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Derived equivalences and stable equivalences
of Morita type, II

Wei Hu and Changchang Xi

Abstract. We consider the question of lifting stable equivalences of
Morita type to derived equivalences. One motivation comes from an ap-
proach to Broué’s abelian defect group conjecture. Another motivation is
a conjecture by Auslander and Reiten on stable equivalences preserving
the number of non-projective simple modules. A machinery is presented
to construct lifts for a large class of algebras, including Frobenius-finite al-
gebras introduced in this paper. In particular, every stable equivalence of
Morita type between Frobenius-finite algebras over an algebraically closed
field can be lifted to a derived equivalence. Consequently, the Auslander—
Reiten conjecture is true for stable equivalences of Morita type between
Frobenius-finite algebras. Examples of Frobenius-finite algebras are abun-
dant, including representation-finite algebras, Auslander algebras, cluster-
tilted algebras and certain Frobenius extensions. As a byproduct of our
methods, we show that, for a Nakayama-stable idempotent element e in
an algebra A over an algebraically closed field, each tilting complex over
eAe can be extended to a tilting complex over A that induces an almost
v-stable derived equivalence studied in the first paper of this series. More-
over, the machinery is applicable to verify Broué’s abelian defect group
conjecture for several cases mentioned in the literature.

1. Introduction

Derived and stable equivalences of algebras (or categories) are two kinds of fun-
damental equivalences both in the representation theory of algebras and groups
and in the theory of triangulated categories. They preserve many significant al-
gebraic, geometric or numeric properties, and provide surprising and useful new
applications to as well as connections with other fields (see [8], [40], [41] and [48]).
But what are the interrelations between these two classes of equivalences? Rickard
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showed in [40], [43] (see also [25]) that, for self-injective algebras, derived equiv-
alences imply stable equivalences of Morita type which form a significant class of
stable equivalences and have much better homological invariants. For instance, the
global, finitistic, dominant and representation dimensions all are invariants (see [8],
[21], [50]). Conversely, Asashiba’s work [3] together with a recent work by Dugas
in [14] shows that, for standard representation-finite self-injective algebras, every
stable equivalence lifts to a derived equivalence. For general algebras, however,
little is known about their relationship. That is, one does not know any methods
to construct such an equivalence from the other for arbitrary algebras. In [21], we
started discussing this kind of questions and gave a general method to construct
stable equivalences of Morita type from almost v-stable derived equivalences, a
class of derived equivalences defined in [21] (see Section 2.2 for definition). This
generalizes the above-mentioned result of Rickard.

In a general context, the converse is how to get a derived equivalence from a
known stable equivalence of Morita type. This is even less known. There are some
stable equivalences of Morita type that cannot be lifted to derived equivalences,
even in the self-injective case (see [8], Section 5A). So, our concern is the following.

Main question. Given a stable equivalence of Morita type between arbitrary
finite-dimensional algebras A and B over a field, under which conditions can we
construct a derived equivalence therefrom between A and B?

This is of interest due to two major conjectures. One is Broué’s abelian defect
group conjecture, which says that the module categories of a block of a finite group
algebra and its Brauer correspondent have equivalent derived categories if their
defect groups are abelian. Note that block algebras are self-injective. So, by
Rickard’s result, Broué’s abelian defect group conjecture would predict actually a
stable equivalence of Morita type, while the latter arise fairly often in the modular
representation theory of finite groups. For instance, it occurs very often as a
restriction functor in Green correspondences. To be able to lift stable to derived
equivalences is important in one approach, due to Rouquier [48], to Broué’s abelian
defect group conjecture: given two block algebras A and B, to prove that A and B
are derived equivalent, it is enough to find another algebra C' such that B and C' are
derived equivalent, and that there is a stable equivalence of Morita type between A
and C, which sends simple A-modules to simple C-modules, or can be lifted to a
derived equivalence. Then A and B are derived equivalent by Linckelmann’s result
in [27], Theorem 2.1, or by composite of two derived equivalences.

The other conjecture is the Auslander—Reiten conjecture (or Alperin—Auslander
conjecture referred in [48]) on stable equivalences, which states that two stably
equivalent algebras have the same number of non-isomorphic non-projective simple
modules (see, for instance, Conjecture (5), p.409 in [4], or Conjecture 2.5 in [48]).
For finite-dimensional algebras over an algebraically closed field, Martinez-Villa
reduced the conjecture to self-injective algebras [32], and proved the conjecture
for representation-finite algebras [31]. For weakly symmetric algebras of domestic
type, the conjecture was verified in [52]. However, this conjecture is still open,
even for stable equivalences of Morita type. Our main question is related to the
conjecture in the following way: if two algebras are derived equivalent, then they
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have the same number of non-isomorphic simple modules (see [39], [24]), while it
is known that stable equivalences of Morita type preserve projective simple mod-
ules. Thus the Auslander—Reiten conjecture is true for those stable equivalences of
Morita type that can be lifted to derived equivalences. For block algebras, Broué’s
abelian defect group conjecture implies the Auslander—Reiten conjecture (see [48]).
For some equivalent formulations of the Auslander—Reiten conjecture in terms of
stable Hochschild homology and Higman ideal, we refer the reader to [30].

In this paper, we shall provide several answers to the main question. Our meth-
ods developed here are different from those in [3], [20], and can be used to re-verify
Broué’s abelian defect group conjecture in some cases (see Section 6). Moreover,
these methods much simplify previous approaches in the literature, for instance in
Asashiba’s work [3], Miiller—Shaps’s work [34], Koshitani-Miiller’s work [26], and
in Okuyama’s examples [37].

We introduce a large class of algebras, called Frobenius-finite algebras, and
then show that every stable equivalence of Morita type between Frobenius-finite
algebras lifts to a derived equivalence (see Subsection 2.2 for definitions). Roughly
speaking, a Frobenius part of a finite-dimensional algebra A is the largest alge-
bra of the form eAe with ¢ an idempotent element such that add(Ae) is stable
under the Nakayama functor of A. This was introduced first in the paper [31] by
Martinez-Villa. An algebra is said to be Frobenius-finite if its Frobenius part is a
representation-finite algebra. Examples of Frobenius-finite algebras are abundant
and capture many interesting classes of algebras, for instance, representation-finite
algebras, Auslander algebras and cluster-tilted algebras. Also, they can be con-
structed from triangular matrix algebras, Auslander—Yoneda algebras and Frobe-
nius extensions (for more details and examples see Section 5.1).

Theorem 1.1. Let k be an algebraically closed field. Suppose that A and B are
finite-dimensional k-algebras without nonzero semisimple direct summands. If A is
Frobenius-finite, then each individual stable equivalence of Morita type between A
and B lifts to an iterated almost v-stable derived equivalence.

In particular, the Auslander—Reiten conjecture holds true for stable equiva-
lences of Morita type between Frobenius-finite algebras over an algebraically closed
field. Of course, this also follows from [32], [31]. But Theorem 1.1 provides another
approach to the conjecture in this case, and shows that Frobenius-finite algebras
shares many common algebraical and numerical invariants of derived and stable
equivalences. Moreover, Theorem 1.1 not only extends a result of Asashiba in [3] (in
a different direction) to a much wider context, namely every stable equivalence of
Morita type between arbitrary representation-finite (not necessarily self-injective)
algebras lifts to a derived equivalence, but also provides a method to construct
derived equivalences between algebras and their subalgebras because, under some
mild conditions, each stable equivalence of Morita type can be realized as a Frobe-
nius extension of algebras by Corollary 5.1 in [15].

The next result, Theorem 1.2, is the technical main result, providing a method
to prove Theorem 1.1 and a general approach to lifting stable equivalences of Morita
type to derived equivalences. Recall that an idempotent element e of an algebra A
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is said to be v-stable if add(vaAe) = add(Ae), where vy is the Nakayama functor
of A.

Theorem 1.2. Let A and B be finite-dimensional algebras over a field. Suppose
that A and B have no nonzero semisimple direct summands and that A/rad(A)
and B/rad(B) are separable. Let e and f be v-stable idempotent elements in A
and B, respectively, and let ®: A-mod — B-mod be a stable equivalence of Morita
type, satisfying the following two conditions:

(1) For each simple A-module S with e-S =0, ®(S) is isomorphic in B-mod
to a simple module S’ with f -5 =0;

(2) For each simple B-module T with f-T = 0, ®~(T) is isomorphic in A-mod
to a simple module T" with e -T" = 0.

If the stable equivalence ®1: eAe-mod — fBf-mod, induced from ®, lifts to
a derived equivalence between eAe and fBf, then ® lifts to an iterated almost
v-stable derived equivalence between A and B.

Note that if a stable equivalence of Morita type preserves all simple modules
(that is, e = 0 and f = 0 in Theorem 1.2), then it is a Morita equivalence. This was
first proved by Linckelmann for self-injective algebras in [27], and then extended to
arbitrary algebras by Liu in [28]. Theorem 1.2 deals with a general situation where
a stable equivalence of Morita type may not preserve all simple modules, and can
be used as kind of an inductive step to lift stable equivalences. Compared with
the method in the literature (for instance, [37], [26], [34]), our inductive method
has an advantage: each step reduces the number of simple modules, and therefore
one may work very possibly with representation-finite algebras after some steps,
and then apply Theorem 1.1. We shall use this technique to reprove some known
cases where Brouré’s abelian defect group conjecture holds true (see Section 6).

As an immediate consequence of Theorem 1.2, we state the following corollary,
reducing the lifting problem between given algebras to the one between Frobenius
parts. This also explains our strategy of the proof of Theorem 1.1.

Corollary 1.3. Let A and B be finite-dimensional k-algebras over a field and
without nonzero semisimple direct summands such that A/rad(A) and B/rad(B)
are separable. Suppose that ® is a stable equivalence of Morita type between A
and B, and that ®y is the restricted stable equivalence of ® between the Frobenius
parts Aa and Ap. If ®1 lifts to a derived equivalence between Ay and Ap, then ®
lifts to an iterated almost v-stable derived equivalence between A and B.

The contents of the paper are outlined as follows. In Section 2, we fix nota-
tion and collect some basic facts needed in our later proofs. In Section 3, we first
begin by reviewing aspects of stable equivalences of Morita type, and then dis-
cuss relationships of stable equivalences of Morita type between algebras and their
Frobenius parts which play a prominent role in studying the main question. In
Sections 4 and 5, we prove the main results, Theorem 1.2 and Theorem 1.1, respec-
tively. While proving Theorems 1.1 and 1.2, we also obtain Proposition 4.1, which
extends a result of Miyachi (see Theorem 4.11 in [33]). In Section 6, we illustrate
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the procedure of lifting stable equivalences of Morita type to derived equivalences
discussed in the paper by two examples from modular representation theory of
finite groups. This shows that our results can be applied to verify Broué’s abelian
defect group conjecture for some cases. We end this section by a few questions for
further investigation suggested by the main results in the paper.

2. Preliminaries

In this section, we shall recall basic definitions and facts required in our proofs.

2.1. Derived and stable equivalences

Throughout this paper, unless specified otherwise, all algebras will be finite-dimen-
sional algebras over a fixed field k. All modules will be finitely generated unitary
left modules.

Let C be an additive category.

For two morphisms f: X — Y and g: Y — Z in C, the composite of f with g is
written as fg, which is a morphism from X to Z. But for two functors F': C — D
and G: D — & of categories, their composite is denoted by G o F' or simply by GF',
which is a functor from C to £. For an object X in C, we denote by add(X) the full
subcategory of C consisting of all direct summands of finite direct sums of copies
of X.

By ¢'(C) we denote the category of complexes X*® = (X*,dY ) over C, where X*
is an object in C and the differential d% : X* — X**! is a morphism in C with
df'Xdé}H = 0 for each i € Z; and by J#(C) the homotopy category of C. When C is
an abelian category, we denote the derived category of C by Z(C). The full sub-
categories of Z (C) and Z(C) consisting of bounded complexes over C are denoted
by #®(C) and 2°(C), respectively.

Let A be an algebra. Then we denote by A-mod the category of all A-modules,
and by A-proj (respectively, A-inj) the full subcategory of A-mod consisting of
projective (respectively, injective) modules. As usual, D denotes the k-duality
Homy(—, k) and (—)* the A-duality Homy(—, A) from A-mod to A°P-mod. We
denote by v the Nakayama functor DHom 4 (—, A) which gives rise to an equiva-
lence from A-proj to A-inj with Z/Zl = Homyu (DA, —).

By A-mod we denote the stable module category of A, in which the morphism
set of two modules X and Y is denoted by Hom 4 (X,Y). Given two algebras A
and B, if there is an equivalence F': A-mod — B-mod, then we say that F' is a
stable equivalence between A and B, or that A and B are stably equivalent via F'.

As usual, we simply write # P (A) and 2" (A) for #®(A-mod) and 2°(A-mod),
respectively. It is well known that .#(A) and 2P (A) are triangulated categories.
For a complex X*® in J#(A) or Z(A), we denote by X°[1] the lift of X°®. Tt is
obtained from X*® by shifting X*® to the left by 1 degree.

For X € A-mod, we denote by P(X) (respectively, I(X)) the projective cover
(respectively, injective envelope) of X. As usual, the syzygy and co-syzygy of X are
denoted by Q(X) and Q~1(X), respectively. The socle and top, denoted by soc(X)
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and top(X), are the largest semisimple submodule and the largest semisimple
quotient module of X, respectively.

A homomorphism f: X — Y of A-modules is called a radical map if, for any
module Z and homomorphisms h : Z — X and ¢g: Y — Z, the composite hfg
is not an isomorphism. A complex over A-mod is called a radical complex if
all of its differential maps are radical. Every complex over A-mod is isomorphic
in the homotopy category £ (A) to a radical complex. Moreover, if two radical
complex X*® and Y are isomorphic in # (A), then X*® and Y* are isomorphic
in €(A).

Two algebras A and B are said to be derived equivalent if their derived cat-
egories Z(A) and 2" (B) are equivalent as triangulated categories. A triangle
equivalence F: 9°(A) — P°(B) is called a derived equivalence between A and B.

In [39], Rickard showed that two algebras A and B are derived equivalent if
and only if there is a complex T in #(A-proj) satisfying

(1) Homgpn4)(T*,T*[n]) = 0 for all n # 0,

(2) add(T*®) generates # (A-proj) as a triangulated category, and

(3) B~ End‘}gb(A) (T.)

A complex in J#P(A-proj) satisfying the above two conditions (1) and (2) is
called a tilting complex over A. It is known that, given a derived equivalence F'
between A and B, there is a unique (up to isomorphism) tilting complex T'® over A
such that F'(T*®) ~ B. This complex T is called a tilting complex associated to F.

Recall that a complex A® in 2P (B ®;, A°P) is called a two-sided tilting complex
provided that there is another complex ©°® in 2°(A®j, B°P) such that A*®@LO* ~ B
in (B ®;, B°P) and ©°® ®% A® ~ A in P(A ®) A°P). In this case, the functor
A*@% —: PP(A) — 2"(B) is a derived equivalence. A derived equivalence of this
form is said to be standard. For basic facts on the derived functor — @ —, we refer
the reader to [49].

2.2. Almost v-stable derived equivalences

In [21], almost v-stable derived equivalences were introduced. Recall that a derived
equivalence F': 2°(A) — 2°(B) is called an almost v-stable derived equivalence if
the following two conditions are satisfied:

(1) The tilting complex T® = (T, d");cz associated to F has zero terms in all
positive degrees, that is, T7* = 0 for all i > 0. In this case, the tilting complex T°®
associated to the quasi-inverse G of F' has zero terms in all negative degrees, that
is, T" = 0 for all i < 0 (see Lemma 2.1 in [21]).

(2) add(B,; ., T") = add(®, o vaT") and add(B,., T") = add(P,., vT").

As was shown in [21], each almost v-stable derived equivalence between A and B
induces a stable equivalence of Morita type between A and B. Thus A and B share
many common invariants of both derived and stable equivalences.

For the convenience of the reader, we briefly recall the construction of the stable
equivalence in [21].
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Suppose that A and B are two algebras over a field and F': 2°(A) — 2"(B) is
an almost v-stable derived equivalence. By Lemma 3.1 in [21], for each X € A-mod,
one can fix a radical complex Q% ~ F(X) in 2°(B):

0—Q% — Q% — - —Q% —0

with Q% projective for all i > 0. Moreover, the complex of this form is unique up
to isomorphism in €°(B). For X,Y in A-mod, there is an isomorphism

¢ :Homuy(X,Y) — HOm@b(B)(Qk,Q;').

Then a functor F': A-mod — B-mod, called the stable functor of F, was defined
in [21] as follows: for each X in A-mod, we set

F(X):=Q%.

For any morphism f: X — Y in A-mod, we denote by f its image in Hom 4 (X, Y").
By Lemma 2.2 in [21], the map (f)¢ in Hom@b(B)(Q}, Q%) can be presented by
a chain map ¢* = (¢%)icz. Then we define

F:Homy, (X,Y) — Homp(F(X),F(Y)), [~ g¢°

It was shown in [21] that F': A-mod — B-mod is indeed a well-defined functor
fitting into the following commutative diagram (up to isomorphism):

3a

A-mod PP (A) ) H P (A-proj) =—= PP (A)

(%) F lF’ lF

B-mod ——2—> 9°(B) /A4 (B-proj) ~—2——— ob(B)

where PP (A)/# P (A-proj) is a Verdier quotient, the functor
Y4 : A-mod — Z°(A)/# " (A-proj)

is induced by the canonical embedding A-mod — 2P(A), and F' is the triangle
equivalence which is uniquely determined (up to isomorphism) by the commutative
square on the right-hand side of the above diagram ().

Note that if two almost v-stable derived equivalences are naturally isomorphic,
then so are their stable functors.

If A is self-injective, then it was shown in [25], [40] that the functor X4 is a
triangle equivalence. Let 14 be the composite

PP (A) % GP(A) ) (A-proj) “A A-mod.

Then, for a derived equivalence F' between two self-injective algebras A and B,
there is a equivalence functor ®: A-mod — B-mod, uniquely determined (up to
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isomorphism), such that the diagram

F

7°(4) 7°(B)

(**) nA l lYIB

A-mod ———— B-mod

is commutative up to isomorphism. In this case, we say that the stable equiva-
lence ® g is induced by the derived equivalence F or ® i lifts to a derived equivalence.

In general, a derived equivalence does not give rise to a stable equivalence, nor
conversely. However, if a derived equivalence F' is almost v-stable, then its stable
functor F' is a stable equivalence (see Theorem 3.7 in [21]). So we introduce the
following definition.

Definition 2.1. If a stable equivalence ® between arbitrary algebras is isomor-
phic to the stable functor I of an almost v-stable derived equivalence F, then
we say that the stable equivalence ® is induced by the almost v-stable derived
equivalence F', or ® lifts to the almost v-stable derived equivalence F. If a stable
equivalence ® can be written as a composite ® ~ &, 0d50---0P,, of stable equiva-
lences with ®;, or ®; !induced by an almost v-stable derived equivalence for all 7,
then we say that ® is induced by an iterated almost v-stable derived equivalence,
or & lifts to an iterated almost v-stable derived equivalence (see [19]).

Actually, the stable functor F and the induced equivalence functor &y are
compatible with each other when our consideration is restricted to self-injective
algebras. In fact, let F': 2°(A) — 9*(B) be a derived equivalence between two
self-injective algebras A and B. Then, by the above diagrams (x) and (%), if the
tilting complex associated to F' has no nonzero terms in positive degrees, then F
is an almost v-stable derived equivalence and the stable functor F' is isomorphic
to the functor & defined above. If the tilting complex T associated to F' has
nonzero terms in positive degrees, then F can be written as a composite F =~
Fio F{l such that both F; and F5 are almost v-stable derived equivalences, and
thus ®p ~ ®p, 0 ®! ~ Fo Fy ', Here we can take F, to be [m] for which T'*[—m)]
has no nonzero terms in positive degrees. This shows that ® lifts to an iterated
almost v-stable derived equivalence.

If a derived equivalence F' is standard and almost v-stable, then the stable
equivalence F' is of Morita type (see the proof of Theorem 5.3 in [21]). This
is compatible with (and generalizes) Corollary 5.5 in [41] of Rickard: ®p is a
stable equivalence of Morita type provided that F is a standard derived equivalence
between two self-injective algebras.

Remark 2.2. For algebras with separable semisimple quotients, if a stable equiv-
alence of Morita type between them is induced by an almost v-stable derived
equivalence, then it is also induced by an almost v-stable, standard derived equiv-
alence.
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In fact, suppose that ® is such a stable equivalence of Morita type. Then, by
the proof of Theorem 5.3 in [21], there is an almost v-stable, standard derived
equivalence I such that F'(X) ~ ®(X) for all modules X. Hence ®o F'~! lifts to a
Morita equivalence by Proposition 3.5 below. Thus ® ~ (®o F~!)o F' is induced by
the composite of a Morita equivalence with an almost v-stable, standard derived
equivalence, and therefore Remark 2.2 follows.

2.3. Frobenius parts and v-stable idempotent elements

In this subsection, we recall the definition of Frobenius parts of algebras from [31],
which is related to the Nakayama functor, and collect some basic facts on idempo-
tent elements.

Let A be an algebra, and let e be an idempotent element in A. It is well known
that Ae ®cae — : eAe-mod — A-mod is a full embedding and induces another full
embedding

A ede-mod — A-mod

of stable module categories. Further, there is another functor eA®4 — : A-mod —
eAe-mod such that the functors Ae ®c4. — and eA ® 4 — induce mutually inverse
equivalences between add(Ae) and eAe-proj. Moreover, the functor eA ® 4 — in-
duces a triangle equivalence between the homotopy categories .# ™ (add(Ae)) and
P (eAe-proj). In particular, if P € add(Ae), then Ae ®.4. eA @4 P ~ P as
A-modules.

For an A-module X, we define A.(X) := Ae ®ca. eX and denote by P(X) the
projective cover of X.

Lemma 2.3. Let A be an algebra and e an idempotent element in A. If S is a
simple A-module with eS # 0, then

(1) Ac(S) is isomorphic to a quotient module of P(S) and e -rad(A.(S)) =0,
(2) if e-rad(P(S)) # 0, then Ac(S) is not projective.

Proof. (1) Applying Ae ®ca. eA ®4 — to the epimorphism P(S) — S, we obtain
an epimorphism Ae®q4. eP(S) = A.(S). Since eS # 0, the projective cover P(S)
of S'is in add(Ae), and therefore Ae®.a.eP(S) ~ P(S) by the equivalence between
add(Ae) and eAe-proj. Hence A(S) is isomorphic to a quotient module of P(S5).
Thus A.(S) has S as a single top. Applying eA ® 4 — to the short exact sequence
0 — rad(A.(S)) = Ac(S) = S — 0, we have another short exact sequence

0 —> e rad(Ac(S)) — e Ae(S) 2 €S — 0.

Since e-A.(5) ~ eAe®caceS ~ eS, the homomorphism h must be an isomorphism,
and therefore e - rad(A.(S)) = 0.

(2) Suppose contrarily that A.(.S) is projective. Then the epimorphism P(S) —
A.(S) splits. This forces A.(S) ~ P(S). By assumption, e - rad(P(S)) # 0, while
e-rad(A.(S)) = 0. This is a contradiction. O
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We say that an idempotent element e in A is v-stable provided add(vaAe) =
add(Ae). That is, for each indecomposable direct summand P of Ae, the cor-
responding injective module v4 P is still a direct summand of Ae. Clearly, the
module Ae is projective-injective. Note that the notion of v-stable idempotent
elements is left-right symmetric, although it is defined by using left modules. In
fact, add(va(Ae)) = add(Ae) if and only if add(eA) = add(vaew(eA)) because
D(vade) ~ DD(eA) ~ eA and D(Ae) ~ vaor(eA). Moreover, we have the
following.

Lemma 2.4. Let e be a v-stable idempotent element in A. Then

(1) add(top(Ae)) = add(soc(Ae)).

(2) If add(Ae)Nadd(A(1—e)) = {0}, then soc(eA) is an ideal of A. Moreover,
soc(Ae) = soc(eA).

Proof. (1) Since top(Ae) = soc(va(Ae)), the statement (1) follows from the defi-
nition of v-stable idempotent elements.

(2) By our assumption, it follows from Section 9.2 in [13] that soc(Ae) is
an ideal of A. It follows from (1) that (1 — e)soc(Ae) = 0. Thus soc(Ae) =
((1—e)-soc(Ae)) @ (e-soc(Ae)) = e-soc(Ae) C eA. Moreover, for each r € rad(A),
the left A-module homomorphism ¢,: A — A,z +— xr is a radical map. The
restriction of ¢, to any indecomposable direct summand X of Ae cannot be in-
jective. Otherwise, the restriction ¢,|x splits since the module X is injective,
and ¢, is not a radical map. This is a contradiction. Hence soc(X) C Ker(¢,) and
soc(Ae) C Ker(¢,). This means soc(Ae) - r = 0. Consequently soc(Ae) C soc(eA).
The duality Homy(—, A) takes Ae to eA, and A(1 —e) to (1 — e)A. This im-
plies add(eA) Nadd((1 — e)A) = {0}. Similarly, soc(eA) C soc(Ae), and therefore
soc(eA) = soc(Ae). O

The following definition was essentially introduced in [31].

Definition 2.5. (1) An A-module X is said to be v-stably projective if v, X is
projective for all i > 0. The full subcategory of all v-stably projective A-modules
is denoted by A-stp and called the Nakayama-stable category of A.

(2) If e is an idempotent element in A such that add(Ae) = A-stp, then the

algebra eAe is called a Frobenius part of A, or an associated self-injective algebra
of A.

By definition, Frobenius part of an algebra is unique up to Morita equivalence,
so we may speak of the Frobenius part of an algebra. Since the trivial module {0}
is always v-stably projective and algebras are allowed to be {0}, the Frobenius part
of an algebra always exists. Clearly, the Nakayama-stable category A-stp of A is
closed under taking direct summands and finite direct sums.

The two notions of v-stably projective modules and v-stable idempotent ele-
ments are closely related. Actually, we have the following lemma.

Lemma 2.6. Let A be an algebra. Then the following hold:
(1) If e is a v-stable idempotent element in A, then add(Ae) C A-stp.
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(2) If e is an idempotent element in A such that add(Ae) = A-stp, then e is
v-stable.

(3) There exists a v-stable idempotent element e in A such that add(Ae) =
A-stp.
(4) All modules in A-stp are projective-injective.

Proof. (1) Let P € add(Ae). Then, by definition, vy P € add(vaAe) = add(Ae),
and consequently 14 P € add(Ae) for all i > 0. Hence P is a v-stably projective
A-module, that is, P € A-stp.

(2) Since Ae € A-stp, the A-module v/%(Ae) is projective for all i > 0. This
implies that v4 Ae is projective and v (v4Ae) is projective for all i > 0. Hence
vgAe € A-stp = add(Ae) and add(rvaAe) C add(Ae). Since vy4 is an equivalence
from A-proj to A-inj, the categories add(r4 Ae) and add(Ae) have the same number
of isomorphism classes of indecomposable objects. Hence add(va Ae) = add(Ae),
that is, e is v-stable.

(3) Since A-stp is a full subcategory of A-proj, there is an idempotent element e
in A such that add(Ae) = A-stp. The statement (3) then follows from (2).

(4) By definition, all modules in A-stp are projective. By (3), there is a v-
stable idempotent element e € A such that add(Ae) = A-stp. This implies that
all modules in A-stp are in add(A4e) = add(rvade), and consequently they are
injective. O

Lemma 2.7. Let A be an algebra and e an idempotent element in A.

(1) For Y € add(Ae) and X € A-mod, there is an isomorphism induced by the
functor
eA®y — :Homu (Y, X) — Homea.(eY, eX).

(2) There is a natural isomorphism e(vaY) ~ veac(eY) for all Y € add(Ae).
(3) If e is v-stable, then eAe is a self-injective algebra.
(

4) Suppose that e is v-stable. If the algebra A does not have nonzero semisimple
direct summands, then neither does the algebra eAe.

Proof. (1) It is enough to check on Y = Ae. But this case is clear (see, for example,
Proposition 2.1, p. 33 in [4]).
(2) follows from (1) and the following isomorphisms:

Veae(eY) = DHomeac(eY,eAe) ~ DHom 4 (Y, Ae)
~ D(Y* ®4 Ae) ~ Homy(Ae, D(Y™*)) ~ e(vaY).

(3) follows immediately from (2) (see also [32]).

(4) Since the functor eA ®4 — : add(Ae) — eAe-proj is an equivalence, each
indecomposable projective e Ae-module is isomorphic to eY for some indecompos-
able A-module Y in add(Ae). By definition, add(A4e) = add(rv4Ae). This means
that Y is projective-injective and soc(Y') € add(top(Ae)). Since A has no nonzero
semisimple direct summands, the module Y is not simple. Thus Y has at least
two composition factors in add(top(Ae)), and consequently eY has at least two
composition factors. Hence eY is not simple. This implies that the algebra eAe
has no nonzero semisimple direct summands. O
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The following lemma is easy. But for the convenience of the reader, we include
here a proof.

Lemma 2.8. Let A be an algebra, and let M be an A-module which is a generator
for A-mod, that is, add(4A) C add(M). Then, for an A-module X, Homy (M, X)
is a projective End (M )-module if and only if X € add(M).

Proof. Clearly, if X € add(M), then Hom4 (M, X) is a projective End4(M)-
module. Now, suppose that Hom 4 (M, X)) is projective for an A-module X. With-
out loss of generality, we may assume that A is a basic algebra. Then 4 A is
a direct summand of M, that is, M ~ A & N for some A-module N. Since
Hom (M, X) is a projective End 4 (M )-module, there is some My € add(M) such
that Hom (M, Mx) ~ Homa (M, X) as Enda(M)-modules. By Yoneda isomor-
phism, there is an A-module homomorphism f: Mx — X such that Hom 4 (M, f)
is an isomorphism, that is, Hom4 (A, f) @ Homu (N, f) is an isomorphism. This
implies that Hom4 (4 A, f) is an isomorphism, and therefore so is f. O

Finally, we point out the following elementary facts on Nakayama functors,
which we employ in our proofs without references.

Remark 2.9. (1) For any A-module M and projective A-module P’, there is a
natural isomorphism: DHom 4 (P’, M) ~ Hom (M, v4P’). More generally, for any
P* € 2" (A-proj) and X* € #P(A), there is an isomorphism of k-spaces:

DHom vy (P®, X*) =~ Hom v 4)(X®,vaP*®).

(2) Let M be a fixed generator for A-mod, and let A := Ends(M). Then, for
each projective A-module P’, there is a natural isomorphism vyHom 4 (M, P’) ~
Homy (M, v4P') of A-modules.

3. Stable equivalences of Morita type

In this section, we shall first collect some basic properties of stable equivalences
of Morita type which were first introduced by Broué (see [7], [8]) in modular
representation theory of finite groups, and then give sufficient conditions for lifting
stable to Morita equivalences, a very special class of derived equivalences. The
key result in this section is Proposition 3.5 that will be applied in Section 4 to the
proof of the main result, Theorem 1.2.

3.1. Basic facts on stable equivalences of Morita type

Let A and B be algebras over a field k. Following [8], we say that two bimod-
ules 4 Mp and pN 4 define a stable equivalence of Morita type between A and B if
the following conditions hold:

(1) The one-sided modules 4 M, Mg, pN and N4 all are projective;

(2) M®@p N ~ A® P as A-A-bimodules for some projective A-A-bimodule P,
and N ® 4 M ~ B & @Q as B-B-bimodules for some projective B-B-bimodule Q.
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In this case, we have two exact functors Ty = M ®pg — : B-mod — A-mod and
Tn = BN ®4 — : A-mod — B-mod. Analogously, the bimodules P and () define
two exact functors Tp and T, respectively. Note that the images of Tp and Ty
consist of projective modules. Moreover, the functor T induces an equivalence
®n: A-mod — B-mod of stable module categories, and is called a stable equiva-
lence of Morita type. Similarly, we have a stable equivalence ®,; of stable module
categories, which is a quasi-inverse of ® .

Note that P = 0 if and only if @ = 0. In this situation, we come back to the
notion of Morita equivalences.

Lemma 3.1. Let A and B be algebras without nonzero semisimple direct sum-
mands. Suppose that sMp and gN 4 are two bimodules without nonzero projective
direct summands and defining a stable equivalence of Morita type between A and B.
Write AM @ Ny ~ A® P and gN @4 Mp ~ B ® Q as bimodules. Then the
following hold:

(1) M®p —,N®s —) and (N ®4 —, M ®p —) are adjoint pairs of functors.

(2) add(vaP) = add(4aP) and add(vpQ) = add(pQ). Thus aP € A-stp and
BQ € B-stp.

(3) N®4 P € add(Q), and M ®p Q € add(4P).

(4) For each indecomposable A-module X ¢ add(4P), the B-module N ®4 X
is the direct sum of an indecomposable module X ¢ add(pQ) and a module X' €

add(BQ).

(5) If S is a simple A-module with Homa(aP,S) =0, then N ®4 S is simple
with Homp(5Q, N ®4 S) = 0.

(6) Suppose that A/rad(A) and B/rad(B) are separable. If S is a simple A-

module with Homa (4P, S) # 0, then N ®4 S is not simple, but indecomposable
with both soc(N ®4 S) and top(N ®4 5) in add(top(sQ)).

Proof. Some of these statements are proved or implied in different papers (see, for
example, Sections 5.3-5.6 in [53], and the references therein). For the convenience
of the reader, we include here some details.

(1) This follows from Lemma 4.1 in [11] (see also [15] and [29] for algebras with
the separability condition).

(2) We first show the following;:
(a) For an A-module X, P®4 X € add(4P).

In fact, taking a surjective homomorphism (4A4)" — X, we get a surjective
map P ®4 A" — P ®4 X. Since 4P ®4 X is projective for all A-modules X,
P ®4 X is a direct summand of 4 P".

(b) For any A-module X, vg(N ®4 X) =~ N ®4 (v4X). Similarly, for any
B-module Y, va(M @pY) ~ M ®p (vgY).
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Indeed, there are the following isomorphisms of B-modules:

VB(N®AX) DHomB(N®AX,B)’XDHOHIA(X,MQ?BB) (by (1))
DHoma (X, A®4 M)

D(Homu(X,A) ®4 M) (because 4 M is projective)
Homa(M,v4X) (by adjointness)

Homp(B,N ®4vaX) (by (1))

N ®4 (VAX).

Similarly, for a B-module Y, va(M ®pY) ~ M ®p (vgY).

Thus va(M @ N @4 A) ~ M @ N ®4 (vaA), and consequently vqA &
vaP ~ (A® P)®4 (vaA). Hence vaP ~ P®4 (vaA) € add(4P), and therefore
add(vaP) C add(4P). Since v, is an equivalence from A-proj to A-inj, we de-
duce add(4P) = add(vaP) just by counting the number of indecomposable direct
summands of 4P and v4 P. Similarly, add(pQ) = add(vp@). This proves (2).

(3) Tt follows from N @4 (A® P) ~ N®s M ®p N ~ (B® Q) ®p N that
N ®4 P ~ Q ®p N as bimodules. In particular, gN ®4 P is isomorphic to
pQ®p N € add(pQ). Hence N ®4 P € add(pQ). Similarly, M ®5 Q € add(4P).

(4) Suppose that X is an indecomposable A-module and X ¢ add(4P). Let
N®4X =X @ X' be adecomposition of N ®4 X such that X’ € add(pQ) and X
has no nonzero direct summands in add(pQ). If X =0, then N ®4 X € add(5Q)
and consequently X @ P ®4 X ~ M ®p (N ®4 X) € add(aP) by (3). This
contradicts to X ¢ add(4P). Hence X # 0. Suppose X = Y; @ Y, with Y; # 0
for i =1,2. Then M ®@pY; ¢ add(4P) for i = 1,2. It follows that both M ®p Y,
and M ®p Y2 have indecomposable direct summands which are not in add(4P).
However, due to X ®PRA X 2 MIBNRuX > MRpY1OM3gYod Mg X',
we know that X is the only indecomposable direct summand of X & P ® 4 X with
X ¢ add(4P). This is a contradiction and shows that X must be indecomposable.

(5) By (1) and Lemma 3.2 in [51], together with the proof of Lemma 4.5
in [51], we have P ~ P* as A-A-bimodules. Remark that this was proved in
Proposition 3.4 of [15] with the condition that A/rad(A) and B/rad(B) are sep-
arable. If Homyu(P,S) = 0, then P®4 S ~ P* ®4 S ~ Homu(P,S) = 0. Thus
M@ N®@aS~S®P®aS =S5. Let £{(X) stand for the length of a com-
position series of X. Since the functor N ®4 — is exact and faithful (due to
add(A4) = add(Ng4)), we have {(N ®4 X) > £(X) for all A-modules X. Sim-
ilarly, (M ®@pY) > £(Y) for all B-modules Y. Consequently, 1 = £(5) =
(M @ N®agS) > U(N®agS) > £S) = 1. This implies that N ®4 S is a
simple B-module. Finally, Homp(pQ, N ®4 S) ~ Homu (M ®p @, S) = 0 by (1)
and (3).

(6) Let e and f be idempotent elements in A and B, respectively, such that
add(a4Ae) = add(aP), add(Ae) Nadd(A(1 —e)) = {0}, add(pBf) = add(pQ) and
add(Bf)Nadd(B(1 - f)) = {0}. Then e and f are v-stable idempotents, and the
modules eA 4 and B[ are projective-injective. Consequently, the B-A-bimodule
Bf ®j eA is also projective-injective and

add((B ®; A)(f ®e)) Nadd((B @, A)(1— f®e)) = {0}.

()

1R 1R
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By Lemma 2.4 (2), soc(Ae) = soc(eA), and soc(ed ), soc(pBf) and soc(BfRieA)
are ideals of A, B and B ®j, A°P, respectively. Since A/rad(A) and B/rad(B) are
separable, soc(pBf ®; eAs) = soc(Bf) ®j soc(eA). By assumption, the bimod-
ule NV has no nonzero projective direct summands. Particularly, N has no nonzero
direct summands in add(Bf ®j eA). This is equivalent to soc(Bf ®j eA)N = 0
by [13], Section 9.2. That is,

soc(Bf)Nsoc(eA) = 0.
As N, is projective, we have N ® 4 soc(eA) ~ Nsoc(eA). Thus
soc(Bf)(N ®4 soc(eA)) ~ soc(Bf)(Nsoc(eA)) = soc(Bf)Nsoc(eA) = 0.

This means that the B-module N ® 4 soc(eA) has no nonzero direct summands in
add(BQ).

Now let S be a simple A-module with Hom4 (P, S) # 0. Then S € add(top(Ae))
= add(soc(Ae)). Since soc(Ae) = soc(eA), S € add(asoc(ed)), and consequently
the B-module N ®4 S has no nonzero direct summands in add(pQ). Thus S &
add(4P) and N ®4 S is indecomposable by (4). Further, we show that N ®4 S is
not simple. Suppose contrarily that N ® 4 S is simple. Then M @5 (N ® 4 S) must
be indecomposable by the above discussion with replacing N by M. However,
the isomorphism M ®@p (N ®4 S) ~ S @ P ®4 S implies that P ®4 S = 0 and
Homy (P, S) ~ Homy(aPa A) ®4 S ~ P®4 S =0, a contradiction. Hence the
B-module N ®4 S is indecomposable and not simple. Since Hom (4P, S) # 0,

there is a sequence P Ji59 v4 P of homomorphisms with f surjective and g
injective. Applying the exact functor N ® 4 — to this sequence, we get a new
sequence

NoaP A No, s 49 N @, usP

with N ®4 f surjective and N ®4 g injective. By (2) and (3), both soc(N ®4 5)
and top(IN ®4 ) lie in add(top(pQ)). O

With all assumptions in Lemma 3.1(6), for a given simple A-module S, N®4 S
is not simple if and only if P(S) lies in add(4P). Thus, such simple A-modules
are entirely determined by the top of P.

Remark 3.2. Suppose that A is a finite-dimensional k-algebra over a field &.
(1) The following are equivalent:
(a) A/rad(A) is a separable algebra over k.
(b) The center of End4(S) is a separable extension of k for any simple
A-module S.
(2) If A satisfies the separability condition (that is, A/rad(A) is separable),
then so do its quotient algebras and the algebras of the form eAe with e? = e € A.

(3) The separability condition on A does not seem to be a strong restriction
and can be satisfied actually by many interesting classes of algebras. For instance,
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- A is an algebra over a perfect field (for example, over a finite field, an alge-
braically closed field, or a field of characteristic zero).

- A is given by quiver with relations.

- Ais the group algebra kG of a finite group G (see Lemma 1.28, p. 183, in [35]).

3.2. Stable equivalences of Morita type at different levels

We say that a stable equivalence ®: A-mod — B-mod of Morita type lifts to a
Morita equivalence if there is a Morita equivalence F': A-mod — B-mod such that
the diagram

A-mod —r . B-mod

lcan. Lcan.
P

A-mod B-mod

of functors is commutative up to isomorphism, where the vertical functors are the
canonical ones.

The following proposition collects conditions for stable equivalences of Morita
type to be lifted to Morita equivalences.

Proposition 3.3. Let A and B be algebras without nonzero semisimple direct
summands. Suppose that aMp and pNa are two bimodules without projective
direct summands and defining a stable equivalence of Morita type between A and B.
Write AM @ Ny ~ A® P and gN @4 Mp ~ B ® Q as bimodules. Then the
following are equivalent:

(1) N®4 — : A-mod — B-mod is an equivalence, that is, P =0 = Q.
(2) N ®4 S is a simple B-module for every simple A-module S.

If A/rad(A) and B/rad(B) are separable, then (1) and (2) are equivalent to
each of the following:

(3) The stable equivalence @y induced by N @ 4 — lifts to a Morita equivalence.

(4) N ®4 S is isomorphic in B-mod to a simple B-module for each simple
A-module S.

Proof. (1) = (2) is trivial, since N® 4 — is a Morita equivalence in case P = 0 = Q.

(2) = (1) was first proved by Linckelmann in [27] for self-injective algebras,
and then extended to arbitrary algebras by Liu in [28] under the condition that
the ground field is splitting for both A and B. Here, we give a proof that is
independent of the ground field. Suppose contrarily P # 0. Let {Si, -+ ,Smn}
be a complete set of non-isomorphic simple A-modules in add(top(4P)). Then,
since 4P is a projective-injective module and A (as a bimodule) has no nonzero
semisimple direct summands, the indecomposable direct summands of 4 P cannot
be simple, and consequently all S; are not projective and S; ¢ add(aP). Thus,
from S;GP®aS; ~ M®pN®AS; it follows that N®4.5; %2 N®aS; as B-modules
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whenever 7 # j. By Lemma 3.1 (1), we get the following isomorphisms:

EndA(S;) @ Homu (P ®4 Si’@;ﬁ:l S;) ~ Homa(S; ® P ®a Si,@;n:l S;)
~ Homa(M ®@p N ®a4 Si,@;-n:l S;)
~ Homp(N ®4 Si,@;n:lN(@A S;)
~ Endg(N ®4 S;) ~Endg(N ®4 S;)
~ End 4 (S;) ~ Enda(S;).

This implies Homa (P ®4 Si,@;n:l S;) = 0. However, the A-module P ®4 S;
belongs to add(4 P) and is not zero since

P®aS; ~P " ®4585; EHOI’IIA(AP,Si) 7£0

This yields Homa (P @4 Si,@]-, S;) # 0, a contradiction. Thus P = 0, and
therefore @ = 0.

Note that (1) = (3) = (4) is obvious.

(4) = (2) Assume that A/rad(A) and B/rad(B) are separable algebras. Ac-
cording to Lemma 3.1 (5), it is enough to show Homu4 (4P, S) = 0 for all simple
A-modules S. In fact, let S be an arbitrary simple A-module. Then, if S is pro-
jective, then it cannot be in add(4P). Otherwise, S would be projective-injective
and A would have a nonzero semisimple block, contradicting to our assumption.
Hence Homy (4P, S) = 0. Now suppose that S is not projective. Then it follows
from Lemma 3.1 (6) that Homa (P, S) = 0 since ®x(5) is isomorphic to a simple
B-module in B-mod by (4). O

Now we recall a result on stable equivalences of Morita type from Theorem 1.2
in [11]. Let A and B be two algebras without nonzero semisimple direct summands,
and let 4Mp and pN4 be two bimodules without projective direct summands and
defining a stable equivalence of Morita type between A and B. If e and f are
idempotent elements in A and B, respectively, such that M ® g Ne € add(Ae) and
add(Bf) = add(Ne), then the bimodules eM f and fNe define a stable equivalence
of Morita type between eAe and fBf, that is, the diagram

A-mod oy B-mod

]

Prne
eAe-mod ——— = fBf-mod

is commutative up to isomorphism, where X is defined in Section 2.3.

Lemma 3.4. Let A and B be algebras without nonzero semisimple direct sum-
mands such that A/rad(A) and B/rad(B) are separable. Suppose that e and f are
idempotent elements in A and B, respectively. Let ®: A-mod — B-mod be a stable
equivalence of Morita type such that the following conditions hold:
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(1) For each simple A-module S with e-S = 0, the B-module ®(S) is isomorphic
in B-mod to a simple module T" with f-T' = 0.

(2) For each simple B-module T with f-T = 0, the A-module ®~Y(T) is
1somorphic in A-mod to a simple module S” with e- S’ = 0.

Then there is, up to isomorphism, a unique stable equivalence ®1: eAe-mod —
fBf-mod of Morita type such that the following diagram of functors

P

A-mod B-mod

o T

P
eAe-mod —— fBf-mod
18 commutative up to isomorphism.

Proof. We may assume that the stable equivalence ® of Morita type between A
and B is defined by bimodules s Mp and pN4 without nonzero projective di-
rect summands, that is, ® ~ ®y, induced by the functor pIN ®4 —. By the
assumption (1) and Lemma 3.1 (6), Homa (4P, S) = 0 for all simple A-modules S
with e - S = 0. This implies 4P € add(A4e), and consequently M ®@p Ne ~
Ae @ Pe € add(Ae). Now, for each simple B-module T with f -7 = 0, it fol-
lows from the assumption (2) that Homy(Ae, M @5 T') = 0. This is equivalent to
Homp(N ®4 Ae,T) = 0 by Lemma 3.1(1). Hence Ne ~ N ®4 Ae € add(Bf).
Similarly, pQ € add(Bf) and M ®p Bf € add(Ae), and consequently Bf €
add(N®@s M@ Bf) C add(N®4 Ae) = add(Ne). Therefore add(Ne) = add(BY).
Using Theorem 1.2 in [11], we get the desired commutative diagram (¢). Note that
the functor ®; is uniquely determined up to natural isomorphism because A is a
full embedding. O

The next proposition shows that a stable equivalence of Morita type lifts to a
Morita equivalence if so does its restricted stable equivalence.

Proposition 3.5. Let A and B be two algebras without nonzero semisimple direct
summands such that A/rad(A) and B/rad(B) are separable, and let e and f be
idempotent elements in A and B, respectively. Suppose that there is a commutative
(up to isomorphism) diagram

P

A-mod B-mod

© T

eAe-mod B, fBf-mod

with ® and ®1 being stable equivalences of Morita type, and satisfying the following
conditions:

(1) For each simple A-module S with e-S = 0, the B-module ®(S) is isomorphic
in B-mod to a simple B-module.
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(2) For each simple B-module T with f-T = 0, the A-module ®~Y(T) is
isomorphic in A-mod to a simple A-module.

Suppose that @1 lifts to a Morita equivalence. Then ® lifts to a Morita equiv-
alence.

Proof. We can assume e # 0 and f # 0. Otherwise there is nothing to prove.
Suppose that 4Mp and gpN4 are bimodules without nonzero projective direct
summands and defining a stable equivalence of Morita type between A and B such
that ® is induced by N® 4 —. Assume that M@ N ~ AP and N M ~ BHQ
as bimodules. We shall prove P = 0.

Assume contrarily P # 0. Let S be a simple A-module with Hom4 (4P, S) # 0.
Then S cannot be projective. Otherwise, S would be a direct summand of 4P
which is projective-injective, and A would have a semisimple direct summand. We
shall prove that N ® 4 S is isomorphic to a simple B-module T'. This will lead to
a contradiction by Lemma 3.1 (6).

First, we claim eS # 0. Otherwise, it would follow from the assumption (1)
that ®(S) is isomorphic to a simple B-module, leading to a contradiction by
Lemma 3.1(6). Hence eS # 0 and P(S) € add(A4e). This implies that each
indecomposable direct summand of P is in add(Ae) since we can choose a simple
module S for each of such summands so that Homa(P,S) # 0. Consequently,
AP € add(Ae). Similarly, @ € add(Bf). Since ¥, lifts to a Morita equivalence,
the module @4 (eS) is isomorphic in fBf-mod to a simple fB f-module fT with T
a simple B-module. Set A.(S) := Ae ®cac €S and Ay(T) := Bf ®sps fT. From
the diagram (o), we get an isomorphism in B-mod

(x) N @alc(S) = As(T).

Now, we claim that N ®4 A.(S) and Af(T) are actually isomorphic in B-mod.
To prove this, it suffices to show that N ®4 A.(S) is indecomposable and non-
projective.

In fact, it follows from Homy (P, S) # 0 and Lemma 3.1 (2) that P(S) is a direct
summand of the projective-injective module P. Thus soc(P(S)) C soc(aP). Since
add(va P) = add(4P) by Lemma 3.1 (2), add(soc(4P)) = add(top(4P)). Hence

soc(P(S)) € add(top(aP)) C add(top(Ae)).

Consequently e - soc(P(S)) # 0. On the other hand, as a direct summand of P,
P(S) is not simple because A has no nonzero semisimple direct summands. Thus
soc(P(S)) C rad(P(S)) and e - rad(P(S)) # 0. By Lemma 2.3, the A-module

A.(S), which is a quotient module of P(S), is not projective. This implies that
neither N ® 4 A.(S) is projective.

By Lemma 3.1 (4), to prove that N ®4 A.(S) is indecomposable, we have to
show that N ®4 A.(S) has no nonzero direct summands in add(p@). Suppose
contrarily that Q; € add(pQ) is an indecomposable direct summand of N ® 4

A.(S). We consider the exact sequence

(x%) 0 — N®@arad(Ac(S)) — N®@aA(S) — N®sa S —0
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and show Hom 4 (N ®4 rad(Ac(S5)), Q1) # 0. Otherwise, it follows from the exact
sequence (k%) that the direct summand @1 of N ®4 A.(S) has to be a direct
summand of N ® 4 S which is indecomposable by Lemma 3.1 (6). Thus N ®4
S ~ @1 and it is projective. However, since S is not projective, the module
N®4 S cannot be projective. So, we have a contradiction which shows Hom 4 (N® 4
rad(A.(9)),Q1) # 0. Thanks to the formula Homa(v;'Y, X) ~ DHomyu(X,Y)
for any A-module X and any injective A-module Y (see Remark 2.9 (1)), we have

Homy (v, (M @5 Q1),rad(Ac(S))) ~ DHomy (rad(A.(S)), M ®p Q1)
~ DHomp(N ®4 rad(A.(S5)),Q1) # 0.

By Lemma 3.1 (2)-(3), v, (M @5 Q1) € add(P), Homa(aP,rad(A.(S))) # 0 and
e-rad(A.(S)) ~ Hom 4 (Ae, rad(A.(S))) # 0.

This contradicts to Lemma 2.3 (1) and shows that N ®4 A.(S) has no nonzero
direct summands in add(p@), and therefore it is indecomposable.

Thus N®aAc(S) ~ Ay(T) in B-mod. From the exact sequence (), we deduce
that N ®4 S is isomorphic to a quotient module of A;(T"). By Lemma 3.1 (6),
soc(pN ®4 S € add(top(p@)). Since pQ € add(Bf), we have soc(N ®4 S) €
add(top(Bf)). However, it follows from Lemma 2.3 (1) that f - rad(Ay(T)) =0
and top(Af(T)) is isomorphic to T. This means that rad(A¢(T)) does not have
composition factors in add(top(Bf)) and that T is the only quotient module of
A (T) with soc(T) € add(top(Bf)). Thus N ®4 S ~ T. But this contradicts to
Lemma 3.1 (6) and shows P = 0, and therefore N ® 4 — is a Morita equivalence
between A-mod and B-mod. O

4. From stable equivalences of Morita type to derived equiv-
alences

In this section, we shall prove the main result, Theorem 1.2. A key idea of the proof
is to extend a tilting complex over eAe with e an idempotent element in A to a
tilting complex over A, see Proposition 4.1. This generalizes a result in [33]. With
the help of Proposition 4.1, we get another crucial ingredient, Proposition 4.5,
of the proof of Theorem 1.2. A special, but useful consequence of Theorem 1.2
is Corollary 4.7, which reduces the lifting problem for algebras to that for their
Frobenius parts and will be used in the proof of Theorem 1.1 in Section 5.

4.1. Extending derived equivalences

Let A be an algebra over a field k, and let e be a v-stable idempotent element in A.
In this subsection, we shall show that a tilting complex over eAe can be extended
to a tilting complex over A which defines an almost v-stable derived equivalence.
First, we fix some terminology on approximations.
Let C be a category, D be a full subcategory of C, and X be an object in C.
A morphism f: D — X in C is called a right D-approzximation of X if D € D
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and the induced map Home(—, f): Home (D', D) — Home (D', X) is surjective
for every object D’ € D. A morphism f: X — Y in C is said to be right min-
imal if any morphism ¢g: X — X with gf = f is an automorphism. A minimal
right D-approximation of X is a right D-approximation of X, which is right min-
imal. Dually, there is the notion of a left D-approximation and a minimal left
D-approximation. The subcategory D is said to be functorially finite in C if every
object in C has a right and left D-approximation.

The following proposition extends Theorem 4.11 in [33], where algebras are
assumed to be symmetric, that is, 4 A4 ~ 4D(A) 4 as bimodules. If A is symmetric,
then so is eAe for e? = e € A.

Proposition 4.1. Let A be an arbitrary algebra, and let e be a v-stable idempotent
element in A. Suppose that Q® is a compler in #°(add(Ae)) with Q' = 0 for all
i >0 such that

(1) eQ® is a tilting complex over eAe, and
(2) End v (cae)(eQ®) is self-injective.
Then there exists a bounded complex P® of projective A-modules such that

Q°® @ P° is a tilting compler over A and induces an almost v-stable derived equiv-
alence between A and End o (4)(Q® @ P*).

Remark that if the ground field k is algebraically closed, or the algebra eAe
is symmetric, then the condition (2) in Proposition 4.1 can be dropped because
derived equivalences preserve both symmetric algebras over any field (see Corol-
lary 5.3 in [41]) and self-injective algebras over an algebraically closed field (see [1]).
But it is unknown whether derived equivalences preserve self-injective algebras over
an arbitrary field.

Proof. For convenience, we shall abbreviate Hom v (4)(—, —) to Hom(—, —) in the
proof. Assume that Q° is of the following form:

0—Q " —-—Q ' —Q"—0

for some fixed natural number n.

Since both Hom b4y (Q®, X*®) and Hom 4y (X*, Q®) are finite-dimensional
for each X* € #P(A), we take a basis for each space, form their direct sums
and get right and left add(Q®)-approximations of X* by diagonal projection and
injection, respectively. This means that add(Q®) is a functorially finite subcategory
in #®(A). Thus, there is a minimal right add(Q*)-approximation f,, : Q% — A[n].
The following construction is standard. Let P2 := A[n]. We define inductively
a complex P? for each i < n by taking the following distinguished triangle in
P (A-proj)

() P, — Qs P — P,

where f; is a minimal right add(Q®)-approximation of P® and where P? [1] is
a radical complex isomorphic in J#”(A-proj) to the mapping cone of f;. In the
following, we shall prove that Q® @ Fy is a tilting complex over A and induces an

almost v-stable derived equivalence.
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By definition, add(Q® @ Pg) generates # °(A-proj). It remains to show
Hom(Q® @ P5,Q°%[m] @ PS[m]) =0
for all m # 0. We shall prove this by four claims.

(a) Hom(Q*, Q°[m]) = 0 for all m # 0.

In fact, it follows from the equivalence eA® 4 — : add(Ae) — add(eAe-proj) that
the functor eA® 4 — induces a triangle equivalence # " (add(Ae)) — # (e Ae-proj).
Since eQ*® is a tilting complex over ede, Hom(eQ@®,eQ®[m]) = 0 for all m # 0.
Therefore, for the complex Q® € .# " (add(Ae)), Hom(Q*, Q*[m]) = 0 for all m # 0.

(b) Hom(Q*®, P3[m]) = 0 for all m # 0.

Indeed, applying Hom(Q*®, —) to the triangle (%), we obtain a long exact se-
quence

(%) oo — Hom(Q*, P [m]) — Hom(Q*, Q7[m])

— Hom(Q*, P’[m]) — Hom(Q®, P’ y[m +1]) — - -

for each integer i < n. Since Hom(Q*®, Q°[m]) = 0 for all m # 0, one gets
Hom(Q*, P, [m]) ~ Hom(Q*, P [m — 1])
for all m < 0. Thus, for all m <0,

Hom(Q*, Fglm]) >~ Hom(Q*, P{'[m —1]) ~ - -- =~ Hom(Q*, Pj[m — n])
~ Hom(Q*, A[m]) = 0.

To prove Hom(Q*®, P$[m]) = 0 for m > 0, we shall show by induction on 4 that
Hom(Q*, P[m]) =0

for all m > 0 and all 7 < n.

If i = n, then Hom(Q*, P3[m]) = 0 for all m > 0. Now, we assume inductively
that Hom(Q®, P[m]) = 0 for all m > 0 and all i < j < n, and want to show
Hom(Q°®, P? {[m]) = 0 for all m > 0. Since f; is a right add(Q*®)-approximation
of P?, the induced map Hom(Q°, f;) is surjective. Thus Hom(Q*®, P? [1]) = 0 by
(a). The long exact sequence (*x), together with (a) and the induction hypothesis,
yields Hom(Q*®, P2 {[m]) = 0 for all m > 1. Thus Hom(Q®, P*[m]) = 0 for all
m > 0 and all ¢ < n. Particularly, for all m > 0, Hom(Q®, P$[m]) = 0. This
completes the proof of (b).

(¢) Hom(Pg,Q*[m]) = 0 for all m # 0.

To prove (c), let A := End yb(cae) (€Q®), and let G : ZP(eAe) — ZP(A) be
the derived equivalence induced by the tilting complex eQ®. Then G(eQ®) is iso-
morphic to A. Since A is self-injective by assumption, add(vaA) = add(aA), and
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consequently add(eQ®) = add(veaceQ®), or equivalently add(Q°®) = add(raQ*®).
Therefore, by (b), for all m # 0,

Hom(Pg, Q*[m]) ~ DHom(v3'Q*, B3[~m]) = 0.

(d) Hom(Fs, B$[m]) = 0 for all m # 0.

Indeed, G(eAe) is isomorphic to a complex V* in #P(A-proj) with V? = 0
for all i < 0 (see, for instance, Lemma 2.1 in [21]) and Hom(Q®, P§[m]) = 0
for all m # 0 by (b). Then Hom v (. 4c) (eQ®, ePg[m]) = 0 for all m # 0, and
consequently G(e(Pg)) is isomorphic in 2”(A) to a A-module. Thus, for all m > 0,

Hom(Ae, PO. [m]) = Hom‘}{b(eAe) (eAea e(PO.)[m]) = Hom@b(eAe) (eAe’ e(PO.)[m])
~ Homgn(a)(V*, G(e(F5))[m]) = 0.

By the construction of PJ, all terms of P§ in nonzero degrees lie in add(Ae).
Since Fy is a radical complex, Fj" = 0 for all m > 0. Otherwise we would have
Hom(Ae, Pg[t]) # 0 for the maximal positive integer ¢ with P¢ # 0.
Applying Hom(P§, —) to the triangle (), we have an exact sequence (for all m
and i < n)
Hom(Py,Qf[m — 1]) — Hom(FS, P?[m — 1]) — Hom(Fg, P {[m])
s Hom(P3, Q3 [m]).
If m < 0, then Hom(PS$,Q¢m — 1]) = 0 = Hom(FS,Q?[m]) = 0. Thus
Hom(Py, P?[m — 1]) ~ Hom(P§, P?_,[m]). Therefore, for m < 0,
Hom(Ps, PS[m]) ~ Hom(Py, PY[m —1]) ~ -+ - ~ Hom(Py, P3[m — n])
= Hom(Py, A[m]) = 0.

Now, applying Hom(—, PJ) to the triangle (x), we obtain an exact sequence (for
all m and ¢ < n)

Hom(Q7, P[m]) — Hom(PL,, Py[m]) — Hom(F}, Py[m + 1])
— Hom(Q3$, Py[m + 1]).

If m > 0, then Hom(Q?, P3[m]) = 0 = Hom(Q$, Py [m + 1]), and consequently
Hom(Py.,, Pyfm]) = Hom(P?, Pg[m + 1))
Thus, for m > 0,

Hom(Ps, PS[m]) ~ Hom (P, Py[m + 1]) ~ - -- ~ Hom(P;, Py[m + n])
= Hom(A, Py[m]) = 0.

Hence T'® := Q°*® Fy is a tilting complex over A such that all of its terms in negative
degrees are v-stably projective. Let B := Endgu4)(T*®) and F: 2°(A) — 2°(B)
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be the derived equivalence induced by T°. Then F(Q®) is isomorphic in 2°(B)
to the B-module Hom(7T*, Q°®) with add(vgHom(T*,Q*®)) = add(Hom(T*,Q*)),
since add(Q®) = add(r4Q®) and F commutes with the Nakayama functor (see
Lemma 2.3 in [21]). By the definition of PJ, F(A) is isomorphic to a complex T*
with terms in add(Hom(7®, Q*)) for all positive degrees, and zero for all negative
degrees. This implies that all terms of T in positive degrees are v-stably pro-
jective. Thus, by Proposition 3.8 (2) in [21], the derived equivalence F' is almost
v-stable. If we define P® := Py, then Proposition 4.1 follows. m

Lemma 4.2. Keep the assumptions and notation as in Proposition 4.1. Let B
be the endomorphism algebra End yu(4)(Q® @ P*) of Q* @ P*, and let f be the
idempotent element in B corresponding to the summand Q®. Then there exists
a stable equivalence ®: A-mod — B-mod of Morita type, an idempotent element
e € A and a stable equivalence ®1 : eAe-mod — fBf-mod of Morita type, such
that the following diagram of functors commutates

A-mod —2 = B-mod

"

eAe-mod — 21> fBf-mod

up to isomorphism, and that

(1) @ is induced by an almost v-stable derived equivalence.
(2) @4 is induced by a derived equivalence G with G(eQ®) ~ fBf.

(3) For all simple A-modules S with e - S = 0, ®(S) is isomorphic in B-mod
to a simple B-module S" with f-S" = 0.

(4) For all simple B-modules T with f-T =0, ®~Y(T) is isomorphic in A-mod
to a simple A-module T' with e - T' = 0.

Proof. We first show the existence of the commutative diagram of functors and
the statements (1) and (2).

By Proposition 4.1, there is an almost v-stable derived equivalence F': 2"(A) —
9®(B) such that F(Q*® P*) ~ B and F(Q®) ~ Bf. Since eQ*® is a tilting complex
over eAe, add(eQ®) generates % °(eAe-proj) as a triangulated category. Equiva-
lently, add(Q®) generates # P (add(Ae)) as a triangulated category. Thus, the func-
tor F induces a triangle equivalence between # P (add(Ae)) and #®(add(Bf)).

By Corollary 3.5 in [41], there is a standard derived equivalence which agrees
with F on #®(A-proj). So, we can assume that F itself is a standard derived equiv-
alence, that is, there are complexes A® € 2°(B ® A°P) and ©° € 2" (A ®), B°P)
such that

A*®% ©° ~ gBp, ©0° ®% A®* ~ A, and F=A*@% —.

By Lemma 5.2 in [21], we can further assume that the complex A® is of the following
form:
) 0—A" Al ... S5 A" 50
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such that A’ € add(Bf @ eA) for all i > 0 and A is projective as left and right
modules, and that ©° can be chosen to equal Hom%(A®, 5 B). Moreover,

A*®%0° ~ gBp in #P(BRpB°?) and O°QK(A®~ 4A4 in A P(AQ,AP),

where A®*®¢% ©° stands for the total complex of the double complex with (7, j)-term
A'®, ©7. Thus, the n-th term of A®*®% O is D, gn AP @401 =P, AV I@4
©7, the differential is given by  ®y — z® (y)dg + (—1)(x)dx *®@y for x € A" 1
and y € ©9.

In the following, we shall prove that fA®e is a two-sided tilting complex over
fBf®k(eAe)”™, defining a derived equivalence fA®e®® . — : 2P (eAe) — 2" (fBf)
with the associated tilting complex e@*®.

Since all terms of A® are projective as right A-modules, F(X*®) = A®* ®@% X* ~
A*®% X for all X* € Z°(A). Hence F(Ae) ~ A*®% Ae = A®*®4 Ae ~ A®e which
is isomorphic in Z°(B) to a complex Y'* in # (B f). This also means that A®e is
isomorphic in #”(B-proj) to the complex Y'* in #P(Bf). Let f*: A% — Y* bea
chain map such that f* is an isomorphism in .#(B-proj). Then the mapping cone
of f* is isomorphic to zero in .#®(B-proj), that is, it is an exact sequence. In fact,
this sequence is even split exact because its terms all are projective B-modules.
Since Ale € add(Bf) for i > 0, the split exactness implies A’e € add(Bf). Thus
A'e € add(Bf) for all integers i, and all terms of the complex fA®e:

0— fA% — fAle — ... — fA"e — 0

are projective as left fBf-modules. Similarly, ©'f € add(Ae) for all integer i, and
all terms of the complex e©® f are projective as left e Ae-modules.
Now, we show that fA’e is projective as a right eAe-module for all . Applying
A® ®% — to the isomorphisms
0° ®% Hom% (0°, A) ~ Homy(A®, Hom% (©°, A)) ~ Homa (A, A) ~ A

in #P(A ®; A°P), where Hom%(X®,Y*) denotes the total complex of the dou-
ble complex with (i, j)-term Hom4 (X %, Y7), we obtain A®* ~ Hom%(0°, A) in
HP(B @, A°P). Further, the isomorphisms
fA® ~Hom%(Bf,A®) ~ Hom% (B f, Hom% (©°, A))
~ Hom$%(0°® ®@% Bf, A) ~ Hom¥% (0°f, A)
in 7P (A°P) imply that all terms of fA® belong to add(eA), since all terms of ©° f
are in add(Ae). Hence the right eAe-module fA‘e is projective for all 7. Similarly,
we prove that the right fBf-module e®'f is projective for all .
Now we have the following isomorphisms in 2°(fBf @i, fBfP):
fA%e@L, eO°f ~ fA%c®2,, O f

~ (fBeE A*®% Ae) @4, (eA®Y O° @ Bf)

~ fB®E A® @Y (Ae @74, eA @Y (0° ©% Bf))

~ fB®R% A®*®%0° 2% Bf (because ©° @% Bf € " (add(Ae)))

~ fB@BB®B Bf’i fo
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Similarly, e©° f ®§‘Bf fA®e ~ edein PP (eAe®y eAe®P). Thus fA®e is a two-sided
tilting complex and fA®e®L, —: 2"(ede) — ZP(fBf) is a derived equivalence.
Furthermore, the following isomorphisms in Z°(fBf):

fA%e @b, eQ® ~ fA"e®%,, eQ® ~ fA*®% Q° ~ fBf

show that eQ® is the associated tilting complex to the functor G := fA®e®%, —.

Since F' = A° ®ﬁ — is an almost v-stable, standard derived equivalence, it
follows from Theorem 5.3 in [21] that A® ®4 — induces a stable equivalence ®
of Morita type between A and B with the defining bimodules A° and ©°. Since
eAe and fBf are self-injective algebras, the functor G is clearly an almost v-
stable derived equivalence, and therefore the functor fA%e ®.4.— induces a stable
equivalence ®; of Morita type between eAe and f B f with defining bimodules e A f
and fO0e.

Due to A°®4 Ae = A € add(Bf), the following isomorphisms hold in B-mod
for each eAe-module X:

Bf®f3f(fAO€®eAeX) ~ (Bf@fofB(X)B(AO@AAe))®6A6X ~ A'@pAe®cpe X.

This implies that the functors ®A and A®; are naturally isomorphic, where the
functor A was described in Section 2.3. Thus the diagram (#) exists and the
statements (1) and (2) then follow by the definitions of ® and ®;.

(3) Since pA! € add(Bf) for all i > 0, the term ©~" = Hompg(A®, pB) €
add(fB) as a right B-module for all ¢ > 0. Now let S be a simple A-module with
eS =0, that is, eA ®4 S = 0. Then, by the definition of A® and ©°, there is an
isomorphism ©°®% A®*®% S ~ S in Z°(A). Thus the following isomorphisms hold
in 2°(A):

S~0° R A*®% S

~0°®% (A®4S5) (Al €add(eA) for all i > 0)

~0°2p (A®4 S)

~(0* @A) @4 S

~0°®p A%®4 S (0% €add(fB) foralli < 0and fB®p A’ € add(eA)).

Similar to the proof of Lemma 3.1 (5), we can show that ®(S) = A ®,4 S is
a simple B-module. Moreover, since fB ®p A° € add(ed) and eA ®4 S = 0, we
have
f-®(8)~fBepA’®aS=0.

Hence (3) holds true.

(4) Using the two-sided tilting complex ©° = Homp(A®, B), we proceed the
proof of (4) similarly as we have done in (3). O

Now, we state the dual version of Proposition 4.1 and Lemma 4.2, and leave
their proofs to the interested reader.
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Proposition 4.3 (Dual version of Proposition 4.1). Let A be an arbitrary algebra,
and let e be a v-stable idempotent element in A. Suppose that Q° is a complez in
P (add(Ae)) with Q° =0 for all i < 0 such that

(1) eQ® is a tilting complex over eAe, and

(2) End v (cae) (eQ®) is self-injective.

Then there exists a complexr P® of A-modules such that Q°® & P® is a tilting
complex over A, and there exists an almost v-stable derived equivalence

F: 2°(End gv(4)(Q° @ P*)) — Z"(A)
such that Q® & P* is a tilting complex associated to the quasi-inverse of F.

Lemma 4.4 (Dual version of Lemma 4.2). Keep the assumptions and notation
as in Proposition 4.3. Let B := End () (Q® @ P*®), and let f be the idempo-
tent element in B corresponding to the summand Q°. Then there exists a stable
equivalence ®: A-mod — B-mod of Morita type, an idempotent element e € A
and a stable equivalence ®1 : eAe-mod — fBf-mod of Morita type, such that the
following diagram of functors commutates

A-mod —2 = B-mod

[

eAe-mod _h fBf-mod

up to isomorphism, and that

(1) @ is induced by a quasi-inverse of the almost v-stable derived equivalence F
in Proposition 4.3.

(2) @4 is induced by a derived equivalence G with G(eQ®) ~ fBf.

(3) For all simple A-modules S with e - S = 0, ®(S) is isomorphic in B-mod
to a simple B-module S" with f-S" = 0.

(4) For all simple B-modules T with f-T =0, ®~Y(T) is isomorphic in A-mod
to a simple A-module T' with e - T' = 0.

In the following, we shall construct a Morita equivalence from a v-stable idem-
potent element together with a stable equivalence of Morita type induced by a
derived equivalence.

Proposition 4.5. Let A be an algebra and e be a v-stable idempotent element
in A, and let A be a self-injective algebra. Suppose that = : e Ae-mod — A-mod is
a stable equivalence of Morita type induced by a derived equivalence. Then there
exists another algebra B (not necessarily isomorphic to A), a stable equivalence
®: B-mod — A-mod of Morita type, a v-stable idempotent element f in B and a
stable equivalence ®1 : fBf-mod — eAe-mod of Morita type with = o ®1 lifting to
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a Morita equivalence, such that the following diagram of functors:

B-mod kd A-mod

[

fBf-mod 21, ede-mod

Morita equiv. on@l H

A-mod <—=— eAe-mod

commutes up to isomorphism, and that

(1) @ is induced by an iterated almost v-stable derived equivalence.

(2) ©(T) is isomorphic in A-mod to a simple A-module T' with e -T" =0 for
all simple B-modules T with f-T = 0.

(3) ®1(S) is isomorphic in B-mod to a simple B-module S’ with f-S" =0
for all simple A-modules S with e-S = 0.

Proof. Since eAe and A are self-injective algebras, for each derived equivalence G
between eAe and A, the functor [i] o G is almost v-stable for some i < 0 by
Proposition 3.8 in [21]. Observe that the shift functor [i] ~ (A[i])®k — is a standard
derived equivalence for all integers i. So, by Remark 2.2, we may suppose that the
stable equivalence = is induced by a standard derived equivalence F: 2 (eAe) —
P*(A) and that [m] o F is an almost v-stable, standard derived equivalence for
a negative integer m. Thus Z can be written as a composite = = Z5 o Z; of
stable equivalences Z; and Z5 of Morita type such that =; is induced by [m]o F :
PP (eAe) — ZP(A) and Zy is induced by [-m] : ZP(A) — ZP(A).

Let X*® be a tilting complex over e Ae associated to [m]o F. Then X* = 0 for all
i > 0. Set Q° := Ae ®2,, X°. Then Q° satisfies all conditions in Proposition 4.1
since eQ® ~ X* is a tilting complex over eAe and End yvcae)(X*®) =~ A is self-
injective. Hence, by Lemma 4.2, there is an algebra B’ and a v-stable idempotent
element f’ in B’, together with a commutative diagram (up to isomorphism) of
functors:

’

B-mod <2 A-mod

[

f'B’ f'-mod =<—— eAe-mod

nj"B’f’,I\ neAeT WAT

P(f'Bf) <" DP(ede) — s TP (A)

such that ®’ is a stable equivalence of Morita type induced by a standard, almost v-
stable derived equivalence, and that Gy is a standard derived equivalence with X*
as an associated tilting complex. Thus f'B’f’ is a tilting complex associated to
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the derived equivalence [m] o F o GT' : ZP(f'B'f’) — 2"(A). This means that
(f'B'f")[m] is a tilting complex associated to F' o Gy'. Note that f'B'f’ is a
self-injective algebra by Lemma 2.7 (3), and that the complex B’ f’[m] satisfies the
assumptions of Proposition 4.3. By Lemma 4.4, there is an algebra B, a stable
equivalence ®”: B’-mod — B-mod, a v-stable idempotent element f in B, and
a stable equivalence @ : f'B’f’-mod — fBf-mod, together with a commutative
diagram of functors

"

B-mod B’-mod

/\T )\/’
<I>” 251(‘?’1)71

fBf-mod " f'B’f’-mod —————— A-mod

Uf'BfT TIf/B/f'] nAT

PO (fBf) ~—2— > (f'B'f") PP (A)

(1

Fonl

up to isomorphism, such that ®” is a stable equivalence of Morita type, the quasi-
inverse (®”)~! is induced by a standard, almost v-stable derived equivalence, and
that G5 is a standard derived equivalence with (f'B’f")[m] as an associated tilting
complex.

Now we define ® := (&)~ o ()~ and ®; := (®}) ' o (®/)"". Then we get
the following commutative diagram up to isomorphism:

B-mod A-mod
(x)  fBf-mod — % edemod =205 A-mod

nfoT VleAeT na
—lo -1

B 2 (e ae) P(A)

One can check that fBf is a tilting complex associated to FOGI1 OGgl. Hence the
derived equivalence FoG floG; s induced by a Morita equivalence. Consequently,
the stable equivalence Z o ®; ~ =5 0= o @y lifts to a Morita equivalence. Thus (1)
follows, while (2) and (3) follow easily from (%) and Lemma 4.2 (3)-(4). O

4.2. Proof of Theorem 1.2

Proof of Theorem 1.2. The assumptions (1) and (2) of Theorem 1.2 show that the
stable equivalence ®: A-mod — B-mod satisfies the conditions in Lemma 3.4.
Thus, by Lemma 3.4, there exists a stable equivalence ®; : eAe-mod — f B f-mod
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of Morita type such that the following diagram of functors:

A-mod it B-mod

(1) A] A]

eAe-mod — > fBf-mod

is commutative up to isomorphism. Note that ®; is uniquely determined up to
isomorphism by the commutative diagram (f), since A is fully faithful.

Note that e and f are v-stable idempotents by assumption. It follows that both
eAe and fBf is self-injective. Now, suppose that ®; : eAe-mod — fB f-mod lifts
to a derived equivalence. We want to show that ® is induced by an iterated almost
v-stable derived equivalence.

In fact, let A := fBf and Z := ®;. Then we apply Proposition 4.5 to
the algebra A with the v-stable idempotent element e. Thus there exists an-
other algebra B’, a v-stable idempotent element f’ in B’, two stable equivalences
¢’ : B’-mod — A-mod and @] : f'B’f’-mod — eAe-mod of Morita type, and a
commutative (up to isomorphism) diagram of functors

B’-mod 2 A-mod

(i) AT A]

)
f'B’ f'-mod — eAe-mod

such that
(a) E o @ lifts to a Morita equivalence.

(b) @ is induced by an iterated almost v-stable derived equivalence from B’
to A.

(¢) For any simple B’-module S’ with f’-S" = 0, the module ®'(.S") is isomorphic
to a simple A-module S with e-S = 0.

(d) For any simple A-module S with e-S = 0, the module & ~"(S) is isomorphic
to a simple B’-module S” with f/-S" = 0.

By splicing the two diagrams (f) and ({1), one gets the following commutative
(up to isomorphism) diagram

Dod’
° B-mod

B’-mod
/\T A
s &10d) .

f'B'f'-mod ———  fBf-mod

such that ®; o @] = = o P lifts to a Morita equivalence.
Now, we show that ® o ®’ lifts to a Morita equivalence. Indeed, according
to (c), for each simple B’-module 77 with f’'- T’ = 0, the A-module ®'(7") is
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isomorphic to a simple A-module S with eS = 0. Thus the assumption (1) in
Theorem 1.2 implies that ® o ®’(S”) is isomorphic to a simple B-module T' with
f-T = 0. Similarly, according to (d) and the assumption (2) in Theorem 1.2, it
follows that, for each simple B-module T' with f -7 = 0, the image ®~(T) is a
simple A-module S with e-S = 0, and therefore the image ®'~'®~1(T) ~ &' ~(9)
is isomorphic to a simple B’-module 77 with f’- T’ = 0. Hence the two conditions
of Proposition 3.5 are satisfied by the stable equivalence ®o®’. Since the restricted
stable equivalence ®; o &} of ® o @’ lifts to a Morita equivalence, it follows from
Proposition 3.5 that the stable equivalence ® o @’ lifts to a Morita equivalence.
Thus & ~ (® o ) 0 & " is induced by an iterated almost v-stable derived
equivalence. This finishes the proof of Theorem 1.2. O

Every stable equivalence of Morita type between algebras A and B can be
restricted to a stable equivalence of Morita type between eAe and fBf for some
v-stable idempotent elements e € A and f € B. There are two typical ways to
implement this point.

Remark 4.6. (i) For cach algebra A, there is an associated self-injective alge-
bra A,y (see Definition 2.5). Theorem 4.2 in [15] shows that if A/rad(A4) and
B/rad(B) are separable, then every stable equivalence of Morita type between A
and B is restricted to a stable equivalence of Morita type between A4 and Ap.

(ii) Under the setting of Lemma 3.1, let eg and fj be idempotent elements in A
and B, respectively, such that add(Aep) = add(4P) and add(Bfy) = add(pQ).
Then it follows from Lemma 3.1(2) that the idempotent elements eq and fy are
v-stable. By Lemma 3.1 (3) and Theorem 1.2 in [11], the given stable equivalence
of Morita type between A and B in Lemma 3.1 can be restricted to a stable
equivalence of Morita type between egAeqg and foB fy.

As a consequence of Theorem 1.2, we have the following.

Corollary 4.7. Let A and B be algebras without nonzero semisimple direct sum-
mands such that A/rad(A) and B/rad(B) are separable. Suppose that @ is a stable
equivalence of Morita type between A and B, with 4P and gQp the bimodules be-
longing to ®, and that ®; is the restricted stable equivalence of ® between End 4 (P)
and Endg(Q) or between the associated self-injective algebras A and Ag. Then ®
lifts to an iterated almost v-stable derived equivalence between A and B if ®1 lifts
to a derived equivalence between

(1) Enda(P) and Endp(Q), or
(2) AA and AB.

Proof. Let 4Mp and gN4 be two bimodules without nonzero projective direct
summands and defining the stable equivalence ® of Morita type between A and B,
that is, ® = gN ®4 —, AM @ Ng ~ A® pPs and gN ®4 Mp ~ B® pQp as
bimodules. In the following, we shall check all conditions in Theorem 1.2 for the
both cases in Corollary 4.7.
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(1) Let eg and fo be idempotent elements in A and B, respectively, such that
add(Aep) = add(4P) and add(Bfy) = add(s®). Then both ey and fy are v-
stable by Lemma 3.1(2). Let S be a simple A-module with epS = 0, that is,
Homy (4P, S) = 0. By Lemma 3.1(5), the B-module N ®4 S, which is the image
of S under @, is simple with Homp(pQ, N ®4 S) = 0. Namely, the image ®(S)
is a simple module with fy - ®(S) = 0. By a similar argument, we show that, for
each simple B-module S’ with fpS” = 0, the image ®~1(S’) is a simple A-module
with eg®~1(S’) = 0. Now, the first case of the corollary follows from Theorem 1.2.

(2) By definition, A 4 = eAe for some idempotent element e in A with add(Ae) =
A-stp, and Ap = fBf for some idempotent element f in B with add(Bf) = B-stp.
We first show that N ®4 Ae € add(pBf) and M ®@p Bf € add(4Ae). By the proof
of Lemma 3.1 (2), we have

Va(N @4 Ae) = N @4 (v4(Ae))

for all i > 0. Note that v (Ae) is projective for all i > 0 since Ae € A-stp. Thus
v (N ®4 Ae) is projective for all i > 0, that is, N @4 Ae € B-stp = add(gBf).
Similarly, M ®p Bf € add(4Ae).

Let S be a simple A-module with e¢-S = 0. Then 4P € A-stp = add(4Ae) by
Lemma 3.1 (2), and consequently Hom4 (P, S) =0 and ®(S) = N ®4 S is a simple
B-module by Lemma 3.1 (5). Moreover, since M ®p Bf € add(Ae),

f-®(S) =Homp(Bf,N ®4 5) ~Homus(M ®p Bf,S)=0.

Similarly, for each simple B-module V with f -V = 0, the A-module ®~1(V) is
simple with e - ®~1(V) = 0. Now, the second case of the corollary follows from
Theorem 1.2. m

In the next section we will describe a large class of algebras for which ®; can
be lifted to a derived equivalence.

5. Frobenius-finite algebras. Proof of Theorem 1.1

In this section we shall introduce Frobenius-finite algebras and show that the con-
structions of Auslander—Yoneda algebras, triangular matrix algebras, cluster-tilted
algebras and Frobenius extensions produce a large class of Frobenius-finite alge-
bras. After these discussions, we prepare a combinatorial result, Lemma 5.6, on
stable Auslander—Reiten quivers and then prove the main result, Theorem 1.1, by
applying Corollary 4.7, Theorem 1.2 and results in Section 3.

5.1. Frobenius-finite algebras and examples

Given an algebra A over a field, the associated self-injective algebra of A exists and
is unique up to Morita equivalence (see Section 2.3). Moreover, Corollary 4.7 shows
that the associated self-injective algebra is of prominent importance in lifting stable
equivalences of Morita type to derived equivalences. So, we make the following
definition.
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Definition 5.1. An algebra is said to be Frobenius-finite if its associated self-
injective algebra is representation-finite, and Frobenius-free if its associated self-
injective algebra is zero.

Similarly, one can define Frobenius-tame, Frobenius-wild, Frobenius-symmetric
and Frobenius-domestic algebras. By Frobenius type we mean the representation
type of the associated self-injective algebra.

Clearly, Frobenius-free and representation-finite algebras are Frobenius-finite.
Moreover, the ubiquity of Frobenius-finite algebras is guaranteed by the next
proposition.

Before we present methods to produce Frobenius-finite algebras, let us recall
the definition of Auslander—Yoneda algebras introduced in [22]. A subset © of N is
called an admissible subset if 0 € © and if, for any [,m,n € © with [+m+n € ©,
we have [ +m € © if and only if m +n € ©. There are a lot of admissible subsets
of N. For example, for each n € N, the subsets {zn | x € N} and {0,1,2,...,n}
of N are admissible. But not all subsets of N containing {0} are admissible. A
minimal nonexample is {0,1,2,4}.

Let © be an admissible subset of N, and let 7 be a triangulated k-category.
Then there is a bifunctor

EQ(—,—): T x T — k-Mod

(X,Y) ~ EQ(X,Y) := @D Hom(X, Y[i])
€0

with composition given in an obvious way (for details, see Subsection 3.1 in [22]).
In particular, if f € Hom7(X,Y[i]) and ¢ € Hom7 (Y, Z[j]), then the composite
f-g=f(gli])ifi+j € O, and f-g = 0 otherwise. In this way, for each object
M € T, we get an associative algebra E?(M , M), denoted by E(?—(M ) and called the
O©-Auslander-Yoneda algebra of M. If T = 9" (A) for an algebra A, then we write
ER(X,Y) for ES, ,)(X,Y), and EF(M) for E,, (M) with all X, Y, M € 2"(A).

The following proposition shows that there are plenty of Frobenius-finite al-
gebras. Recall that an A-module M is called a generator in A-mod if add(M)
contains 4 A; a generator-cogenerator in A-mod if add(M) contains both 4 A and
AD(A); and a torsionless module if it is a submodule of a projective module. An
algebra is called an Auslander algebra if it is of the form Endg(M) with B a
representation-finite algebra and M a basic B-module with add(M) = B-mod.

Proposition 5.2. (1) Let M be a generator-cogenerator over an algebra A. Then
Enda (M) and A have the same Frobenius type. In particular, End s (M) is Frobe-
nius-finite if and only if so is A. Consequently, Auslander algebras are Frobenius-
finite.

(2) Let M be a torsionless generator over an algebra A. Suppose that © is a
finite admissible subset of N and Ext’y (M, A) =0 for all 0 # i € ©. Then ES(M)
and A have the same Frobenius type. In particular, if A is a representation-finite
self-injective algebra, then EQ(A® X) is Frobenius-finite for each A-module X and
for arbitrary finite admissible subset © of N.
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(3) If A and B are Frobenius-finite algebras and pM 4 is a bimodule, then the
triangular matriz algebra [ {5 %] is Frobenius-finite. More generally, if {A1, ..., A}
is a family of Frobenius-finite algebras and if M;; is an A;-Aj-bimodule for all

1 < j <i<m, then the triangular matriz algebra of the form

Ay
My Ay
Mml Mm2 T Am

s Frobenius-finite.
4) I[fA=AD A @ D A, is an N-graded algebra with Ay Frobenius-finite,
then the Beilinson—Green algebra

A Ap
Am T Al AO
is Frobenius-finite for all 1 < m < n.

Remark that the triangular matrix algebra of a graded algebra A in (4) seems
first to appear in the paper [16] by Edward L. Green in 1975. A special case of
this kind of algebras appeared in the paper [5] by A.A. Beilinson in 1978, where
he described the derived category of coherent sheaves over P™ as the one of this
triangular matrix algebra. Perhaps it is more appropriate to name this triangular
matrix algebra as the Beilinson—Green algebra of A.

Proof. (1) We set A := End4(M). Since M is a generator-cogenerator for A-mod,
every indecomposable projective-injective A-module is of the form Hom (M, I)
with I an indecomposable injective A-module. Moreover, for each projective A-
module P’, there is a natural isomorphism vaHoma (M, P') ~ Homa(M,vaP’).
This implies Hom4 (M, P') € A-stp for all P’ € A-stp. Now let I be an inde-
composable injective A-module such that Hom 4 (M, I) lies in A-stp. Then it fol-
lows from vy *Hom 4 (M, I) =~ Hom (M, v T) that Homa (M, v I) lies in A-stp.
Consequently, the A-module Hom 4 (M, 1/21[ ) is injective, and therefore the A-
module 1/21[ is projective-injective. Applying 1/;1 repeatedly, one sees that v/% I is
projective-injective for all ¢ < 0. This implies I € A-stp. Hence the restriction of
the functor Hom 4 (M, —) : add(a M) — A-proj gives rise to an equivalence between
A-stp and A-stp. Consequently, the associated self-injective algebras A4 and Ap
are Morita equivalent. Thus (1) follows.

(2) Set A := EQ(M) = P, co Ai with A; := Homgn 4y (M, M[i]), and identify
Ext’y (U V) with Homgn(4)(U, V[i]) for all A-modules U,V and integers 4. Then
rad(A) = rad(Ao) @ Ay, where Ay := P o Mi-

We shall prove that A-stp and A-stp are equivalent. Let Y be an indecompos-
able, non-projective direct summand of M. We claim that ES(M,Y") cannot be in
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A-stp. Suppose contrarily E(M,Y) € A-stp. Then the A-module ES(M,Y") must
be indecomposable projective-injective. Now, we have to consider the following
two cases:

(a) Dorico Ext(M,Y) = 0. Since Y is torsionless, there is an injective A-
module homomorphism f: Y — A™. This induces another injective map

Homa (M, f) : Homa(M,Y) — Homa (M, A™).

Thus, from the assumption ExtA(M A) = 0 for all 0 # i € O, it follows
that E9(M,Y) = Homa(M,Y), EQ(M, A") = Homa (M, A™) and Ee(M f) =
Hom 4 (M, f). This implies that EA(M f):EQ(M,Y) — ES(M, A") is an injective
map and must splits. Thus Y must be a direct summand of A™, a contradiction.

(b) @0 ico Exty (M,Y) # 0. Let m # 0 be the maximal integer in © with
Ext’y (M, Y) # 0. Then A Ext’y(M,Y) =0, and consequently

rad(A)soca, (Ext'y (M,Y)) = 0.

This yields that soca, (Ext’y (M,Y)) = A-socy, (Ext’y (M,Y)) is a A-submodule of
soca (E§(M,Y)). Next, we show that soca, (Hom4(M,Y)) is also a A-submodule
of socy (ES(M,Y)). Let g: M — Y be in socy,(Homa(M,Y)). Suppose M =
M, & X where M, is projective and X does not contain any nonzero projective
direct summands. Now, for each x € X, there are indecomposable projective
modules P;, 1 < j < s and radical homomorphisms h;: P; — X, such that
T = Z;zl(pj)hj for some p; € P; with j = 1,...,s. Since M is a generator
for A-mod, P; is isomorphic to a direct summand of M. Thus we get a map

ith M — P; Mox o M, such that ﬁj € rad(Ao) for all j and that the composite
l~7j g has to be zero. This implies that the image of z under g is 0, and consequently
the restriction of g to X is 0. Let m: M — M), be the canonical projection. Then
g = mg’ for some ¢’ : M,, — Y. For each t : M — M[i] in 2"(A) with 0 #i € O,
t-g = tg[i]) = t(n[ ])( 'li]). Since Ext’ (M, A) = 0, Exty, (M, M,) = 0, and
consequently t(n[i]) = 0. Hence t-g = 0, Ay -soca, (HomA (M,Y)) =0andrad(A)-
socp, (Homa(M,Y)) = 0. Thus socy, (Homa(M,Y)) = A - socp, (Homa(M,Y))
is a A-submodule of socy (E(M,Y)). So the A-module

soca, (Homa(M,Y)) @ soca, (Ext’y (M,Y))

is contained in socy (E9(M,Y)). This shows that socy (E(M,Y)) cannot be
simple, and therefore Eg (M,Y) cannot be an indecomposable injective module.
This is again a contradiction.

Thus, every indecomposable projective A-module in A-stp has to be of the form
ES (M, P") for some indecomposable projective A-module P’. Suppose ES (M, P') €
A-stp. We shall prove P’ € A-stp. In fact, vaAEQ(M, P') ~ EQ(M,vaP’), by
Lemma 3.5 in [22], and therefore vAE§ (M, P’) € A-stp. This means that there
is an isomorphism E9(M,vaP") ~ ES (M, U) for some indecomposable projective
A-module U. Since Ext’ (M, A) =0 for all 0 # i € © and since v4 P’ is injective,
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Homu (M, vsP") = EQ(M,vaP') ~ EQ(M,U) = Homa(M,U). Hence vaP' ~U
is projective by Lemma 2.8. Repeating this argument, we see that %, P’ is projec-
tive for all ¢ > 0, that is, P’ € A-stp. Conversely, let P’ be an indecomposable
module in A-stp. Then, due to the isomorphism vyES (M, P") ~ E§(M,v,P'),
the A-module ES (M, P’) belongs to A-stp. Thus the functor E (M, —) induces an
equivalence from A-stp to A-stp. Hence the associated self-injective algebras A 4
and A are Morita equivalent, and (2) follows.

(3) Set A := [{} 4]. Then each A-module can be interpreted as a triple
(4X, BY, f) with X € A-mod, Y € B-mod and f: pM ®4 X — Y a B-module
homomorphism. Let (4 X, gY, f) be an indecomposable A-module in A-stp. Then
(4X, BY, f) is projective-injective with vp (4 X, BY, f) € A-stp. By Proposition 2.5,
p. 76, in [4], there are two possibilities:

(i) BY = 0 and 4X is an indecomposable projective-injective A-module with
M®a X =0;

(ii) 4X =0 and pY is an indecomposable projective-injective B-module with

Homp(M,Y) = 0.

Now we assume (i). Then vx(X,0,0) ~ (v4X,0,0) is still in A-stp. This implies
that 4 X is projective-injective for all i > 0, and therefore X € A-stp. Similarly,
assuming (ii), then Y € B-stp. Thus, we can assume that {(X1,0,0),...,(X,,0,0),
(0,Y7,0),...,(0,Y5,0)} is a complete set of non-isomorphic indecomposable mod-
ules in A-stp with both X; € A-stp and Y; € B-stp for all ¢ and j. Then the
associated self-injective algebra

T S T S
Ay = EndA(@(Xi,O,O) ® @(o,m,o)) ~ EndA(@Xi> x EndB(@Yz)
i=1 i=1 i=1 i=1
is representation-finite if both A and B are Frobenius-finite. Note that Ap is of
the form eA g4e x fApf for some idempotent element e € A 4 and some idempotent
element f € Ap.
(4) This is an immediate consequence of (3). O

Suppose that B is a subalgebra of an algebra A with the same identity. In
this case, we say that B <— A is an extension of algebras, and denote by F' the
induction functor A ® g — : B-mod — A-mod and by H the restriction functor
B(—) : A-mod — B-mod. Observe that for any k-algebra C, the functor F' is also
a functor from B-C-bimodules to A-C-bimodules and H is also a functor from
A-C-bimodules to B-C-bimodules.

Proposition 5.3. Let B < A be a Frobenius extension of algebras, that is,
Homp(pA,—) ~ A®p — as functors from B-mod to A-mod.
(1) Suppose that the extension B — A splits, that is, the inclusion map B — A
s a split monomorphism of B-B-bimodules. If A is Frobenius-finite, then so is B.
(2) Suppose that the extension B — A is separable, that is, the multiplication
map ARpA — A is a split epimorphism of A-A-bimodules. If B is Frobenius-finite,
then so is A.
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Proof. An extension B < A of algebras is a Frobenius extension if and only if g A
is a finitely generated projective module and Hompg(p A, B) ~ A as A-B-bimodules
(see, for example, [9], 40.21, p. 423). We first show that both F' and H commutes
with the Nakayama functors. In fact, for each B-module X, we have the following
natural isomorphisms of A-modules:

I/A(F(X)) DHOIIIA(AA®B X,AAA)
DHompg (X, pA4) (F and H form an adjoint pair)
DHOI’IIB(X, BB ®B AA)
D(Homp(X,B) ®p Aa) (BA is projective)
Homp(pAa, sD(X*)) (adjunction)
A®p D(X*) (Frobenius extension)
ARp (VBX) ~ F(Z/BX).

R R R

For each A-module Y, we have the following natural isomorphisms of B-modules:
VB(H(Y)) DHOIIIB(BA ®AKBBB)

DHomy (Y, Hompg(gA, sBg)) (adjunction)

DHomy (Y, AAg)  (Frobenius extension)

H(Z/AY) .

11

Note that the functor F' takes projective B-modules to projective A-modules.
For each projective B-module P in B-stp, v}, F(P) ~ F(v4P) is projective for
all ¢ > 0, that is, F/(P) € A-stp. Since pA is projective, the functor H takes
projective A-modules to projective B-modules. Thus, a similar argument shows
H(Q) € B-stp for all Q € A-stp.

Let e and f be idempotent elements in A and B, respectively, such that
add(Ae) = A-stp and add(Bf) = B-stp. Then, by definition, eAe and fBf
are the Frobenius parts of A and B, respectively.

There is an equivalence between fB f-mod and the full subcategory of B-mod,
denoted by mod(Bf), consisting of B-modules X that admit a projective presen-
tation

PP —-X—=0

with P; € add(Bf) for i =0, 1. Similarly, the module category eAe-mod is equiv-
alent to the full subcategory mod(Ae) of A-mod. For a B-module X in mod(Bf),
we take a presentation of X: P — Py — X — 0 with Py, P, € add(Bf) = B-stp.
Then the sequence F'(Py) — F(Fy) — F(X) — 0 is exact, with F|(P;) € A-stp =
add(Ae). Thus F(X) € mod(4e) for all X € mod(Bf). Since the restriction
functor H is exact, H(Y") lies in mod(Bf) for all A-modules Y in mod(Ae).

(1) Let X € mod(Bf). Then the assumption (1) implies that X is a di-
rect summand of HF(X). If X is indecomposable, then X is a direct summand
of H(Y") for some indecomposable direct summand Y of F'(X) € mod(Ae). Thus, if
eAe is representation-finite, then mod(Ae) has finitely many isomorphism classes
of indecomposable objects, and consequently so does mod(Bf). Hence fBf is
representation-finite.
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(2) For each A-module Y in mod(Ae), the assumption (2) guarantees that Y is
a direct summand of FFH(Y). Using the same arguments as in (1), we can prove
that eAe is representation-finite provided that fBf is representation-finite. O

Note that Frobenius extensions with the conditions (1) and (2) in Proposi-
tion 5.3 appear frequently in stable equivalences of Morita type. In fact, by Corol-
lary 5.1 in [15], if A and B are algebras such that their semisimple quotients are
separable and if at least one of them is indecomposable, then there is a k-algebra A,
Morita equivalent to A, and an injective ring homomorphism B < A such that

AN Q@ ApA = AAN D APA and BAB:BBB@BQB

with P and @Q projective bimodules. This means that the extension B < A is a
split, separable Frobenius extension.

Suppose that A is a k-algebra and G is a finite group together with a group
homomorphism from G to Aut(A), the group of automorphisms of the k-algebra A.
Let kG be the group algebra of G’ over k. Then one may form the skew group
algebra A x; G of A by G over k, that is, A x; G has the underlying k-space
A ®y, kG with the multiplication given by

(a®g)(b®h):=a(b)g® gh fora,be A g,heQqG,
where (b)g denotes the image of b under g.

Corollary 5.4. Let A be a k-algebra, and let A x;, G be the skew group algebra of
A by G with G a finite group. If the order of G is invertible in A, then A xy G is
Frobenius-finite if and only if so is A.

Proof. Note that A is a subalgebra of Ax; G. We just need to verify all conditions
in Proposition 5.3. However, all of them follow from Theorem 1.1 in [38]. O

We show now that cluster-tilted algebras are Frobenius-finite. Suppose that H is
a finite-dimensional hereditary algebra over an algebraically closed field. Let 7p be
the Auslander—Reiten translation functor on 2°(H), and let C := Z*(H)/(t5*[1])
be the orbit category, which is a triangulated category with Auslander—Reiten
translation 7¢c. Let S be the class of objects in Z"(H) consisting of all modules
in H-mod and the objects P[1], where P runs over all modules in H-proj. The
following facts are taken from Propositions 1.3 and 1.6 in [10].

(a) 7pX and 7¢ X are isomorphic in C for each object X in 2"(H);

(b) Two objects X and Y in S are isomorphic in C if and only if they are
isomorphic in 2°(H);

(c) Home (X, Y) = Homgn ) (X, Y) ©Homgn gy (X, 75 Y[1]) for all X,Y € S.
In particular, if X is an H-module, then

Ende(X) = Endgu sy (X) x Homgn (X, 75, X [1]),

the trivial extension of Endgp ) (X) by the bimodule Homgn (5 (X, 75 X[1]) (see
Proposition 1.5 in [10]).
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Recall that, given an algebra A and an A-A-bimodule M, the trivial extension
of A by M, denoted by A x M, is the algebra with the underlying k-module A& M
and the multiplication given by

(a,m)(a’,m') := (aa’,am’ + ma’) for a,a’ € A, m,m' € M.

If M = DA, then A x DA is simply called the trivial extension of A, denoted
by T(A).

For further information on cluster-tilted algebras, we refer to [10], [47].

If T is a cluster-tilting object in C, then its endomorphism algebra End¢(T) is
called a cluster-tilted algebra. If T is a basic tilting H-module, then End¢(7T) is a
cluster-tilted algebra, and all cluster-tilted algebras are of this form.

Let 7y (respectively, 7;;) be the Auslander—Reiten translation DTr (respec-
tively, TrD) of the algebra H. Recall that modules in add{r; H|i > 0} are called
preprojective modules, and modules in add{74 D(H) | i > 0} are called preinjective
modules. For a hereditary algebra H, 77 = DExth (—, A).

Proposition 5.5. All cluster-tilted algebras over an algebraically closed field are
Frobenius-finite.

Proof. Let A be a cluster-tilted algebra. Then, without loss of generality, we can
assume A = End¢(T'), where T is a basic tilting module over a finite-dimensional,
connected, hereditary k-algebra H with k an algebraically closed field. If H is of
Dynkin type, then A is representation-finite and, of course, Frobenius-finite.

From now on, we assume that H is representation-infinite. Using a method
similar to the one in the proof of Lemma 1 in [47], we deduce that the associated
self-injective algebra of A is isomorphic to Ende(T") where T” is a maximal direct
summand of T with 737" ~ T” in C. By the above fact (a), the objects 757" and 7"
are isomorphic in C. Suppose that 7" has a decomposition 7/ = U & M ¢ E such
that U is preprojective, M is regular and FE is preinjective. For each projective
H-module P, we have an Auslander—Reiten triangle

vgP[-1] —V — P —vgP

in °(H), which shows 7pP = vy P[—1]. Thus 72 P, which is just 7p(vy P)[-1],
is isomorphic in C to vy P since C is the orbit category of Z°(H) with respect
to the auto-equivalence functor 751[1]. As H is representation-infinite, the object
7% (v P) for each i > 0 is isomorphic in Z°(H) to 7} (vy P) which is a prein-
jective H-module. Hence 77} P is isomorphic in C to a preinjective H-module for
all m > 2. It follows that, for each preprojective H-module V, the object 735V
is isomorphic in C to a preinjective module if n is big enough. Applying 7p to a
regular (preinjective, respectively) H-module always results in a regular (prein-
jective, respectively) H-module. Thus, by applying 72 with n large enough,
T = 73U @ 73"M @ 73'E is isomorphic in C to an H-module 7" which
has no preprojective direct summands. Hence T” and T are isomorphic in C. By
the fact (b), 7" and T" are isomorphic in 2”(H), and therefore they are also iso-
morphic as H-modules. However, T” has no preprojective direct summands. This
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forces U = 0. Dually, one can prove E = 0. Hence T’ is actually a regular H-
module. In this case, 75T is just 757”. By the fact (b) again, 757" and T" are
isomorphic in 2°(H), and consequently 757" ~ T" as H-modules.

If H is wild, then there are not any 7g-periodic H-modules at all. Hence
T’ =0 and A is a Frobenius-free algebra. If H is tame, then we have the following
isomorphisms of algebras:

Ende(T") = Endgu ) (T") x Homg gy (T', 75 T'[1])  (by the fact (c) above)

)
~ Endy (T") x Exty (T, 7' T")
~ Endy(T') x DHomp (15;'T',75T") (by Auslander-Reiten formula)
~ Endy (T") x DHomp (T",73T") ~ Endy (T") x DHomg (T', T")
= Endy (T") x DEndy (T") = T(End g (T")),

where the Auslander—Reiten formula means the isomorphism DExtle‘(X YY) ~
Hom (Y, 74(X)) for all X,Y € A-mod (see Proposition 4.6, p. 131, in [4]).

We claim that T(Endg(T")) is representation-finite. Since T is a tilting mod-
ule over the tame hereditary algebra H, it must contain either an indecomposable
preprojective or preinjective summand (see, for example, the proof of Lemma 3.1
in [18]). Thus there is an integer n with |n| minimal, such that 7757 has a nonzero
projective or injective direct summand. Assume that 7,7 ~ He @& X for some
idempotent e in H and that X has no projective direct summands. Then 75X
is a tilting H/HeH-module. Thus Endy(X) ~ Endgy (75 X) is a tilted algebra
of Dynkin type (not necessarily connected), and consequently its trivial extension
T(Endg (X)) is representation-finite (see [17], Chapter V). Since T" is 7p-periodic,
7T has to be a direct summand of X. Thus, Endy (7") ~ Endy (7,T") is iso-
morphic to fEndy (X)f for some idempotent f in Endy(X). Hence T(Endgy (7))
is isomorphic to fT(Endy(X))f, and therefore representation-finite. When 77T
contains an injective direct summand, the proof can be proceeded similarly. O

5.2. Proof of Theorem 1.1

Throughout this subsection, k£ denotes an algebraically closed field. The main idea
of the proof of Theorem 1.1 is to use Theorem 1.2 inductively. The following lemma
is crucial to the induction procedure.

Lemma 5.6. Let A and B be two representation-finite, self-injective k-algebras
without nonzero semisimple direct summands. Suppose that ®: A-mod — B-mod
s a stable equivalence of Morita type. Then there are a simple A-module X and
integers v and t such that 7" o Q' o ®(X) is isomorphic in B-mod to a simple
B-module, where T and ) stand for the Auslander—Reiten translation and Heller
operator, respectively.

Proof. Let T's(A) denote the stable Auslander—Reiten quiver of A which has iso-
morphism classes of non-projective indecomposable A-modules as vertices and ir-
reducible maps as arrows. Then I's(A) and T's(B) are isomorphic as translation
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quivers. By [29], we may assume that the algebras A and B are indecompos-
able. Then I';(A) and I';(B) are of the form ZA/G for some Dynkin graph
A = A,,Dy(n = 4),E,(n = 6,7,8) and a non-trivial admissible automorphism
group G of ZA (see [44]). We fix an isomorphism s4 : ZA/G — T's(A), and set

ma LA B IA/G 24 T4 (A).

Then 74 is a covering map of translation quivers (see [44]). Now we fix some
automorphisms of these translation quivers.

e The Heller operator €24 gives rise to an automorphism wa : I's(A) — T's(A).
e The translation 74 gives rise to an automorphism 74 : I's(A) — T's(A4).
Similarly, we have:

e Two automorphisms wp and 75 : I's(B) — I's(B).

e The functor ® induces an isomorphism ¢ : I'(A) — T's(B).

Since the stable equivalence ® is of Morita type, Ta¢ = ¢7p and wad = ¢wp. Let
mp :=mwa¢. Then wp is also a covering map.

Let A be a Dynkin diagram of n vertices. For the vertices of ZA, we use the
coordinates (s,t) with 1 <t < n as described in Fig. 1 of [6]. A vertex (p,1) with
p € Z is called a bottom vertex. The vertices (p,n) in ZA, and (p,5) in ZEs with
p € Z are called top vertices.

By definition, 7a: (p,q) — (p — 1,q) is a translation on ZA and all homo-
morphisms of translation quivers commute with this translation. Clearly, 74 is
an admissible automorphism of ZA. The automorphism w4 can be lifted to an
admissible automorphism wa of ZA such that maws = wama. For instance, if
A=A, thenwa, (p,q) = (p+q—mn,n+1—q) (see [23], Section 4). For A = Fj,
one may use a method in 4.4 of [23] and easily get wg,(p,q) = (p+ ¢ —6,6 — q)
for ¢ # 6 and wg,(p,6) = (p — 6,6). Note that the method in 4.4 of [23] does not
depend on higher Auslander—Reiten theory and its main ingredients are actually
the Auslander—Reiten formula and ordinary Auslander—Reiten theory. Thus, for
A = A, or Eg, the automorphism wa interchanges top vertices and bottom ver-
tices.

Let S4 and Sp be the complete sets of isomorphism classes of simple mod-
ules over A and B, respectively. Define €4 = {x € ZA | (x)ma € Sa} and
¢p :={v € ZA | (x)mp € Sp}. Since m4 and 7p are covering maps, ¥4 and Ep
are “configurations” on ZA by Propositions 2.3 and 2.4 in [45]). For the precise
definition of configurations, we refer the reader to [45]. Note that if € is a con-
figuration on ZA, then so is the image (¢')g for any admissible automorphism g
of ZA. In particular, (¢)wa and (€)7a are configurations for all configurations %'

Claim 1. Each configuration € on ZA,, contains either a top vertex or a bottom
vertex.

Proof. Recall from Proposition 2.6 in [45] that there is a bijection between the
configurations on ZA,, and the partitions o of the vertices of the regular n-polygon
such that the convex hulls of different parts of o are disjoint. For such a partition
o, either there is a part consisting of a single vertex, or there is a part containing
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two adjoint vertices. Due to the bijection of Proposition 2.6 in [45], we see that in
the former case, the corresponding configuration contains a vertex (¢,n) for some
integer 4, and in the latter case, the corresponding configuration contains (j, 1) for
some integer j. O

Claim 2. Let € be a configuration on ZA with A = A,,, D, (n > 4), Eg, E7
or Eg. Then either € or (€ )wa contains a bottom vertex.

Proof. We verify the statement in several cases.

(a) A = A,. Since wy, maps top vertices to bottom vertices, Claim 2 follows
from Claim 1.

(b) A = D,,. The statement for ZD, follows directly from 7.6 in [6]. Suppose
n > 5. Form < n—2 let o, : ZA,, — ZD,, be the embedding defined in
Section 6 of [46]. By definition, t,, maps all top and bottom vertices of ZA,,
to bottom vertices of ZD,,. By the two propositions in Section 6 of [46], each
configuration on ZD,, contains the image of some configuration on ZA, under
TBW . for some 0 < r < n—2 and t € Z. Together with Claim 1, this implies that
each configuration on ZD,, with n > 5 contains at least one bottom vertex.

(¢c) A = FEs. Note that wg, maps top vertices to bottom vertices, and all the
automorphisms of ZEg are of the form 7iwa for some integer s (see [44]). Thus,
the claim for Eg follows from the list of isomorphism classes of configurations given
in Section 8 of [6]

(d) A = E7 or Eg. All the automorphisms of ZE7 and ZEg are of the form 73
for some integer s. The claim then follows by checking on the list of isomorphism
classes of configurations on ZE7 and ZEg given in Section 8 of [6]. O

By Claim 2, we can assume that (¢4)w% contains a bottom vertex (r1,1) and
that (¢)wh contains a bottom vertex (12, 1), where a and b are taken from {0, 1}.

Let x € G4 such that (z)wk = (r1,1). Then (m)wZT(A”*TZ) = (rg,1), and
yi= (@)l T = @i (T PwR’ = (e’ € @5
Let r =7r; —ro and t = a — b. Then
(@)TagwpTh = (2)TAwTa¢ = (2)WATATAS = (Y)7B-

Thus the simple A-module X := ()74 is sent to the simple B-module Y := (y)7p
by the functor 75 o Q% o ® in B-mod. This finishes the proof of Lemma 5.6. O

It would be nice to have a homological proof of Lemma 5.6.

We have now accumulated all information necessary to prove the main result,
Theorem 1.1.

Proof of Theorem 1.1. We first note that, for self-injective algebras, both 7 and 2
are stable equivalences of Morita type, and can be lifted to standard derived equiva-
lences. Actually, given a self-injective algebra A, the stable equivalences 2 and 7 lift
to the standard derived equivalences given by A[—1]®@% — and D(A)[-2] ®% —, re-
spectively. This in turn implies that €2 and 7 are stable equivalences of Morita type.
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Let ®: A-mod — B-mod be a stable equivalence of Morita type, and let P
and @ be the bimodules belonging to ®. Suppose that A4 and Ap are the basic,
associated self-injective algebras of A and B, respectively. By the definition of
associated self-injective algebras and Lemma 2.7 (4), the algebras Ay and Ap
have no nonzero semisimple direct summands. It follows from Theorem 4.2 in [15]
that ® can be restricted to a stable equivalence ®1 : A 4-mod — A pg-mod of Morita
type. By Corollary 4.7, the stable equivalence & lifts to an almost v-stable derived
equivalence provided that & lifts to a derived equivalence.

If Ag =0, then it follows from Lemma 3.1(2) that P = 0 and @ = 0. Thus,
by Proposition 3.3, ® is a Morita equivalence between A and B, and therefore
Theorem 1.1 follows.

Assume Ay # 0. Then, by Lemma 5.6, there are integers r and s such that the
functor 7"Q%®; : Ax-mod — Ap-mod sends some simple A 4-module to a simple
Ap-module. In this case, we can choose an idempotent element e in A 4 such that,
for a simple A 4-module S, the Ag-module 77Q°®,(.S) is isomorphic in Ap-mod
to a non-simple module if and only if e - S # 0. Note that 77Q°®; is a stable
equivalence of Morita type between A4 and Apg. Let P’ and Q' be the bimodules
belongs to 77 Q°®;. It follows from Lemma 3.1 (2) and (5)-(6) that Age € add(P’)
and e is v-stable. Similarly, we can choose a v-stable idempotent element f in Ap
such that, for a simple A g-module T, the A 4-module (77Q*®;)~1(T') is isomorphic
in A 4-mod to a non-simple module if and only if f -7 # 0. Then, by Lemma 3.4,
the equivalence 77Q°®, is restricted to a stable equivalence ®5: eA ge-mod —
fApf-mod of Morita type.

If A 4 has only one non-isomorphic simple module, then e = 0 and 77Q2°®; sends
every simple A 4-module to simple A g-module, and therefore it is a Morita equiv-
alence by Proposition 3.3 (see also Theorem 2.1 in [28]). Now, suppose that A4
has at least two non-isomorphic simple modules and e # 0. Clearly, the num-
ber of non-isomorphic simple modules of the algebra eA e is less than the one
of Ay. Since eA e and fApf are again representation-finite, self-injective alge-
bras without nonzero semisimple direct summands, we can assume, by induction,
that &, lifts to a derived equivalence. Thus, by Theorem 1.2, the stable equiv-
alence 77Q%®; lifts to a derived equivalence. Since both 7 and € lift to derived
equivalences between the self-injective algebras A4 and Ap, ®; lifts to a derived
equivalence. Hence @ lifts to an almost v-stable derived equivalence. O

Since derived equivalences preserve the number of simple modules and since
stable equivalences of Morita type between algebras without semisimple summands
preserve the number of projective simples, the Auslander—Reiten conjecture is true
for Frobenius-finite algebras over an algebraically closed field by Theorem 1.1. This
also follows from [32].

Let k be an algebraically closed field. For standard representation-finite self-
injective k-algebras A and B not of type (Dsy,s/3,1) with m > 2 and 3 1 s,
Asashiba proved in [3] that each individual stable equivalence between A and B
over an algebraically closed field lifts to a derived equivalence. His proof is done
case by case, and depends on his derived equivalence classification of standard
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representation-finite self-injective algebras (see [2]). Recently, Dugas treats the
case left by Asashiba, again using Asashiba’s derived classification together with a
technique of tilting mutations (see [14]). From the works of Asashiba and Dugas,
it follows that any stable equivalence between standard representation-finite self-
injective k-algebras lifts to a standard derived equivalence and is of Morita type. In
Theorem 1.1, we consider instead stable equivalences of Morita type and handle all
Frobenius-finite algebras: first, applying Corollary 4.7 to reduce the lifting problem
for general algebras to the one for representation-finite self-injective algebras, and
then using the technical Lemma 5.6 and the inductive Theorem 1.2 to complete the
proof by induction on the number of simple modules. So, our proof is independent
of Asashiba’s derived equivalence classification of standard representation-finite
self-injective algebras, and simplifies both Asashiba’s work and Dugas’ proof.

Now, we state the following generalization of Asashiba’s main result in [3].

Corollary 5.7. If A and B are arbitrary representation-finite algebras over an
algebraically closed field and without nonzero semisimple direct summands, then
every stable equivalence of Morita type between A and B can be lifted to an iterated
almost v-stable derived equivalence.

Recall that a finite-dimensional algebra over a field is called an Auslander al-
gebra if it has global dimension at most 2 and dominant dimension at least 2. Al-
gebras of global dimension at most 2 seem to be of great interest in representation
theory because they are quasi-hereditary (see [12]) and every finite-dimensional
algebra (up to Morita equivalence) can be obtained from an algebra of global di-
mension 2 by a universal localization (see [36]).

Since Auslander algebras and cluster-tilted algebras are Frobenius-finite by
Propositions 5.2 (1) and 5.5, we have the following immediate consequence of The-
orem 1.1.

Corollary 5.8. If A and B are Auslander algebras or cluster-tilted algebras over
an algebraically closed field and without nonzero semisimple direct summands, then
each individual stable equivalence of Morita type between A and B lifts to a derived
equivalence.

Finally, we mention the following result on trivial extensions and tensor prod-
ucts of algebras.

Corollary 5.9. Suppose that A, B, R and S are Frobenius-finite algebras over

an algebraically closed field and without nonzero semisimple direct summands. If

(A, B) and (R, S) are two pairs of stably equivalent algebras of Morita type, then
(1) the trivial extensions of A and B are derived equivalent;

(2) the tensor products A @y R and B ®y, S are derived equivalent.

Proof. By [40], [41], derived equivalences are preserved under taking trivial ex-
tensions and tensor products. So the corollary follows immediately from Theo-
rem 1.1. O
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6. A machinery for lifting stable to derived equivalences

In this section we give an inductive procedure for lifting a class of stable equiv-
alences of Morita type to derived equivalences. With this machinery we recheck
some known cases for which Broué’s abelian defect group conjecture holds true,
and simplify proofs given in [34], [26]. The machinery works as well for all examples
in [37].

Given a finite group G and a block A of the group algebra kG with defect
group D, there is a unique block B of the group algebra kNg(D) with defect
group D, where N¢ (D) stands for the normalizer of D in G, such that the restric-
tion from 2°(A) to %°(B) is faithful. This is the well-known Brauer correspon-
dence, which provides a bijection between blocks A of kG with defect group D
and blocks B of kN¢g(D) with defect group D. Broué’s abelian defect group con-
jecture [8] asserts that if D is abelian, then A and B are derived equivalent. The
conjecture is verified in many cases, but still wide open (see Rouquier’s survey [48]).

Stable equivalences of Morita type can be achieved in many cases in modular
representation theory of finite groups. For instance, in the case of the defect group
having the trivial intersection property. To be able to lift stable equivalences of
Morita type to derived equivalences is important for instance in one approach, due
to Rouquier [48], to Broué’s abelian defect group conjecture. The general idea is as
follows: To show that two block algebras A and B are derived equivalent, one may
start with a known stable equivalence of Morita type between them and try to lift
this stable equivalence to a derived equivalence, or find independently another self-
injective algebra C' and a derived equivalence from B to C' such that the composite
of the stable equivalence from A to B with the induced stable equivalence from B
to C' either can be lifted to a derived equivalence or sends all simple modules to
simple modules. In the later case, one gets a Morita equivalence between A and C'
by Theorem 2.1 in [27]. Thus, in both cases, one can obtain a derived equivalence
between A and B. For further information on this approach to and progresses on
Broué’s abelian defect group conjecture, the reader is referred to [37], [42], [48].

Let A be an algebra, and let S4 be a complete set of pairwise non-isomorphic
simple A-modules. For each simple A-module V' € S4, we fix a primitive idem-
potent element ey in A with ey - V' # 0, such that the idempotent elements
{ev | V € S4} are pairwise orthogonal. Thus, for any nonempty subset o of Sa,
the element e, := ZVEU ey is an idempotent element in A.

Theorem 1.2 and the proof of Theorem 1.1 suggest an inductive method to check
whether a stable equivalence of Morita type can be lifted to a derived equivalence.
The procedure can be described as follows:

Assumption. Let ®: A-mod — B-mod be a stable equivalence of Morita type
between algebras A and B without nonzero semisimple direct summands. Suppose
that A/rad(A) and B/rad(B) are separable.

Step 1: If there is a simple A-module V' such that ®(V) is a simple B-module,
then we set

o0:={V €84 | ®(V) is non-simple} and ¢’ := Sp\®(S4\0).
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Case (i): o is empty. Then @ lifts to a Morita equivalence, and therefore our
procedure terminates.

Case (ii): Both o and ¢’ are nonempty. By Lemma 3.4, the functor ® is
restricted to a stable equivalence ®; of Morita type between e, Ae, and e, Be, .
Moreover, the idempotent elements e, and e, are v-stable. In fact, by (5)-(6)
of Lemma 3.1, for each V' in Sy, the B-module (V') is not simple if and only if
Homa (4P, V) # 0, or equivalently, V' € add(top(aP)), where P is given by the
definition of the stable equivalence ® of Morita type. This implies add(A4e,) =
add(4P). Tt follows from Lemma 3.1(2) that e, is vs-stable. Similarly, e, is
vp-stable. By Lemma 2.7 (3), the algebras e, Ae, and e, Be,s are self-injective
with fewer simple modules. So, to lift ® to a derived equivalence, it is enough to
liftt ®; by Theorem 1.2.

Step 2: If there is a stable equivalence = : e, Be,-mod — C-mod of Morita
type between the algebra e, Be, and another algebra C' (to be found indepen-
dently), such that the stable equivalence is induced by a derived equivalence and
the composite = o ®; sends some (not necessarily all) simple e, Ae,-modules to
simple C-modules, then we go back to Step 1 and consider the lifting problem for
Z o ®y. Once we arrive at representation-finite algebras in the procedure, Theo-
rem 1.1 can be applied. This implies that ®; lifts to a derived equivalence, and
therefore so does the given ®.

This procedure is somewhat similar to, but different from the method of Okuya-
ma in [37]. In our procedure, Step 1 always reduces the number of simple modules
and makes situations considered easier after each step if ¢ is not the set of all simple
modules. Particularly, one may often get representation-finite algebras, while the
procedure in [37] does not change the number of simple modules and cannot get any
representation-finite algebras if the procedure starts with representation-infinite
algebras. If ¢ is the whole set of all non-isomorphic simple modules, then Step 1
cannot run and does not give any help for lifting problem. In this case, one passes to
Step 2. To do Step 2, one needs pieces of information independently. Nevertheless,
Step 2 does not require that Zo® sends all simples to simples, while this is needed
in [37] and other approaches.

In the following, we will illustrate the above procedure by examples.

Example 1. In [34], it was proved that Broué’s abelian defect group conjecture
is true for the faithful 3-blocks of defect 2 of 4.Mss, which is the non-split central
extension of the sporadic simple group Mso by a cyclic group of order 4. Now we
shall show that the procedure described above can be used to give a short proof
of the conjecture in this case, which avoids many technical calculations, compared
with the original proof in [34].

It is known that each of the two block algebras By and b, has 5 simple modules.
The simple By-modules are labeled by 56a, 560, 64, 160a, 160b, and the simple b -
modules are labeled by 1a, 1,2, 1c and 1d. There is a stable equivalence

®: Bi-mod — by-mod
of Morita type (see [34]) such that
B(56a) = Q" '(la), B(56b) = Q(1b), B(160a) =lc, B(160b) = 1d,
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and ®(64) has the following Loewy structure:

1b
2
la

For z € {a,b,¢,d} and {y,y',y"} = {a,b,¢,d}\{z}, the Loewy structures of the
projective by-modules are

1lx 2

2 la 1b 1c 1d
P(lz): |1y 1y 1y |, P(2): 222

2 la 1b 1c 1d

1z 2

Now, we use Steps 1 and 2 repeatedly and verify that the stable equivalence ® lifts
to a derived equivalence.

Note that ® sends the simple module 160b to a simple module. So we can use
Step 1. Let o = {56a,56b,64}, and ¢/ = {1a,1b,2}. Then ® can be restricted to
a stable equivalence of Morita type

D, : ey Bie,-mod — e,bye,-mod.

The Loewy structures of the projective e, be,-modules e, P(la) and e, P(1b)
are

la 1b

2 2

e P(la): |10, and e, P(1d): |la

2 2

la 1b

The images of the simple modules under ®; are

12a 12a 1
®4(56a) ~ 1 , ®1(56b) ~ NE and  ®(64) ~ | 2
2 1b ta

By [37], the idempotent e = e1, + €15 defines a tilting complex T'® over e,byeqr.
Now, setting C':= End(T"*) and labeling the simple C-modules by la, 1b and 2, we
see that the derived equivalence between e, bye,s and C induces a stable equiva-

lence of Morita type Z : e,/b4€,-mod — C-mod such that =(2) ~ 2, Z( [ izb ]) ~ 10,
a
and E(Eﬁﬂ) ~ la. Thus E&;(64) ~ 1b, E0;(56a) ~ ['¢] and Zd;(56b) ~ [2].

2 la
Let o1 := {56a,56b} and ¢} := {1a,2}. Then the composite =@, is restricted to a

stable equivalence of Morita type
Dy : €5, Bies,-mod — ealeeafl—mod

such that ®2(56a) = [%] and ®2(56b) = [ 24 ]. Note that the Cartan matrix of

la
eqr Cegr is [2 1]. Tt is easy to check that a symmetric algebra with this Cartan ma-
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trix is always representation-finite. Thus ®5 lifts to a derived equivalence by The-
orem 1.1, and consequently ® lifts to a derived equivalence. The whole procedure
can be illustrated by the following commutative diagram

®
Bi-mod ———— b -mod
@, =
e, Bies-mod ——— e,/bie,-mod C-mod
)\T )\T
@2
€0, Biegs-mod €ot Ceai—mod

with @4 lifting to a derived equivalence.

Example 2. Let G be the Harada—Norton simple group HN, and let & be an
algebraically closed field of characteristic 3. In [26], Broué’s abelian defect group
conjecture was verified for non-principal blocks of kG with defect group C3 x Cj.
In the following, we will show how our results can be applied to give another
proof to the conjecture in this case. In fact, the two block algebras A and B
have 7 non-isomorphic simple modules with Sq4 = {1,2,3,4,5,6,7} and Sp =
{9a, 9b,9¢, 9d, 18a, 18b, 18¢c}, and there is a stable equivalence F': A-mod — B-mod
of Morita type such that

18a
VRN
F(1) ~9a, F(2)~9, F(3)~9c, F(4)~ 18b 18¢,

N S
18a

18¢ 18a 9d 18b

VRN /N 7N

F(5) ~ 9a 9d, F(6)~ 18¢ 18 , F(7)~ 9 9c .
N/ /N S N S
18b 9d 18a 18¢

The Loewy structures of the indecomposable projective B-modules P(9d), P(18a),
P(18b) and P(18c) are as follows:

18a
9d N
18b 18b 18¢
| /1
P9d): |9c 18a|, P(18a): 9b 9c¢ 18a 9a 9d ,
186 [ |
1
9d 80\ 18b
18a
18b 18¢
9b 18a 9c¢ 9a 18a 9d
P(18b): [18¢ 18b 18¢|, P(18¢): |18b 18¢ 18b
9a 18a 9d 9b 18a 9c

180 18¢
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Taking 0 = {4,5,6,7} and ¢’ = {9d, 18a, 18D, 18¢}, we see from Step 1 that the
functor F is restricted to a stable equivalence of Morita type

Fy : e;Ae,-mod — e, Bey-mod

such that

18a

VAN 18¢

Fi(4) ~ 18b 18¢, Fi(5)~|9d ]|,

N S 18b
18a
18a 9d

/N 186

F1(6) ~ /18(:\ 18b , By (7) ~ [180] .
/
9d 18a

The idempotent element ejg, in B defines a tilting complex T° over e, Bey
(see [37]). Set C := End(T*) and label simple C-modules by 9d, 18a, 18b and 18c.
Then the derived equivalence between e, Be,» and C' induces a stable equivalence
of Morita type E : e, Be,s-mod — C-mod such that Z(9d) ~ 9d, Z(18b) ~ 18b,
E(18¢) ~ 18¢, and ZF;(4) ~ 18a. Taking o1 = {5,6,7} and o} = {9d,18b,18¢},
we see that the functor ZF7 is restricted to a stable equivalence of Morita type

Fy : e, Aey-mod — €,/ Ce,r-mod

such that Fy(5) ~ |:1E)Zdzi| , F5(6) ~ [54] and F(7) ~ [}82]. Note that the Cartan

. . 211 . .
matrix of e, Ceyr is h 2 :1))}, where the columns are dimension vectors of the

projective modules e, Ceigp, €57 Cerse and e, Cegq, respectively. Then Fy(5) ~
Q7 1(18¢). Thus, taking oo = {6,7} and o} = {18b,9d}, the functor QF; can be
restricted to a stable equivalence of Morita type

Fs:ep,Aes,-mod — €s;, Ceaé—mod.

The Cartan matrix of e, Ce,y is [2 1]. This implies that s, Ceyy is representation-

finite and that Fj lifts to a derived equivalence by Theorem 1.1. Hence F' lifts to
a derived equivalence.

Finally, we point out that our methods work for all examples in [37] and can
simplify Okuyama’s proofs.

Let us end this section by mentioning the following questions suggested by our
main results.

Question 1. Given a stable equivalence ® of Morita type between two self-

injective algebras such that ® does not send any simple modules to simple modules,
under which conditions can ® be lifted to a derived equivalence?

Question 2. Find sufficient and necessary conditions for stable equivalences of
Morita type between Frobenius-tame algebras to be lifted to derived equivalences.
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Question 3. Find more methods to construct Frobenius-finite algebras, or
sufficient conditions for algebras to be Frobenius-finite. For example, when is a
cellular algebra Frobenius-finite? We guess that a cellular algebra is Frobenius-
finite if and only if it is representation-finite.

Acknowledgement. Both authors thank the anonymous referees very much for
their constructive and helpful suggestions which improved the English expression
and the presentation of the results in this paper.
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