away these
simple modules and consider the induced stable equivalence of Morita type between corner
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algebras eAe and fBf , where simple modules belonging to e and f are not sent to simple
modules by Φ and Φ−1, respectively. If this stable equivalence between eAe and fBf can be
lifted to a derived equivalence, then so does the original stable equivalence Φ.

Applying Theorem 5.3 to Frobenius parts of algebras, we can show that the two conditions
in Theorem 5.3 are automatically fulfilled. So we have a simply formulated corollary which also
indicates the idea of the proof of Theorem 5.2.

Corollary 5.4. Let A and B be finite-dimensional algebras over an algebraically
closed field and without non-zero semisimple direct summands. Suppose that Φ is a stable
equivalence of Morita type between A and B. Let Ψ be the induced stable equivalence of
Φ between the Frobenius parts ΔA and ΔB . If Ψ lifts to a derived equivalence between
ΔA and ΔB , then Φ lifts to an iterated almost ν-stable derived equivalence between
A and B.

For applications of the results in this section to Broué’s abelian defect group conjecture, we
refer to Section 6.

To be able to lift stable to derived equivalences is also important in dealing with a conjecture
of Auslander and Reiten on stable equivalences, which states that two stably equivalent
algebras have the same numbers of non-isomorphic non-projective simple modules (see, for
instance [8, Conjecture 5, p. 409; 116, Conjecture 2.5]). For finite-dimensional algebras over
an algebraically closed field, Mart́ınez–Villa proved the conjecture for representation-finite
algebras [86] and reduced the conjecture to self-injective algebras [87]. For weakly symmetric
algebras of domestic type, and for special biserial algebras, the conjecture was verified in
[126] and in [4], respectively. In general, however, this conjecture is still open, even for stable
equivalences of Morita type. Since derived equivalences preserve the number of non-isomorphic
simple modules and since stable equivalences of Morita type preserve the number of non-
isomorphic, projective simple modules, it follows that the Auslander–Reiten conjecture is true
for those stable equivalences of Morita type that can be lifted to derived equivalences.

5.2. Extending tilting complexes over corner algebras to algebras themselves

Related to a ν-stable idempotent element e ∈ A (that is, ν(Ae) � Ae), one can also lift tilting
complexes over eAe to a tilting complex over A. This was first observed by Miyachi in [90,
Theorem 4.11] for symmetric algebras (that is, AAA � AD(A)A as bimodules). We state the
following generalization of Miyachi’s result (see [63]).

Proposition 5.5. Let A be a finite-dimensional algebra over a field, and let e be a ν-stable
idempotent element in A. Suppose that Q• is a complex in K b(add(Ae)) with Qi = 0 for all
i > 0 such that

(1) eQ• is a tilting complex over eAe, and
(2) EndK b(eAe)(eQ•) is a self-injective algebra.

Then there exists a bounded complex P • of projective A-modules such that Q• ⊕ P • is a
tilting complex over A and induces an almost ν-stable derived equivalence between A and
EndK b(A)(Q• ⊕ P •).

Remark that if the ground field is algebraically closed, or the algebra eAe is symmetric,
then Condition (2) in Proposition 5.5 can be dropped because derived equivalences preserve
both symmetric algebras over any field [110, Corollary 5.3] and self-injective algebras over
an algebraically closed field [3]. But it is unknown whether derived equivalences preserve self-
injective algebras over an arbitrary field.
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Thus one can construct derived equivalences between symmetric algebras by extending
derived equivalences between their corner algebras. Note that corner algebras eAe are always
symmetric if algebras A are symmetric.

6. Applications

The constructions of derived equivalences in the previous sections can be used to understand
some homological aspects of algebras, or conjectures in the representation theory of algebras
and finite groups, such as Broué’s abelian defect group conjecture and the finitistic dimension
conjecture. Moreover, derived equivalences of algebras and rings can also provide reduction
formulas for calculation of algebraic K-groups Kn in algebraic K-theory of rings.

6.1. An approach to Broue’s abelian defect group conjecture

Stable equivalences of Morita type arise fairly often in the modular representation theory
of finite groups. For instance, they appear very often as restriction functors in Green
correspondences.

We first observe that the methods developed in Section 5.1 on lifting stable equivalences
of Morita type to derived equivalences can be used to approach Broué’s abelian defect group
conjecture for many cases studied in the literature, for instance, in [79, 93, 98]. The approach
can be described as follows.

Assumption: Let Φ : A-mod → B-mod be a stable equivalence of Morita type between k-
algebras A and B without non-zero semisimple direct summands. Again, we assume that k is
an algebraically closed field. For each simple A-module V , we choose a primitive idempotent
element e ∈ A such that eV �= 0. Let S(A) be a complete set of non-isomorphic simple A-
modules.

Step 1: If there is a simple A-module V such that Φ(V ) is a simple B-module, then we set

σ := {V ∈ SA | Φ(V ) is non-simple} and σ′ := SB\Φ(SA\σ).

Case (i): σ is empty. Then, by a result of Liu (see [84] for general algebras and [83] for self-
injective algebras), which says that a stable equivalence F of Morita type is indeed a Morita
equivalence if F sends all simples to simples, we know that Φ lifts to a Morita equivalence, and
therefore our procedure terminates.

Case (ii): Both σ and σ′ are non-empty. By [63, Lemma 3.4], the functor Φ restricts to a
stable equivalence Φ1 of Morita type between eσAeσ and eσ′Beσ′ . Moreover, the idempotent
elements eσ and eσ′ are projectively ν-stable and the algebras eσAeσ and eσ′Beσ′ are self-
injective with fewer simple modules. So, to lift Φ to a derived equivalence, it is enough to lift
Φ1 to a derived equivalence by Theorem 5.3.

Step 2: If there is a stable equivalence Ξ : eσ′Beσ′-mod → C-mod of Morita type between
the algebra eσ′Beσ′ and another algebra C (to be found independently), such that the stable
equivalence Ξ is induced by a derived equivalence and the composition Ξ ◦ Φ1 sends some (not
necessarily all) simple eσAeσ-modules to simple C-modules, then we go back to Step 1. Once
we arrive at representation-finite algebras in the procedure, Theorem 5.2 can be applied. This
then implies that Φ1 lifts to a derived equivalence, and therefore so does the given Φ.

Remark that this procedure is somewhat similar to, but different from the method of
Okuyama in [98]. In the procedure, the numbers of simple modules over the resulting algebras
after each step decrease. This means we may often arrive at representation-finite algebras.
Moreover, to pursue Step 2, we only require that Ξ ◦ Φ1 sends some simple modules to simple
modules and do not require that Ξ ◦ Φ1 sends all simples to simples, while the latter is needed
in [98] and other approaches (for example, see [116]).
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Now, we explain how the above procedure works by an example. It was proved in [93] that
Broué’s abelian defect group conjecture is true for the faithful 3-blocks of defect 2 of 4.M22,
the non-split central extension of the sporadic simple group M22 by a cyclic group of order 4.
Here we give a short proof of the result in [93] and avoid many technical calculations.

The two block algebras B+ and b+ have five simple modules, respectively. We may label the
simple B+-modules by 56a, 56b, 64, 160a, 160b, and the simple b+-modules by 1a, 1b, 2, 1c and
1d. There is a stable equivalence

Φ : B+-mod −→ b+-mod

of Morita type (see [93]) such that

Φ(56a) = Ω−1(1a),Φ(56b) = Ω(1b),Φ(160a) = 1c,Φ(160b) = 1d,

while Φ(64) is not sent to simple b+-module by the functor Φ.
Since Φ sends the simple modules 160a and 160b to simple modules, we can use Step 1

and consider σ := {56a, 56b, 64} and σ′ := {1a, 1b, 2}. Then Φ induces a stable equivalence of
Morita type

Φ1 : eσB+eσ-mod −→ eσ′b+eσ′ -mod.

By [98], there is an algebra C with three simple modules, labeled by 1a, 1b and 2, and a derived
equivalence between eσ′b+eσ′ and C, inducing a stable equivalence Ξ : eσ′Beσ′-mod → C-mod
of Morita type, such that ΞΦ1(64) � 1b. But ΞΦ1(56a) and ΞΦ1(56b) are not simple. Let
σ1 := {56a, 56b} and σ′

1 := {1a, 2}. Then the composition ΞΦ1 restricts to a stable equivalence
of Morita type

Φ2 : eσ1B+eσ1-mod −→ eσ′
1
Ceσ′

1
-mod.

Note that the Cartan matrix of eσ′
1
Ceσ′

1
is
[

2 1
1 3

]
. It is easy to check that a symmetric algebra

with this Cartan matrix is always representation-finite. Thus Φ2 lifts to a derived equivalence
by Theorem 5.2, and consequently Φ lifts to a derived equivalence.

The whole procedure can be illustrated by the commutative diagram

with Φ2 lifting to a derived equivalence, where λ is a functor of the form Ae⊗eAe − with e an
idempotent element in an algebra A.

Finally, we point out that the procedure can also be used to simplify proofs of results in
[79, 98] (see [63] for details).

6.2. Finitistic dimension conjecture

Homological dimensions are important invariants of algebras and modules. Though derived
equivalences do not always preserve these invariants, they still can provide a powerful tool
to understand some homological properties of algebras. For example, the global and finitistic
dimensions of algebras may change under derived equivalences, but one still can use derived
categories and derived equivalences to find reduction techniques for estimation of these
homological dimensions of algebras. In this section, we illustrate this philosophy.
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Let A be a finite-dimensional algebra over a field. The finitistic dimension, denoted by
fin.dim(A), is defined as

fin.dim(A) = sup{pdA(M) | M ∈ A-mod,pdA(M) < ∞},
where pdA(M) means the projective dimension of the module AM .

Finitistic dimension conjecture: fin.dim(A) < ∞ for any finite-dimensional algebra A over a
field.

This conjecture was initially a question by Rosenberg and Zelinsky, published by Bass in
the paper [12] in 1960. Since then the conjecture has attracted attentions of many algebraists
in the last five decades. Among them is Maurice Auslander who ‘is considered to be one
of the founders of the modern aspects of the representation theory of Artin algebras’ (see
[107, p. 501]). The finitistic dimension conjecture has intimate connections with the Nakayama
conjecture, generalized Nakayama conjecture and Gorenstein symmetry conjecture (see [8] for
more conjectures). Unfortunately, all conjectures mentioned here are open.

For finite-dimensional algebras A and B over a field, if they are derived equivalent via a
tilting module, then Happel showed that the global (or finitistic) dimension of A is finite if and
only if the global (or finitistic) dimension of B is finite (see [47, 49]). This was extended to
coherent rings in [102].

Theorem 6.1. Let A be a left coherent rings (that is, rings in which every finitely generated
left ideal is finitely presented) and T • be a tilting complex over A with n + 1 non-zero terms.
Then fin.dim(A) − n � fin.dim(EndDb(A)(T •)) � fin.dim(A) + n.

For a ring, the finitistic dimension is defined as the supremum of projective dimensions of
those finitely presented left modules that have finite projective dimensions. This definition
coincides with the one for finite-dimensional algebras.

Recollements of triangulated categories introduced in [15] can be regarded as a generalization
of derived equivalences. They are ‘exact sequences’ of triangulated categories.

Definition 6.2. Let D,D′ and D′′ be triangulated categories. We say that D is a recollement
of D′ and D′′ if there are six triangle functors displayed in the diagram

satisfying the four conditions:

(1) (i∗, i∗), (i!, i!), (j!, j!) and (j∗, j∗) are adjoint pairs.
(2) i∗, j∗ and j! are fully faithful.
(3) i!j∗ = 0 (and thus also j!i! = 0 and i∗j! = 0).
(4) Each object X ∈ D is endowed with the two triangles in D:

i!i
!(X) −→ X −→ j∗j

∗(X) −→ i!i
!(X)[1],

j!j
!(X) −→ X −→ i∗i

∗(X) −→ j!j
!(X)[1]

in which morphisms are given by counits and units of the above-mentioned adjoint pairs
of functors.

If one of the triangulated categories D′ and D′′ is zero, then we come back to the notion of
triangle equivalences.
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The finitistic dimension conjecture has a reduction by recollements.

Theorem 6.3 [49]. If there is a recollement

of the derived module categories of finite-dimensional algebras A,B and C over a field, then
fin.dim(A) < ∞ if and only if both fin.dim(B) < ∞ and fin.dim(C) < ∞.

This reduction is further refined in [30], where relations among the finitistic dimensions of
three algebras in a recollement are described. To state this refinement precisely, we recall the
following definitions from [30].

For a complex X• in C b(A-Proj), we define

sup(X•) := max{i ∈ Z | Hi(X•) �= 0},

inf(X•) := min{i ∈ Z | Hi(X•) �= 0},

w(X•) :=

{
0 if X• is acyclic,

sup(X•) − inf(X•) + pdA

(
Coker(dinf(X•)−1

X )
)

otherwise.

Clearly, 0 � w(P •) < ∞. We call w(P •) the homological width of X•. Similarly, one defines
the homological cowidth of a complex Y • in C b(A-Inj), denoted by cw(Y •):

cw(Y •) :=

{
0 if Y • is acyclic,
sup(Y •) − inf(Y •) + idA

(
Ker(d sup(Y •)

Y • )
)

otherwise,

where idA(M) stands for the injective dimension of an A-module M . It is not difficult to extend
the definition of homological width and cowidth to any complexes which are quasi-isomorphic
to complexes in C b(A-Proj) and C b(A-Inj), respectively.

Theorem 6.4 [30]. Let R1, R2 and R3 be rings. Suppose that there is a recollement among
the derived module categories D(R3), D(R2) and D(R1) of R3, R2 and R1 :

Then the following hold true:

(1) If j! restricts to a functor Db(R3) → Db(R2) of bounded derived module categories, then
fin.dim(R3) � fin.dim(R2) + cw(j!(HomZ(R2,Q/Z))).

(2) Suppose that i∗(R1) is isomorphic in D(R2) to a bounded complex of finitely generated
projective R2-modules. Then
(a) fin.dim(R1) � fin.dim(R2) + w(i∗(R2)).
(b) fin.dim(R2) � fin.dim(R1) + fin.dim(R3) + w(i∗(R1)) + w(j!(R3)) + 1.

Theorem 6.4 extends Happel’s result in [49] and shows how the finitistic dimensions of
three rings in a recollement are related by the homological cowidth or width of specially fixed
complexes.

Homological dimensions can also be studied through recollements of abelian categories (see
[104]).
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As to constructions of recollements of triangulated categories, a lot of methods is known. For
example, see [13, 15, 36, 68, 97, 121] and the references therein. But it seems to be difficult to
get recollements of derived module categories of rings. Recently, some efforts in this direction
are made (see [25, 26, 36]).

The validity of the finitistic dimension conjecture for an algebra A implies the validity of
the Nakayama conjecture for A, which says that A is a self-injective algebra whenever its
dominant dimension is infinite. This was proposed by Nakayama in 1958 and becomes now a
central conjecture in the representation theory of finite-dimensional algebras (see, for instance,
[8, Conjecture (8), p. 410]). We refer the reader to [120] for further information on dominant
dimensions and the conjecture.

At the end of this section, we mention the following conjecture on dominant dimensions of
derived equivalent algebras.

Conjecture 6.5. Suppose that A and B are finite-dimensional, derived equivalent algebras.
Then the dominant dimension of A is infinite if and only if so is the dominant dimension of B.

For partial answers to this conjecture, we refer to [28]. Stimulated by Theorem 6.4, we also
mention the following open

Question. Are there any relations for dominant dimensions of three algebras in a
recollement of derived module categories?

6.3. Algebraic K-theory of matrix subrings

One of the interesting and hard problems in algebraic K-theory of rings is the calculation
of higher algebraic K-groups Kn. In this section, we shall provide reduction formulas for
computation of the Kn-groups of a class of rings by passing to derived equivalent algebras.
The key idea behind these computation is that derived equivalences of rings preserve the
K-theory and G-theory (see Theorem 3.8(5) or [41]). In the literature, there are many papers
dealing with K-groups Kn by exploiting excision, Mayer–Vietoris exact sequences or other
related sequences (for example, see [46, 119, 122]), but there are few works using derived
equivalences to calculate algebraic K-groups. In the following, we will survey some results in
this direction.

Let R be a ring. We denote by K∗(R) the series of algebraic K-groups of R in the sense of
Quillen for ∗ ∈ {0, 1, 2, . . . , } (see [105, 115]). The algebraic K-theory of matrix-like rings has
been of interest since a long time. In [18], Berrick and Keating showed the following result.

Lemma 6.6 [18]. If R1 and R2 are rings and M is an R1-R2-bimodule, then, for the
triangular matrix ring

S =
(
R1 M
0 R2

)
,

there is an isomorphism of K-groups: Kn(S) � Kn(R1) ⊕Kn(R2) for all integers n ∈ N.
Moreover, this isomorphism is induced from the canonical inclusion of R1 ⊕R2 into S.

For n = 0, this is classical. For n = 1, 2, this was already shown by Dennis and Geller in
1976.

For a matrix ring of the form

T =

⎛
⎜⎜⎜⎝

R I · · · I

R R
. . .

...
...

...
. . . I

R R · · · R

⎞
⎟⎟⎟⎠,

n×n
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where R is a ring and I is an ideal in R such that the R-modules RI and IR are projective,
Keating proved in [70] that there is an isomorphism of K-theory:

K∗(T ) � K∗(R) ⊕ (n− 1)K∗(R/I).

Note that this class of rings appears very often as tiled triangular orders or maximal orders
(see [106]).

In [46], the authors furthered the above result and considered the following matrix ring
S: Let I be an ideal of a Zp-algebra R with identity, where Zp is the p-adic integers (or,
equivalently, Zp = lim←−

n

Z/pnZ), and define

S =

⎛
⎜⎜⎜⎜⎝

R It12 · · · It1n

R R
. . .

...
...

...
. . . Itn−1 n

R R · · · R

⎞
⎟⎟⎟⎟⎠,

where tij are positive integers. Assume that S is a ring and R/In is a finite ring for all n � 1.
If both RI and IR are projective, it was proved in [46] that the isomorphism of algebraic
K-groups holds:

K∗(S)(1/s) � K∗(R)(1/s) ⊕ (n− 1)K∗(R/I)(1/s),

where s is any rational integer such that p divides s, and where G(1/s) denotes the group
G⊗Z Z[1s ] for an abelian group G.

In fact, we can extend this result substantially to a more general situation without any
homological restrictions on ideal I of R by using derived equivalences.

Theorem 6.7 [125]. Let R be a ring and K∗(R) the ∗-th algebraic K-group of R with
∗ ∈ N.

(1) If Iij is (not necessarily projective) an ideal of R for 1 � i < j � n such that

S :=

⎛
⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1 n

R R I23 · · · I2 n

...
...

. . .
. . .

...
R R · · · R In−1 n

R R · · · R R

⎞
⎟⎟⎟⎟⎟⎠

is a ring, then

K∗(S) � K∗(R) ⊕
n⊕

j=2

K∗(R/Ij−1 j)

for all ∗ ∈ N.
(2) Suppose that Ri is a subring of R with the same identity such that Ii ⊆ Ri is a right

ideal of Ri and Ii is a left ideal of R for 2 � i � n. Further, let Iij be ideals of R. If

T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In
R R2 I3 · · · In

R I32
. . .

. . .
...

...
...

. . . Rn−1 In
R In2 · · · Inn−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎠
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is a ring, then

K∗(T ) � K∗(R) ⊕
n⊕

j=2

K∗(Rj/Ij)

for all ∗ ∈ N.

Thus Theorem 6.7 reduces the calculation of Kn-groups of S and T to these of R and its
quotients R/Ii (or R/Ii,i+1), and shows that the algebraic K-groups of S and T are independent
of those Ii,j with |i− j| � 2. The proof of Theorem 6.7 is based on the following proposition
on derived equivalences (see [125, Lemma 3.1]).

Proposition 6.8. Let B ⊆ A be an extension of rings with the same identity.

(1) If Ext1B(BA,BB) = 0, then the sequence

0 −→ B −→ A −→ A/B −→ 0

is an add(BA)-split sequence in B-Mod. Thus EndB(BB ⊕ BA) and EndB(BA⊕ (A/B)) are
derived-equivalent.

(2) If BA is projective, then the above sequence is an add(BA)-split sequence.
(3) Suppose Ext1B(BA,BA) = 0. If BA is finitely presented with pd(BA) � 1 (for instance,

BA is projective and finitely generated), then A⊕ (A/B) is a tilting B-module of projective
dimension at most 1. In particular, EndB(A⊕ (A/B)) is derived equivalent to B.

As a consequence of Proposition 6.8, we have the following derived equivalences between
matrix subrings.

Corollary 6.9 [32, 125]. If I2, . . . , In are ideals of a ring R, then the two rings

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In−1 In
R R I3 · · · In−1 In

R R R
. . .

...
...

...
...

...
. . . In−1 In

R R R · · · R In
0 0 0 · · · 0 R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R R/I2 R/I3 · · · R/In−1 R/In
0 R/I2 R/I3 · · · R/In−1 R/In

0 0 R/I3
. . .

...
...

...
...

...
. . . R/In−1 R/In

0 0 0 · · · R/In−1 R/In
0 0 0 · · · 0 R/In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

are derived equivalent.

With the help of Proposition 6.8, we can prove that the rings S and T in Theorem 6.7 are
derived equivalent to the matrix rings

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1n−1 I1n−1/I1n
R R I23 · · · I2n−1 I2n−1/I2n

R R R
. . .

...
...

...
...

...
. . . In−2n−1 In−2n−1/In−2n

R R R · · · R R/In−1 n

0 0 0 · · · 0 R/In−1 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and



DERIVED EQUIVALENCES OF ALGEBRAS 981

C :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R2/I2 0 0 · · · 0 0
R/I2 R I3 I4 · · · In
R/I32 R R3 I4 · · · In

R/I42 R I43 R4
. . .

...
...

...
...

. . . . . . In
R/In2 R In3 · · · Inn−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with the usual matrix addition and multiplication, respectively. Thus Theorem 6.7 follows from
Lemma 6.6 inductively.

For more details on the proof of Theorem 6.7 and further information on computation
formulas for algebraic K-groups of other type of matrix subrings, we refer the reader to [125].
For applications of recollements to computation of algebraic K-groups of rings, we refer to
[27, 29].

Finally, we mention an open problem related to computation of algebraic K-groups of matrix
subrings.

Question. Given a ring R and an ideal I of R with I2 = 0, how can we find a reduction
formula for calculation of the algebraic K-groups Kn(S)? where

S :=
(
R I
I R

)
.

Note that there is a split surjective homomorphism from S to R×R with the kernel J :=
(

0 I
I 0

)
.

Thus Kn(S) � Kn(R) ⊕Kn(R) ⊕Kn(S, J), where Kn(S, J) is the nth relative algebraic
K-group with respect to J . The problem is reduced to studying relations between Kn(S, J)
and Kn(R/I).
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