
515(167)

c⃝2019 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 71, No. 2 (2019) pp. 515–554
doi: 10.2969/jmsj/78477847

Good tilting modules and recollements of derived module

categories, II

By Hongxing Chen and Changchang Xi

(Received July 14, 2017)

(Revised Nov. 8, 2017)

Abstract. Homological tilting modules of finite projective dimension
are investigated. They generalize both classical and good tilting modules of

projective dimension at most one, and produce recollements of derived module
categories of rings in which generalized localizations of rings are involved. To
decide whether a good tilting module is homological, a sufficient and necessary

condition is presented in terms of the internal properties of the given tilting
module. Consequently, a class of homological, non-trivial, infinitely generated
tilting modules of higher projective dimension is constructed, and the first
example of an infinitely generated n-tilting module which is not homological

for each n ≥ 2 is exhibited. To deal with both tilting and cotilting modules
consistently, the notion of weak tilting modules is introduced. Thus similar
results for infinitely generated cotilting modules of finite injective dimension
are obtained, though dual technique does not work for infinite-dimensional

modules.

1. Introduction.

Infinite dimensional tilting theory has been of interest for a long time, but only

recently it has increasingly attracted attention to understand derived categories of general

rings and related topics (see [4], [6], [7], [32], [11], [12], [34]). In this theory, one of

significant and fundamental problems is to understand relationships between the derived

category of a given ring and the one of the endomorphism ring of a tilting module.

For an infinitely generated tilting module, there exists a recollement of triangulated

categories (see [6]), in which two of them are the derived module categories of rings as

expected, but the third one, which is the kernel of the derived tensor functor of the

tilting module, is known only to be a triangulated subcategory. So, to understand the

derived category of the endomorphism ring of an infinite-dimensional tilting module, it

is crucial to understand this kernel of the derived tensor functor. Once the kernel can be

realized as a derived module category of a ring, one gets a recollement of derived module

categories of rings, and may use general theory and properties of recollements to reduce

the investigation of the derived or homological properties of the endomorphism ring of

the tilting module to those of the two outside rings of the recollement: the given ring

and the new ring. This kind of reduction by recollements is quite useful in geometry and

in representation theory of algebras (see [8], [14], [22], [13]).
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In [11], we considered good tilting modules of projective dimension at most 1. In this

case, it was proved that the triangulated subcategory can always be realized as the derived

category of a new ring which is explicitly described as a homological universal localization

of the endomorphism ring (see [11, Theorem 1.1]). An application of this result is that the

Jordan–Hölder theorem fails for stratifications of derived module categories by derived

module categories (see [11], [12]).

For a good, infinitely generated tilting module of projective dimension at least 2, it

is fully open whether the kernel of the derived tensor functor of the titling module can

be realized as the derived category of an ordinary ring. What one only knows is that the

kernel can be formally characterized as the derived category of a differential graded ring

(see [23], [30], [34], [7]). Furthermore, neither positive non-trivial examples nor negative

examples are known before our present consideration.

In the present paper, we continue the project on studying infinitely generated good

tilting modules in the context of derived categories. Roughly, we shall give a necessary

and sufficient condition for good tilting modules of higher projective dimension to induce

recollements of derived module categories via homological ring epimorphisms. Such tilt-

ing modules are called homological tilting modules. Our condition is presented in terms

of the internal properties of given tilting modules, which are handy to be verified in prac-

tice. As a consequence, we obtain a class of recollements of derived module categories

from good, infinitely generated tilting modules, and construct a class of non-trivial, ho-

mological, infinitely generated tilting module as well as the first example of a good tilting

module of projective dimension n for each n ≥ 2, such that it is not homological. As

the dual argument of infinitely generated tilting modules does not work for infinitely

generated cotilting modules, we introduce the notion of weak tilting modules to handle

uniformly the tilting and cotilting cases. In this way, similar results for cotilting modules

are obtained.

To state our main results precisely, we recall some definitions and notation.

Let A be an arbitrary ring with identity and let n be a natural number. A left A-

module T is called an n-tilting A-module (see [16], [2]) if the following three conditions

are satisfied:

(T1) The projective dimension of T , denoted by proj.dim(AT ), is at most n, that is,

there exists an exact sequence

0 −→ Pn −→ · · · −→ P1 −→ P0
π−→ T −→ 0

with all Pi projective A-modules.

(T2) ExtjA(T, T
(α)) = 0 for all j ≥ 1 and nonempty sets α, where T (α) denotes the

direct sum of α copies of T .

(T3) There is an exact sequence of A-modules

0 −→ AA −→ T0 −→ T1 −→ · · · −→ Tn −→ 0

such that Ti is isomorphic to a direct summand of a direct sum of copies of T for all

0 ≤ i ≤ n.

An n-tilting module T is said to be good if (T3) is replaced by
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(T3)′ There is an exact sequence of A-modules

0 −→ AA
ω−→ T0 −→ T1 −→ · · · −→ Tn −→ 0

such that Ti is isomorphic to a direct summand of a finite direct sum of copies of T for

all 0 ≤ i ≤ n.

In the following, let T be a good n-tilting A-module and let B be the endomorphism

ring of AT . Then T is obviously an A-B-bimodule. By D(A) and D(B), we denote the

derived module categories of A and B, respectively.

By definition, the third triangulated category in the recollement associated with T is

the kernel of the left derived functor T ⊗L
B − : D(B) → D(A), denoted by Ker(T ⊗L

B −).

This category measures the difference between D(B) and D(A). In fact, it vanishes if

and only if the tilting A-module T is classical in the sense that AT has a projective

resolution of finite length by finitely generated projective modules (see [10], [21], [27],

[20], [6]).

A ring epimorphism λ : B → C is called a homological ring epimorphism if

TorBi (C,C) = 0 for all i > 0 (see [18]). We say that AT is homological if there

exists a homological ring epimorphism λ : B → C such that the restriction functor

D(λ∗) : D(C) → D(B) induces an equivalence of triangulated categories:

D(C)
≃−→ Ker(T ⊗L

B −).

Thus, every classical tilting module and every good 1-tilting module are homological. A

further natural question is about the case of higher projective dimension.

Question. Is every good n-tilting A-module T with n ≥ 2 homological? If this is

not the case, when is an n-tilting module homological?

To answer this question, we first characterize homological tilting modules in terms

of vanishing cohomologies of complexes related to projective resolutions of the tilting

modules.

Theorem 1.1. Suppose that A is a ring and n is a natural number. Let T be a good

n-tilting A-module, and let B be the endomorphism ring of AT . Then AT is homological

if and only if the m-th cohomology of the complex HomA(P
•, A) ⊗A TB vanishes for all

m ≥ 2, where the complex P • is a deleted projective resolution of AT . In this case, there

exists a recollement of derived module categories :

D(BT )
D(λ∗) // D(B)

AT⊗L
B− //

ff

}}
D(A)

ee

~~

where λ : B → BT is the generalized localization of B at the right B-module T and D(λ∗)

stands for the restriction functor induced by λ.

Since the condition in Theorem 1.1 is given in terms of the projective resolution of

a given tilting module, it is handy to be checked for applications. For example, we have

the following result.
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Corollary 1.2. Suppose that A is a ring and n is a natural number. Let T be a

good n-tilting A-module, and let B be the endomorphism ring of AT .

(1) If AT decomposes into a direct sum of M and N such that proj.dim(AM) ≤ 1

and the first syzygy of N is finitely generated, then T is homological.

(2) If A is commutative and HomA(Ti+1, Ti) = 0 for all Ti in (T3)′ with 1 ≤ i ≤ n−1,

then T is homological if and only if it is a 1-tilting module.

As a consequence of Corollary 1.2, we can construct not only a class of homological,

infinitely generated tilting modules, but also the first example of a good n-tilting module

T for each n ≥ 2, such that T is not homological (see Section 7).

Dually, we consider good, infinitely generated cotilting modules of finite injective

dimension over arbitrary rings. The definition of cotilting modules uses injective cogen-

erators of module categories (see Definition 6.1), and there are many choices of injective

cogenerators. Hence, there is no nice duality between infinitely generated tilting and

cotilting modules, and we cannot get analogous results on infinitely generated cotilting

modules by duality from the ones on infinitely generated tilting modules. Nevertheless,

our methods in the paper can deal with cotilting modules over rings with certain “nice”

injective cogenerators. For example, the following theorem is an analogy of [11, Theorem

1.1].

Theorem 1.3. Suppose that A is an Artin algebra with the usual duality functor D.

Let U be a good 1-cotilting A-module with respect to the injective cogenerator D(A). Set

R := EndA(U) and M := HomA(U,D(A)). Then the universal localization λ : R → RM

of R at the module RM is homological, and there exists a recollement of derived module

categories :

D(RM )
D(λ∗) // D(R) //

ff

zz
D(A)

ee

{{

where D(λ∗) stands for the restriction functor induced by λ.

Theorem 1.1 extends [11, Theorem 1.1] from good 1-tilting modules to homological

n-tilting modules, and provides a class of recollements of derived categories of rings, while

the recollements in [34] and [7] involve derived categories of differential graded algebras

instead of usual rings. Moreover, the proof of Theorem 1.1 is different from the one in [11].

Note that the proof in [11] deals with a two-term complex which automatically yields an

abelian subcategory of the module category of the endomorphism ring. However, this is

not always true for tilting modules of higher projective dimension. To attack this general

case, we have to extend some methods in [11] and develop some new ideas (see Section

4). It seems that this is the first time to apply Mittag-Leffler conditions to discuss tilting

modules at the level of derived categories.

The contents of this article are sketched as follows. In Section 2, we fix notation,

recall some definitions and prove some homological formulas for later proofs. In Section

3, we discuss when bireflective subcategories are homological. In Section 4, we introduce
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weak tilting modules and give several characterizations of homological subcategories aris-

ing from weak tilting modules. In Section 5, we apply the results in the previous sections

to show Theorem 1.1 and Corollary 1.2. In Section 6, we first apply Proposition 4.4 to

good cotilting modules in a general setting (see Corollary 6.3), and then prove Theorem

1.3 for Artin algebras. In Section 7, we employ Corollary 1.2 to construct a class of infin-

itely generated, homological tilting modules over non-commutative Gorenstein rings (see

Proposition 7.1), and examples of good n-tilting modules T over commutative Gorenstein

rings for n ≥ 2, such that T is not homological (see Proposition 7.2). Such examples are

not known before our discussions in this paper.

2. Preliminaries.

In this section, we briefly recall some definitions, basic facts and notation used in

this paper. For unexplained notation employed in this paper, we refer the reader to [11]

and the references therein.

2.1. Notation.

Let C be an additive category.

Throughout the paper, a full subcategory B of C is always assumed to be closed

under isomorphisms, that is, if X ∈ B and Y ∈ C with Y ≃ X, then Y ∈ B.
Let X be an object in C. We denote by add(X) the full subcategory of C consisting

of all direct summands of finite coproducts of copies of M . If C admits small coproducts

(that is, coproducts indexed over sets exist in C), then we denote by Add(X) the full

subcategory of C consisting of all direct summands of small coproducts of copies of X.

Dually, if C admits small products, then Prod(X) denotes the full subcategory of C
consisting of all direct summands of small products of copies of X.

Given two morphisms f : X → Y and g : Y → Z in C, the composition of f and g is

written as fg which is a morphism from X to Z. The induced morphisms HomC(Z, f) :

HomC(Z,X) → HomC(Z, Y ) and HomC(f, Z) : HomC(Y, Z) → HomC(X,Z) are denoted

by f∗ and f∗, respectively.

For two functors F : C → D and G : D → E , the composition of F and G is denoted

by GF which is a functor from C to E . Let Ker(F ) and Im(F ) be the kernel and image

of the functor F , respectively. In particular, Ker(F ) is closed under isomorphisms in C.
In this note, we require that Im(F ) is closed under isomorphisms in D.

Suppose that Y is a full subcategory of C. Let Ker(HomC(−,Y)) be the left orthog-

onal subcategory with respect to Y, that is, the full subcategory of C consisting of the

objects X such that HomC(X,Y ) = 0 for all objects Y in Y. Similarly, we can define the

right orthogonal subcategory Ker(HomC(Y,−)) of C with respect to Y.

Let C (C) be the category of all complexes over C with chain maps, and K (C) the

homotopy category of C (C). As usual, we denote by C b(C) the category of bounded

complexes over C, and by K b(C) the homotopy category of C b(C). When C is abelian,

the derived category of C is denoted by D(C), which is the localization of K (C) at all

quasi-isomorphisms. Remark that both K (C) and D(C) are triangulated categories. For

a triangulated category, its shift functor is denoted by [1] universally.

If T is a triangulated category with small coproducts, then, for an object U in T ,
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we denote by Tria(U) the smallest full triangulated subcategory of T containing U and

being closed under small coproducts.

A hereditary torsion pair (X ,Y) of a triangulated category T consists of two full

triangulated subcategories X ,Y of T such that HomT (X ,Y) = 0 and for each object

M ∈ T , there is a triangle X → M → Y → X[1] with X ∈ X and Y ∈ Y (see [9,

Chapter I.2]).

Suppose that T and T ′ are triangulated categories with small coproducts. If F :

T → T ′ is a triangle functor which commutes with small coproducts, then F (Tria(U)) ⊆
Tria(F (U)) for every object U in T .

2.2. Homological formulas in the derived categories of rings.

In this paper, all rings considered are associative and with identity, and all ring

homomorphisms preserve identity. Unless stated otherwise, all modules are referred to

left modules.

Let R be a ring. We denote by R-Mod the category of all unitary left R-modules,

and by Ωn
R the n-th syzygy operator of R-Mod for n ∈ N. We regard Ω0

R as the identity

operator on R-Mod. Note that Ωn
R depends on the choice of projective resolutions of a

module, but is unique up to projective summand.

If M is an R-module and I is a nonempty set, then M (I) and M I denote the direct

sum and product of I copies of M , respectively, proj.dim(RM) and inj.dim(RM) the

projective and injective dimensions ofM , respectively, and EndR(M) the endomorphism

ring ofM . Up to projective module, we denote by Ωn(M) the n-th syzygy of a projective

resolution of M for n ≥ 0.

As usual, we simply write C (R), K (R) and D(R) for C (R-Mod), K (R-Mod) and

D(R-Mod), respectively, and identify R-Mod with the subcategory of D(R) consisting of

all stalk complexes concentrated in degree zero. Let C (R-proj) be the full subcategory

of C (R) consisting of those complexes such that all of their terms are finitely generated

projective R-modules.

For each n ∈ Z, we denote byHn(−) : D(R) → R-Mod the n-th cohomology functor.

A complex X• is said to be acyclic (or exact) if Hn(X•) = 0 for all n ∈ Z.
In the following, we shall recall some definitions and basic facts about derived func-

tors (see [33], [23]).

Recall that K (R)P (respectively, K (R)I) denotes the smallest full triangulated

subcategory of K (R) which

(i) contains all the bounded-above (respectively, bounded-below) complexes of pro-

jective (respectively, injective) R-modules, and

(ii) is closed under arbitrary direct sums (respectively, direct products).

Let K (R)C be the full subcategory of K (R) consisting of all acyclic complexes.

Then (K (R)P ,K (R)C) forms a hereditary torsion pair in K (R). In particular, for

each X• ∈ K (R), there exists a quasi-isomorphism αX• : pX
• → X• in K (R) such that

pX
• ∈ K (R)P . The complex pX

• is called the projective resolution of X• in D(R). For

example, if X is an R-module, then pX can be chosen as a deleted projective resolution

of RX.

Dually, (K (R)C ,K (R)I) is a hereditary torsion pair in K (R). In particular, for

each X• in D(R), there exists a quasi-isomorphism βX• : X• → iX
• in K (R) with
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iX
• ∈ K (R)I . The complex iX

• is called the injective resolution of X• in D(R).

The localization functor q : K (R) → D(R) induces an isomorphism

HomK (R)(X
•, Y •)

≃−→ HomD(R)(X
•, Y •) whenever either X• ∈ K (R)P or Y • ∈

K (R)I . Moreover, q restricts to equivalences of triangulated categories: K (R)P
≃−→

D(R) and K (R)I
≃−→ D(R).

Now, let S be another ring. For a triangle functor F : K (R) → K (S), its left derived

functor LF : D(R) → D(S) is defined by X• 7→ F (pX
•), and its right derived functor

RF : D(R) → D(S) is defined by X• 7→ F (iX
•). Further, if F (X•) is acyclic whenever

X• is acyclic, then F induces a triangle functor D(F ) : D(R) → D(S), X• 7→ F (X•). In

this case, up to natural isomorphism, LF = RF = D(F ), and D(F ) is called the derived

functor of F .

Let M• be a complex of R-S-bimodules. We denote by M• ⊗L
S − the left derived

functor of M• ⊗•
S −, and by RHomR(M

•,−) the right derived functor of Hom•
R(M

•,−).

Note that (M• ⊗L
S −,RHomR(M

•,−)) is an adjoint pair of triangle functors. If Y ∈
S-Mod and X ∈ R-Mod, we denote M• ⊗•

S Y and Hom•
R(M

•, X) simply by M• ⊗S Y

and HomR(M
•, X), respectively.

Let LF denote the full subcategory of K (R) consisting of all complexes X• such

that the chain map F (αX•) : F (pX
•) → F (X•) is a quasi-isomorphism in K (S), and

RF the full subcategory of K (R) consisting of all complexes X• such that the chain

map F (βX•) : F (X•) → F (iX
•) is a quasi-isomorphism in K (S).

The following result on LF and RF is freely used, but not stated explicitly in the

literature. Here, we arrange it as a lemma for later reference. For the idea of its proof,

we refer to [33, Generalized Existence Theorem 10.5.9].

Lemma 2.1. Let F : K (R) → K (S) be a triangle functor. Then the following

hold :

(1) There exists a commutative diagram of triangle functors :

K (R)P
≃ //

≃
��

D(R)

LF
��

LF /(LF ∩ K (R)C)
D(F ) // D(S)

where LF /(LF ∩K (R)C) denotes the Verdier quotient of LF by LF ∩K (R)C , and where

D(F ) is defined by X• 7→ F (X•) for X• ∈ LF .

(2) There exists a commutative diagram of triangle functors :

K (R)I
≃ //

≃
��

D(R)

RF
��

RF /(RF ∩ K (R)C)
D(F ) // D(S)

where RF /(RF ∩ K (R)C) denotes the Verdier quotient of RF by RF ∩ K (R)C , and

where D(F ) is defined by X• 7→ F (X•) for X• ∈ RF .
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Note that if F commutes with arbitrary direct sums, then LF is closed under arbi-

trary direct sums in K (R). Dually, if F commutes with arbitrary direct products, then

RF is closed under arbitrary direct products in K (R).

From Lemma 2.1, up to natural isomorphism, the action of the functor LF (respec-

tively, RF ) on a complex X• in LF (respectively, RF ) is the same as that of the functor

F on X•.

Corollary 2.2. Let R and S be two rings. Suppose that (F,G) is a pair of

adjoint triangle functors with F : K (S) → K (R) and G : K (R) → K (S). Let

θ : FG → IdK (R) and ε : (LF )(RG) → IdD(R) be the counit adjunctions. If X• ∈ RG

and G(X•) ∈ LF , then there exists a commutative diagram in D(R):

(LF )(RG)(X•)
εX• //

≃
��

X•

FG(X•)
θX• // X•

2.3. Relative Mittag-Leffler modules.

Now, we recall the definition of Mittag-Leffler modules (see [19], [3]).

Definition 2.3. Let X be a class of R-modules. A right R-moduleM is X -Mittag-

Leffler if for any nonempty set {Xi | i ∈ I} of modules in X the canonical map

ρI : M ⊗R

∏
i∈I

Xi −→
∏
i∈I

M ⊗R Xi, m⊗ (xi)i∈I 7→ (mxi)i∈I for m ∈M, xi ∈ Xi,

is injective. If X just consists of a single module X, then we say that M is X-Mittag-

Leffler.

A right R-module M is strongly R-Mittag-Leffler if the m-th syzygy of M is R-

Mittag-Leffler for every m ≥ 0.

By [19, Theorem 1], a right R-module M is R-Mittag-Leffler if and only if, for

any finitely generated submodule X of MR, the inclusion X → M factorizes through

a finitely presented right R-module. This implies that if M is finitely presented, then

it is R-Mittag-Leffler. Actually, for such a module M , the above map ρI is always

bijective (see [17, Theorem 3.2.22]). Further, if the ring R is right noetherian, then each

right R-module is R-Mittag-Leffler since each finitely generated right R-module is finitely

presented.

Lemma 2.4. Let R be a ring and M a right R-module.

(1) If M is R-Mittag-Leffler, then so is each module in Add(MR). In particular,

each projective right R-module is R-Mittag-Leffler.

(2) The first syzygy of M in Rop-Mod is R-Mittag-Leffler if and only if

TorR1 (M,RI) = 0 for every nonempty set I.

(3) M is strongly R-Mittag-Leffler if and only if M is R-Mittag-Leffler and

TorRi (M,RI) = 0 for each i ≥ 1 and every nonempty set I.



523(175)

Good tilting modules and recollements of derived module categories, II 523

(4) If M is finitely generated, then M is strongly R-Mittag-Leffler if and only if M

has a finitely generated projective resolution.

Proof. (1) follows from the fact that tensor functors commute with direct sums.

(2) Note that the first syzygy ΩR
op (M) of M depends on the choice of projective

presentations of MR. However, the “R-Mittag-Leffler” property of ΩR
op (M) is indepen-

dent of the choice of projective presentations of MR. This is due to (1) and Schanuel’s

Lemma in homological algebra.

We choose an exact sequence

0 −→ K1
f−→ P1 −→M −→ 0

of right R-modules with P1 projective, and shall show that K1 is R-Mittag-Leffler if and

only if TorR1 (M,RI) = 0 for any nonempty set I. Obviously, we can construct the exact

commutative diagram:

0 // TorR1 (M,RI) // K1 ⊗R R
I f⊗1 //

ρ2

��

P1 ⊗R R
I //

ρ1

��

M ⊗R R
I //

��

0

0 // K1
I fI

// P1
I // M I // 0

where ρi, 1 ≤ i ≤ 2, are the canonical maps (see Definition 2.3). Since the projective

module P1 is R-Mittag-Leffler by (1), the map ρ1 is injective. This means that ρ2 is

injective if and only if so is f ⊗ 1. Clearly, the former is equivalent to saying that K1

is R-Mittag-Leffler, while the latter is equivalent to TorR1 (M,RI) = 0. This finishes the

proof of (2).

(3) For each i ≥ 0 and each nonempty set I, we have TorRi+1(M,RI) ≃
TorR1 (Ω

i
R

op (M), RI). Now (3) follows immediately from (2).

(4) follows from the fact that a finitely generated right R-module is finitely presented

if and only if it is R-Mittag-Leffler (see [19]). □

A special class of strongly Mittag-Leffler modules is the class of tilting modules.

Lemma 2.5. If M is a tilting right R-module, then M is strongly R-Mittag-Leffler.

Proof. Let L := {Y ∈ R
op

-Mod | ExtiRop (M,Y ) = 0 for all i ≥ 1} and M :=

{X ∈ R
op

-Mod | Ext1Rop (X,Y ) = 0 for all Y ∈ L}. Then (M,L) is the tilting cotorsion

pair in R
op

-Mod induced by M . Let C := {Z ∈ R-Mod | TorR1 (X,Z) = 0 for all X ∈
M}. It is shown in [3, Corollary 9.8] (see also [3, Theorem 9.5]) that each module

X ∈ M is strict L-stationary (see [3, Section 8] for definition) and thus C-Mittag-Leffler.

Since M contains MR and is closed under taking syzygies in R
op

-Mod, Ωm
R

op (M) ∈ M
for m ≥ 0. Consequently, Ωm

R
op (M) is C-Mittag-Leffler and therefore R-Mittag-Leffler

because RR belongs to C. Thus M is strongly R-Mittag-Leffler. □

By Lemma 2.5 and Lemma 2.4(4), a tilting right R-module is classical if and only if

it is finitely generated.
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3. Homological subcategories of derived module categories.

In this section, we shall give the definitions of bireflective and homological subcat-

egories of derived module categories. In particular, we shall establish a few applicable

criterions for bireflective subcategories to be homological.

Let λ : R → S be a homomorphism of rings. We denote by λ∗ : S-Mod → R-Mod

the restriction functor induced by λ, and by D(λ∗) : D(S) → D(R) the derived functor

of the exact functor λ∗.

Recall that λ is a ring epimorphism if λ∗ : S-Mod → R-Mod is fully faithful, or

equivalently, the multiplication map S ⊗R S → S is an isomorphism. A homomorphism

λ : R → S of rings is homological (see [18]) if and only if the functor D(λ∗) : D(S) →
D(R) is fully faithful, or equivalently S ⊗L

R S ≃ S in D(S). Note that D(λ∗) has a left

adjoint S ⊗L
R − and a right adjoint RHomR(S,−).

Let Y be a full triangulated subcategory of D(R). Then Y is said to be bireflective

if the inclusion Y → D(R) admits both a left adjoint and a right adjoint; and homological

if there is a homological ring epimorphism λ : R→ S such that D(λ∗) induces a triangle

equivalence from D(S) to Y .

If Y is homological in D(R), then it is bireflective, while bireflective categories are

closely related to recollements, that is, a full triangulated subcategory Y of D(R) is

bireflective if and only if there exists a recollement of triangulated categories of the form

Y
i∗ // D(R) //

bb
{{

X
ee

yy

where i∗ is the inclusion functor (see [28, Chapter 9], [9, Chapter I.2], [30, Section 2.1]

or [11, Section 2.3]).

Recollements were first introduced by Beilinson, Bernstein and Deligne in [8] to

study the triangulated categories of perverse sheaves over singular spaces, and later were

used by Cline, Parshall and Scott in [14] to stratify the derived categories of quasi-

hereditary algebras. For our purpose in this section, we will focus on a special class

of recollements of triangulated categories. Here, by a recollement of triangulated cate-

gories, we mean that there are six triangle functors between triangulated categories in

the diagram:

Y
i∗=i! // D(R)

j!=j∗ //

i!

``

i∗

��
X

j∗

bb

j!

��

such that

(1) (i∗, i∗), (i!, i
!), (j!, j

!) and (j∗, j∗) are adjoint pairs,

(2) i∗, j∗ and j! are fully faithful functors,

(3) i!j∗ = 0 (and thus also j!i! = 0 and i∗j! = 0), and

(4) for each object X ∈ D(R), there are two canonical distinguished triangles in

D(R):

i!i
!(X) −→ X −→ j∗j

∗(X) −→ i!i
!(X)[1], j!j

!(X) −→ X −→ i∗i
∗(X) −→ j!j

!(X)[1],
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where i!i
!(X) → X and j!j

!(X) → X are counit adjunction morphisms, and where

X → j∗j
∗(X) and X → i∗i

∗(X) are unit adjunction morphisms.

From now on, we assume that Y is a bireflective subcategory of D(R), and define

E := Y ∩R-Mod.

It is easy to see that Y is closed under isomorphisms, arbitrary direct sums and

products in D(R). This implies that E also has the above properties in R-Mod. Moreover,

E always admits the “2 out of 3” property: For an arbitrary short exact sequence in

R-Mod, if any two of its three terms belong to E , then the third one belongs to E . Thus
E is an abelian subcategory of R-Mod if and only if E is closed under kernels (respectively,

cokernels) in R-Mod. Since E is closed under isomorphisms, direct sums and products

in R-Mod, it follows from [1, Theorem 2.4] that E is an abelian subcategory of R-Mod if

and only if there exists a unique ring epimorphism λ : R → S (up to equivalence) such

that E is equal to Im(λ∗).

Let i∗ : Y → D(R) be the inclusion functor with i∗ : D(R) → Y as its left adjoint.

Define Λ := EndD(R)(i
∗(R)). Then, associated with Y , there is a ring homomorphism

defined by

δ : R −→ Λ, r 7→ i∗(·r) for r ∈ R,

where ·r : R → R is the right multiplication by r map. This induces a functor δ∗ :

Λ-Mod → R-Mod, called the restriction functor.

Lemma 3.1. (1) For each Y • ∈ Y , we have Hn(Y •) ∈ Im(δ∗) for all n ∈ Z. In

particular, Hn(i∗(R)) is an R-Λ-bimodule for all n ∈ Z.
(2) Let ηR : R→ i∗i

∗(R) be the unit adjunction morphism with respect to the adjoint

pair (i∗, i∗). Then there exists an isomorphism ψ : Λ → H0(i∗(R)) of R-Λ-bimodules such

that δψ = H0(ηR).

(3) If H0(i∗(R)) ∈ Y , then Hn(i∗(R)) = 0 for all n ≥ 1, the map δ is a ring

epimorphism and

Y = {Y • ∈ D(R) | Hm(Y •) ∈ Im(δ∗) for all m ∈ Z}.

Proof. The proof of Lemma 3.1 is motivated by the one in [29, Section 6 and

Section 7] where Y is related to a set of two-term complexes in C (R-proj).

By our convention, the full subcategory Im(δ∗) of R-Mod is required to be closed

under isomorphisms in R-Mod.

(1) Let Y • ∈ Y . Then the following isomorphisms hold for each n ∈ Z:

HomD(R)(i
∗(R), Y •[n])

≃−→ HomD(R)(R, i∗(Y
•)[n]) = HomD(R)(R, Y

•[n]) ≃ Hn(Y •),

where the first isomorphism is given by HomD(R)(ηR, Y
•[n]), which is actually an isomor-

phism of R-modules. Since HomD(R)(i
∗(R), Y •[n]) is a left Λ-module, Hn(Y •) ∈ Im(δ∗).

If Y • = i∗(R), then the composition of the isomorphisms

HomD(R)(i
∗(R), i∗(R)[n]) ≃ HomD(R)(R, i∗i

∗(R)[n])

= HomD(R)(R, i
∗(R)[n]) ≃ Hn(i∗(R)) (∗)
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is an isomorphism of R-Λ-bimodules. Thus Hn(i∗(R)) is an R-Λ-bimodule.

(2) In (∗), taking n = 0 yields an isomorphism ψ : Λ → H0(i∗(R)) of R-Λ-bimodules.

Note that there is the commutative diagram of R-modules:

HomR(R,R)
i∗ //

HomD(R)(R,ηR) ))SSS
SSS

SSS
SSS

SS
HomD(R)(i

∗(R), i∗(R))

≃
��

HomD(R)(R, i∗i
∗(R))

Now, identifying HomR(R,R), HomD(R)(R, i∗i
∗(R)) and HomD(R)(R, ηR) with R,

H0(i∗(R)) and H0(ηR), respectively, we get δψ = H0(ηR).

(3) Define

Y ′ := {Y • ∈ D(R) | Hm(Y •) ∈ Im(δ∗) for all m ∈ Z}.

It follows from (1) that Y ⊆ Y ′.

Suppose H0(i∗(R)) ∈ Y . We shall prove Y ′ ⊆ Y , and consequently, Y = Y ′.

In fact, from (2) we have Λ ≃ H0(i∗(R)) as R-modules, and so RΛ ∈ Y . Note

that the derived functor D(δ∗) : D(Λ) → D(R) admits a right adjoint, and therefore

it commutes with arbitrary direct sums. Since Y is a full triangulated subcategory of

D(R) closed under arbitrary direct sums in D(R), it follows from D(Λ) = Tria(ΛΛ) and

RΛ ∈ Y that Im(D(δ∗)) ⊆ Y . In particular, Im(δ∗) ⊆ Y .

Now, we show Y ′ ⊆ Y .

Recall that Y is a full triangulated subcategory of D(R) closed under arbitrary

direct sums and direct products in D(R). Therefore it is closed under taking homotopy

limits and homotopy colimits in D(R). Observe that each complex can be obtained

from bounded complexes by taking homotopy limits and homotopy colimits, while each

bounded complex can be generated by its cohomologies via canonical truncations (see

the proof of [4, Lemma 4.6]). Since Im(δ∗) ⊆ Y , we have Y ′ ⊆ Y . Thus Y = Y ′, as

desired.

Next, we show Hn(i∗(R)) = 0 for all n ≥ 1. The idea of the proof given here is

essentially taken from [29, Lemma 6.4].

On the one hand, from the adjoint pair (i∗, i∗), we obtain a triangle in D(R):

X• −→ R
ηR−→ i∗(R) −→ X•[1].

Evidently, the unit ηR induces an isomorphism HomD(R)(i
∗(R), Y •[n]) ≃

HomD(R)(R, Y
•[n]) for each Y • ∈ Y and n ∈ Z. This implies that HomD(R)(X

•, Y •[n])

= 0 for Y • ∈ Y and n ∈ Z.
On the other hand, by the canonical truncation at degree 0, we obtain a distinguished

triangle of the form:

i∗(R)≤0 α−→ i∗(R)
β−→ i∗(R)≥1 −→ i∗(R)≤0[1]

in D(R) such that
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Hs
(
i∗(R)≤0

)
≃

{
0 if s ≥ 1,

Hs(i∗(R)) if s ≤ 0,
and

Ht
(
i∗(R)≥1

)
≃

{
0 if t ≤ 0,

Ht(i∗(R)) if t ≥ 1.

It follows that ηRβ = 0 and there exists a homomorphism γ : R → i∗(R)≤0 with γ α =

ηR. Due to i∗(R) ∈ Y = Y ′, we get i∗(R)≤0 ∈ Y and HomD(R)(X
•, i∗(R)≤0) = 0.

Consequently, there exists a homomorphism θ : i∗(R) → i∗(R)≤0 such that γ = ηR θ. So,

we have the diagram in D(R):

i∗(R)≤0

α

��
X• // R

γ

;;v
v

v
v

v

0

##H
H

H
H

H
ηR // i∗(R)

θ

]]

//

β

��

X•[1]

i∗(R)≥1

��
i∗(R)≤0[1]

with ηRθ α = γ α = ηR. It follows from the isomorphism

HomD(R)(ηR, i
∗(R)) : HomD(R)(i

∗(R), i∗(R)) −→ HomD(R)(R, i
∗(R))

(see (∗) in (1)) that θα = Idi∗(R) and

Hn(θα) = Hn(θ)Hn(α) = IdHn(i∗(R)) for any n ∈ Z.

This means that Hn(θ) : Hn(i∗(R)) → Hn( i∗(R)≤0) is injective. Observe that

Hn( i∗(R)≤0) = 0 for n ≥ 1. Hence Hn(i∗(R)) = 0 for n ≥ 1.

Finally, we prove that δ : R→ Λ is a ring epimorphism.

In fact, δ is a ring epimorphism if and only if Λ⊗RCoker(δ) = 0 (see [31, Proposition

1.2, p.225]) if and only if HomΛ(Λ⊗R Coker(δ),M) ≃ HomR(Coker(δ),M) = 0 for every

Λ-module M if and only if HomR(δ,M) is injective for all Λ-module M . To prove that

HomR(δ,M) is injective, we shall use the commutative diagram in (2) and show that the

induced map

HomR

(
H0(ηR),M

)
: HomR

(
H0(i∗(R)),M

)
−→ HomR(R,M)

is injective. That is, we have to prove that if fj : H
0(i∗(R)) →M , with j = 1, 2, are two

homomorphisms in R-Mod such that H0(ηR)f1 = H0(ηR)f2, then f1 = f2.

Now, we describe the map H0(ηR). Recall that Hn(i∗(R)) = 0 for all n ≥ 1. So,

without loss of generality, we can assume that i∗(R) is of the form (up to isomorphism

in D(R))
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i∗(R) : · · · −→ V −n d−n

−→ V −n+1 −→ · · · −→ V −1 d−1

−→ V 0 −→ 0 −→ · · ·

By canonically truncating the above sequence, we obtain the distinguished triangle in

D(R):

V • ≤−1 −→ i∗(R)
π−→ H0(i∗(R)) −→ V • ≤−1[1] (⋆)

where V • ≤−1 is of the form:

· · · −→ V −n −→ V −n+1 −→ · · · −→ V −2 −→ Ker(d−1) −→ 0 −→ · · ·

and π is the chain map induced by the canonical surjection V 0 → H0(i∗(R)) =

Coker(d−1). Applying H0(−) = HomD(R)(R,−) to (⋆), we see that H0(ηR) = ηR π

in D(R) and that H0(π) is an isomorphism of R-modules.

Suppose that H0(ηR)f1 = H0(ηR)f2 : R → M with fi : H0(i∗(R)) → M for

j = 1, 2. Then ηRπf1 = ηRπf2 in D(R). Note that M is a Λ-module and Im(δ∗) ⊆ Y .

Thus RM ∈ Y . Since the unit ηR : R → i∗i
∗(R) = i∗(R) induces an isomorphism

HomD(R)(i
∗(R),M) ≃ HomD(R)(R,M), we obtain π f1 = π f2 and H0(π)f1 = H0(π)f2.

It follows from the isomorphism of H0(π) that f1 = f2. Thus HomR(H
0(ηR),M) is

injective and δ is a ring epimorphism. This finishes the proof of (3). □

When a bireflective subcategory in a derived module category is homological was

discussed in the literature, for example, see [4, Proposition 1.7], [11, Proposition 3.6] and

[7, Theorem 6.1]. In the following, we provide a slightly more general characterization

of homological subcategories. This will be applied in Section 4.

Lemma 3.2. Let Y be a bireflective subcategory of D(R), and let i∗ : D(R) → Y
be a left adjoint of the inclusion Y ↪→ D(R). Then the following are equivalent :

(1) Y is homological.

(2) Hm(i∗(R)) = 0 for any m ̸= 0.

(3) H0(i∗(R)) ∈ Y and Hm(i∗(R)) = 0 for any m < 0.

(4) H0(i∗(R)) ∈ Y and δ : R→ EndD(R)(i
∗(R)) is a homological ring epimorphism.

(5) There is a ring epimorphism λ : R→ S such that RS ∈ Y and i∗(R) is isomor-

phic in D(R) to a complex Z• := (Zn)n∈Z with Zi ∈ S-Mod for i = 0, 1.

(6) E := Y ∩R-Mod is an abelian subcategory of R-Mod such that i∗(R) is isomorphic

in D(R) to a complex Z• := (Zn)n∈Z with Zi ∈ E for i = 0, 1.

In particular, if one of the above conditions is fulfilled, then Y can be realized as the

derived category of the ring EndD(R)(i
∗(R)) via δ.

Proof. It follows from the proof of [4, Proposition 1.7] that (1) and (2) are

equivalent, and that (2) implies both (3) and (4). By Lemma 3.1(3), (3) implies (2).

Now, we show that (4) implies (1). Since H0(i∗(R)) ∈ Y , it follows from Lemma

3.1(3) that Y = {Y • ∈ D(R) | Hm(Y •) ∈ Im(δ∗) for all m ∈ Z}, where δ : R →
Λ := EndD(R)(i

∗(R)) is the associated homomorphism of rings. By assumption, δ is

a homological ring epimorphism, and therefore D(δ∗) : D(Λ) → D(R) is fully faithful.

Furthermore, we know from [4, Lemma 4.6] that Im(D(δ∗)) = {Y • ∈ D(R) | Hm(Y •) ∈
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Im(δ∗) for all m ∈ Z}. Thus Y = Im(D(δ∗)) ⊆ D(R), that is, Y is homological by

definition. Hence (4) implies (1).

Consequently, all conditions (1)–(4) are equivalent.

Note that (5) and (6) are equivalent because E is an abelian subcategory of R-Mod

if and only if there is a ring epimorphism λ : R→ S such that E = Im(λ∗) (for example,

see [1, Theorem 2.4]).

In the following, we shall prove that (1) implies (5), and that (5) implies (2).

Suppose that Y is homological, that is, there exists a homological ring epimorphism

λ : R → S such that the functor D(λ∗) : D(S) → D(R) induces a triangle equivalence

from D(S) to Y . Thus Y = Im(D(λ∗)). Since i
∗(R) ∈ Y , i∗(R) ∈ Im(D(λ∗)). It follows

that there exists a complex Z• := (Zn)n∈Z ∈ C (S) such that i∗(R) ≃ Z• in D(R). This

shows (5).

Now, we show that (5) implies (2). The idea of the proof arises essentially from the

proof of [11, Proposition 3.6].

Let λ : R → S be a ring epimorphism satisfying (5). We may identify Im(λ∗) with

S-Mod since λ∗ : S-Mod → R-Mod is fully faithful. Let Z• be a complex in C (R) such

that Z• ≃ i∗(R) in D(R). We may assume Z• := (Zn, dn)n∈Z such that Zn ∈ S-Mod

for n = 0, 1, and define φ = HomD(R)(λ,Z
•) : HomD(R)(S,Z

•) → HomD(R)(R,Z
•). We

claim that the map φ is surjective.

In fact, there is a commutative diagram:

HomK (R)(S,Z
•)

q1 //

φ′

��

HomD(R)(S,Z
•)

φ

��
HomK (R)(R,Z

•)
q2 // HomD(R)(R,Z

•),

where φ′ = HomK (R)(λ,Z
•) and where q1 and q2 are induced by the localization functor

q : K (R) → D(R). Note that q2 is a bijection. So, to prove that φ is surjective, it is

sufficient to show that φ′ is surjective.

Let f̄• := (f i) ∈ HomK (R)(R,Z
•) with (f i)i∈Z a chain map from R to Z•. Then

f i = 0 for any i ̸= 0 and f0d0 = 0. Since Z0 is an S-module, we can define g : S → Z0

by s 7→ s (1)f0 for s ∈ S. Then g is a homomorphism of R-modules with f0 = λg, as is

shown in the visual diagram:

R
λ //

f0

��

S
g

}}|
|
|
|

· · · // Z−1 d−1
// Z0 d0

// Z1 d1
// Z2 // · · ·

Since λ : R → S is a ring epimorphism and Z1 is an S-module, the induced map

HomR(λ, Z
1) : HomR(S,Z

1) → HomR(R,Z
1) is a bijection. Thus, from this bijection

together with λgd0 = f0d0 = 0, it follows that gd0 = 0. Now, we define a morphism

ḡ• := (gi) ∈ HomK (R)(S,Z
•), where (gi)i∈Z is the chain map with g0 = g and gi = 0

for all i ̸= 0. Then f̄• = λḡ•. This shows that φ′ is surjective. Consequently, the
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map φ is surjective, and the induced map HomD(R)(λ, i
∗(R)) : HomD(R)(S, i

∗(R)) →
HomD(R)(R, i

∗(R)) is surjective since Z• ≃ i∗(R) in D(R).

Finally, if i∗(R) ≃ S in D(R), then Hm(i∗(R)) ≃ Hm(S) = 0 for all m ̸= 0 and (2)

follows. So, it suffices to prove i∗(R) ≃ S in D(R).

Indeed, let i∗ : Y → D(R) be the inclusion and ηR : R → i∗i
∗(R) the unit with

respect to the adjoint pair (i∗, i∗). Clearly, i∗(R) = i∗i
∗(R) in D(R). Since we have

proved that HomD(R)(λ, i
∗(R)) is surjective, there exists a homomorphism v : S →

i∗i
∗(R) in D(R) such that ηR = λ v. Furthermore, since RS belongs to Y by assumption,

HomD(R)(ηR, S) : HomD(R)(i
∗(R), S) → HomD(R)(R,S) is an isomorphism. Thus there

exists a homomorphism u : i∗i
∗(R) → S in D(R) such that λ = ηR u. This yields the

commutative diagram in D(R):

R

ηR

��

R

λ

��

R

ηR

��
i∗i

∗(R)
u //___ S

v //___ i∗i
∗(R)

which shows ηR = ηRuv and λ = λvu. Since HomD(R)(ηR, i
∗(R)):

HomD(R)(i
∗(R), i∗(R)) → HomD(R)(R, i∗i

∗(R)) is an isomorphism, uv = 1i∗i∗(R). Note

that HomR(λ, S) : HomR(S, S) → HomR(R,S) is bijective since λ : R → S is a ring

epimorphism. It follows from λ = λvu that vu = 1S . Thus the map u is an isomorphism

in D(R), and i∗(R) = i∗i
∗(R) ≃ S in D(R). This shows that (5) implies (2).

Hence all statements in Lemma 3.2 are equivalent. □

Now, we recall the definition of generalized localizations at complexes of projective

modules, which were first discussed in [25] under the terminology “homological localiza-

tions”. Here, we restate it without any restriction on complexes.

Definition 3.3. Let R be a ring, and let Σ be a set of complexes in C (R). A

homomorphism λΣ : R → RΣ of rings is called a generalized localization of R at Σ

provided that

(1) λΣ is Σ-exact, that is, if P • belongs to Σ, then RΣ ⊗R P
• is exact as a complex

over RΣ, and

(2) λΣ is universally Σ-exact, that is, if S is a ring together with a Σ-exact homo-

morphism φ : R → S, then there exists a unique ring homomorphism ψ : RΣ → S such

that φ = λΣψ.

If Σ consists of complexes in C b(R-proj), then, for each P • ∈ Σ, the complex

RΣ ⊗R P • is actually split exact as a complex over RΣ since RΣ ⊗R P i is a projective

RΣ-module for each i. If Σ consists only of two-term complexes in C b(R-proj), then the

generalized localization of R at Σ is nothing else than the universal localization of R at Σ

in the sense of Cohn (see [15]), which appears often in algebraic K-theory and topology

[29]. Note that universal localizations may not be homological, but always exist, while

generalized localizations may not exist in general (see [25, Example 15.2]).

Suppose that U is a set of R-modules each of which possesses a finitely generated

projective resolution of finite length. For each U ∈ U , we choose such a projective
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resolution pU of finite length, and set Σ := {pU | U ∈ U} ⊆ C b(R-proj), and let RU
be the generalized localization of R at Σ. It is known that RU does not depend on the

choice of projective resolutions of U . Thus, we may speak of the generalized localization

of R at U if exists.

Lemma 3.4. Let Σ be a set of complexes in C b(R-proj). Suppose that the general-

ized localization λΣ : R→ RΣ of R at Σ exists. Then :

(1) For any homomorphism φ : RΣ → S of rings, the ring homomorphism λΣφ :

R→ S is Σ-exact.

(2) The ring homomorphism λΣ is a ring epimorphism.

(3) Define Σ∗ := {HomR(P
•, R) | P • ∈ Σ}. Then λΣ is also the generalized local-

ization of R at the set Σ∗. In particular, RΣ∗ ≃ RΣ as rings.

Proof. (1) For P • ∈ Σ, we have the isomorphisms of complexes of S-modules:

S ⊗R P
• ≃ (S ⊗RΣ RΣ)⊗R P

• ≃ S ⊗RΣ (RΣ ⊗R P
•).

Since RΣ ⊗R P • is split exact in C (RΣ), S ⊗R P • is split exact in C (S). This means

that the ring homomorphism λΣφ is Σ-exact.

(2) Assume that φi : RΣ → S is a ring homomorphism for i = 1, 2, such that

λΣφ1 = λΣφ2. It follows from (1) that λΣφi is Σ-exact. By Definition 3.3(2), we obtain

φ1 = φ2. Thus λΣ is a ring epimorphism.

(3) Note that P • is in C b(R-proj). It follows that, for any homomorphism R → S

of rings, there are the isomorphisms of complexes:

HomR(P
•, R)⊗RS ≃ HomR(P

•, S) ≃ HomR(P
•,HomS(SSR, S)) ≃ HomS(S⊗RP

•, S).

This implies that the complex HomR(P
•, R)⊗R S is (split) exact in C (Sop) if and only

if so is the complex S ⊗R P
• in C (S). Now, (3) follows immediately from the definition

of generalized localizations. □

Finally, we mention the following known result (see, for example, [9, Chapter III,

Theorem 2.3; Chapter IV, Proposition 1.1]). It is related to generalized localizations.

Lemma 3.5. Let Σ be a set of complexes in C b(R-proj). Define Y :=

Ker(HomD(R)(Tria(Σ),−)). Then Y is bireflective and equal to the full subcategory

of D(R) consisting of complexes Y • with HomD(R)(P
•, Y •[n]) = 0 for every P • ∈ Σ and

n ∈ Z.

In the rest of this section, we are interested in the bireflective subcategory Y in

Lemma 3.5. This yields a recollement of triangulated categories:

Y
i∗ // D(R) //

bb

i∗

{{
Tria(Σ)

ff

j!

xx

where i∗ and j! are inclusions. Recall that there is a ring homomorphism δ : R→ Λ with

Λ := EndD(R)(i
∗(R)).
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Proposition 3.6. If H0(i∗(R)) ∈ Y , then δ is the generalized localization of R

at Σ. In particular, if Y is homological, then δ is the generalized localization of R at Σ.

Proof. We first show that δ always has the property: For any Σ-exact ring ho-

momorphism φ : R → S, there exists a (not necessarily unique) ring homomorphism

ψ : Λ → S such that φ = δψ.

Let φ : R → S be a Σ-exact ring homomorphism. Since S ⊗R P • is exact in

C (S) for P • ∈ Σ, we have S ⊗L
R P • = S ⊗R P • ≃ 0 in D(S). Further, the functor

S ⊗L
R − : D(R) → D(S) commutes with arbitrary direct sums, so S ⊗L

R X
• ≃ 0 for each

X• ∈ Tria(Σ).

Let D(R)/Tria(Σ) be the Verdier quotient of D(R) by the full triangulated subcate-

gory Tria(Σ). Then the functor i∗ induces a triangle equivalence: D(R)/Tria(Σ)
≃−→ Y .

Since S ⊗L
R − sends Tria(Σ) to zero, there exists a triangle functor F : Y → D(S)

together with a natural isomorphism of triangle functors:

Φ : S ⊗L
R − ≃−→ F i∗ : D(R) −→ D(S).

This clearly induces the canonical ring homomorphisms:

Λ := EndD(R)(i
∗(R))

F−→ EndD(S)

(
F (i∗(R))

)
≃ EndD(S)(S ⊗L

R R) ≃ EndD(S)(S) ≃ S

where the first isomorphism is induced by the natural isomorphism ΦR : S ⊗L
R R →

F (i∗(R)) in D(S). Now, we define ψ : Λ → S to be the composition of the above

homomorphisms of rings. Then φ = δψ.

If H0(i∗(R)) ∈ Y , then the map δ is a ring epimorphism by Lemma 3.1(3). This

implies that ψ is unique in φ = δψ. Thus δ satisfies the condition (2) in Definition 3.3.

It remains to prove that δ is Σ-exact.

In fact, by Lemma 3.1(2), we have Λ ≃ H0(i∗(R)) as R-modules and RΛ ∈ Y .

Note that HomD(R)(X
•, Y •) = 0 for X• ∈ Tria(Σ) and Y • ∈ Y . In particular,

HomD(R)(P
•,Λ[n]) = 0 for any P • ∈ Σ and n ∈ Z. It follows that Hn(HomR(P

•,Λ)) ≃
HomK (R)(P

•,Λ[n]) ≃ HomD(R)(P
•,Λ[n]) = 0, and therefore the complex HomR(P

•,Λ)

is exact. Since P • ∈ C b(R-proj), we have HomR(P
•,Λ) ∈ C b(Λop-proj). This implies

that HomR(P
•,Λ) is split exact, and therefore the complex HomΛop(HomR(P

•,Λ),Λ)

over Λ is split exact. Now, we claim that the latter is isomorphic to the complex Λ⊗RP
•

in C (Λ). Actually, this follows from the following general fact in homological algebra:

For any ring homomorphism δ : R → Λ and P ∈ R-proj, there exists a natural

isomorphism of Λ-modules:

Λ⊗R P −→ HomΛop(HomR(P,Λ),Λ), x⊗ p 7→ [f 7→ x (p)f ]

for x ∈ Λ, p ∈ P and f ∈ HomR(P,Λ).

Consequently, the complex Λ ⊗R P
• is exact in C (Λ), and the homomorphism δ is

Σ-exact. Hence δ is a generalized localization of R at Σ.

If Y is homological, then H0(i∗(R)) ∈ Y by the equivalences of (1) and (4) in

Lemma 3.2, and therefore, the second part of Proposition 3.6 follows. □
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Next, we show that, to judge whether Y is homological, one may check whether the

bireflective subcategory defined by the dual of Σ, is homological. This will be used in

the proof of Theorem 1.1.

Proposition 3.7. Let Σ∗ := {HomR(P
•, R) ∈ C b(Rop-proj) | P • ∈ Σ} and Y ′ :=

Ker(HomD(Rop)(Tria(Σ
∗),−)). Then Y is homological in D(R) if and only if so is Y ′

in D(Rop).

Proof. We only prove the necessity of Proposition 3.7 because its sufficiency can

be proved similarly.

Suppose that Y is homological in D(R). It follows from Lemma 3.2(4) and Propo-

sition 3.6 that δ : R → Λ is not only a homological ring epimorphism, but also the

generalized localization of R at Σ. Moreover, by Lemma 3.4(3), δ is also the generalized

localization of R at Σ∗.

Note that Y ′ is a bireflective subcategory of D(Rop) by Lemma 3.5. Now, let L be

a left adjoint functor of the inclusion Y ′ → D(Rop). To show that Y ′ is homological in

D(Rop), we employ the equivalences of (1) and (4) in Lemma 3.2, and prove that

(a) H0(L(R)) ∈ Y ′ and

(b) the ring homomorphism δ′ : R → Λ′ := EndD(Rop)(L(R)) induced by L is

homological.

Note that under the assumption (a), δ′ is the generalized localization of R at Σ∗

by Proposition 3.6. Since δ is a generalized localization of R at Σ∗, there exists a

ring isomorphism ρ : Λ′ → Λ such that δ = δ′ρ. Note that δ is a homological ring

epimorphism. It follows that δ′ is a homological ring epimorphism. So, it is enough to

show (a).

In fact, by Lemma 3.5, we have

Y ′ = {Y • ∈ D(Rop) | HomD(Rop)

(
HomR(P

•, R), Y •[n]
)
= 0 for all P • ∈ Σ and n ∈ Z}.

Let P • ∈ Σ and set P •∗ := HomR(P
•, R). Then

HomD(Rop)

(
P •∗, Y •[n]

)
≃ Hn

(
RHomR(P

•∗, Y •)
)
≃ Hn

(
Y • ⊗L

R P
•) ≃ Hn

(
Y • ⊗•

R P
•).

Thus

Y ′ = {Y • ∈ D(Rop) | Hn
(
Y • ⊗•

R P
•) = 0 for all P • ∈ Σ and n ∈ Z}.

Since δ : R → Λ is the generalized localization of R at Σ by Proposition 3.6, Hn(Λ ⊗R

P •) = 0 for any P • ∈ Σ and n ∈ Z. This shows ΛR ∈ Y ′. Note that δ : Rop → Λop is

a homological ring epimorphism. Hence D(Λop) can be regarded as a full triangulated

subcategory of D(Rop). Moreover, since D(Λop) = Tria(ΛΛ) and Y ′ is closed under direct

sums in D(Rop), we have D(Λop) ⊆ Y ′. Now, we claim that Hn(L(R)) ∈ Λop-Mod for

all n, and therefore Hn(L(R)) ∈ Y ′ for all n.

Actually, since L(R) ∈ Y ′, we have Hn(L(R)⊗•
R P

•) = 0 for all P • ∈ Σ and n ∈ Z.
Applying HomZ(−,Q/Z) to the complex L(R)⊗•

RP
• of Z-modules, we see that, for all n,
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HomD(R)

(
P •, HomZ(L(R), Q/Z)[n]

)
≃ Hn

(
Hom•

R(P
•, HomZ(L(R),Q/Z))

)
≃ Hn

(
Hom•

Z(L(R)⊗•
R P

•, Q/Z)
)

≃ HomZ
(
H−n(L(R)⊗•

R P
•), Q/Z

)
= 0.

Define W • := HomZ(L(R),Q/Z). Then W • ∈ Y by Lemma 3.5. However, since Y
is homological in D(R) by assumption, Y = D(Λ) by Lemma 3.2. Thus W • ∈ D(Λ)

and H−n(W •) ∈ Λ-Mod. Since H−n(W •) ≃ HomZ(H
n(L(R)),Q/Z), we infer that

Hn(L(R)) ∈ Λop-Mod by the general result:

Let R → S be a ring epimorphism and N be an Rop-module. If

HomZ(N,Q/Z) ∈ S-Mod, then N ∈ Sop-Mod.

For a proof of this result, one may use [33, Exercise 3.2.4] to show that the natural

map N → N ⊗R S is an isomorphism of Rop-modules. □

4. Weak tilting modules and recollements.

This section is devoted to preparations for proofs of our main results in this pa-

per. First, we introduce a special class of modules, called weak tilting modules, which

can be constructed from both good tilting and cotilting modules, and then discuss bire-

flective subcategories (of derived module categories) arising from weak tilting modules.

Finally, we shall describe when these subcategories are homological. In particular, we

shall establish a key proposition, Proposition 4.4, which will be applied in later sections.

Throughout this section, let R be an arbitrary ring, M an R-module and S the

endomorphism ring of RM . Then M becomes naturally an R-S-bimodule. Further, let

n be a natural number.

Definition 4.1. The R-moduleM is called an n-weak tilting module if the follow-

ing conditions are fulfilled:

(R1) There exists an exact sequence of R-modules: 0 → Pn → · · · → P1 → P0 →
M → 0, such that Pi ∈ add(RR) for all 0 ≤ i ≤ n,

(R2) ExtjR(M,M) = 0 for all j ≥ 1, and

(R3) there exists an exact sequence of R-modules

0 −→ RR −→M0
ν−→M1 −→ · · · −→Mn −→ 0

such that Mi ∈ Prod(RM) for all 0 ≤ i ≤ n, and

(R4) the right S-module M is strongly S-Mittag-Leffler (see Definition 2.3).

Classical tilting modules are weak tilting modules. If a weak tilting R-module M

satisfies Prod(RM) = Add(RM) (for example, MS is of finite length), then RM is a

classical tilting module. Moreover, if S is right noetherian, then any right S-module is

S-Mittag-Leffler (see Section 2.3), and thus (R4) is always satisfied.

Let

G := RM ⊗L
S − : D(S) −→ D(R), H := RHomR(M,−) : D(R) −→ D(S) and
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Y := {Y • ∈ D(R) | HomD(R)(M, Y •[m]) = 0 for all m ∈ Z}.

Then Y = Ker(H). Moreover, if M satisfies (R1), then Y is a bireflective subcategory

of D(R) by Lemma 3.5.

If M satisfies both (R1) and (R2), then the pair (G,H) induces a triangle equiv-

alence: D(S)
≃−→ Tria(RM) (see [24, Chapter 5, Corollary 8.4, Theorem 8.5]). Thus,

by Lemma 3.5, Proposition 3.6 and Lemma 3.2, we have the following useful result for

constructing recollements of derived module categories.

Lemma 4.2. Suppose that the R-module M satisfies (R1) and (R2). Then there

exists a recollement :

Y
i∗ // D(R)

H //
bb

i∗

{{
D(S)

ee

G

yy
(∗)

with i∗ being the inclusion.

If Y is homological in D(R), then the generalized localization λ : R → RM of R at

M exists and is homological, which induces a recollement of derived module categories :

D(RM )
D(λ∗) // D(R)

H //
ff

xx
D(S)

ee

G

yy

In the following, we shall consider when Y is homological. In general, this category

may not be homological since the category

E := Y ∩R-Mod = {Y ∈ R-Mod | ExtmR (M,Y ) = 0 for all m ≥ 0}

may not be an abelian subcategory of R-Mod. By Lemma 3.2, whether Y is homological

is completely determined by the cohomology groups of i∗i
∗(R). So, to calculate these

cohomology groups efficiently, we shall use weak tilting modules.

From now on, we assume that RM is a n-weak tilting module, and define M• to be

the complex

· · · −→ 0 −→M0
µ−→M1 −→ · · · −→Mn −→ 0 −→ · · ·

arising from (R3) in Definition 4.1, where Mi is in degree i for 0 ≤ i ≤ n.

For each R-module X, let θX : M ⊗S HomR(M,X) → X be the evaluation map.

Then µ : M0 → M1 induces another homomorphism µ̃ : Coker(θM0) → Coker(θM1) of

R-modules. The kernel of µ̃ will determine when Y is homological.

Lemma 4.3. (1) If X ∈ Prod(RM), then θX is injective and Coker(θX) ∈ E.
(2) There are isomorphisms in D(R):

GH(R) ≃ RM ⊗L
S HomR(M, M•) ≃ RM ⊗S HomR(M, M•).

Moreover,
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Hj(i∗i
∗(R)) ≃

{
0 if j < 0,

Hj+1
(
RM ⊗S HomR(M, M•)

)
if j > 0.

(3) For n = 0, the complex i∗i
∗(R) is isomorphic in D(R) to the stalk complex

Coker(θM0). For n ≥ 1, the complex i∗i
∗(R) is isomorphic in D(R) to a complex of the

form : 0 → E0 → E1 → · · · → En−1 → 0, such that Em ∈ E for 0 ≤ m ≤ n− 1.

Proof. M is an R-S-bimodule with S = EndR(M). So we have an adjoint pair

(G,H) of functors. Let

θ : M ⊗S HomR(M,−) −→ IdR-Mod and ε : GH −→ IdD(R)

be the counit adjunctions with respect to the adjoint pairs (M ⊗S −,HomR(M,−)) and

(G,H), respectively.

For each X• ∈ D(R), it follows from the recollement (∗) in Lemma 4.2 that there

exists a canonical distinguished triangle in D(R):

GH(X•)
εX•−→ X• −→ i∗i

∗(X•) −→ GH(X•)[1].

(1) Suppose X ∈ Prod(RM). To verify that θX is injective, it is sufficient to show

that θMI : M ⊗S HomR(M,M I) → M I is injective for any nonempty set I. Since

HomR(M,M I) ≃ HomR(M,M)I , the injection of θMI is equivalent to saying that the

canonical map ρI : M ⊗S S
I → M I in Definition 2.3 is injective. This holds exactly if

M is S-Mittag-Leffler. Thus θX is injective by (R4).

We prove Coker(θX) ∈ E by showing the existence of the commutative diagram in

D(R):

GH(X)
εX //

≃
��

X // i∗i∗(X) //

≃
��

GH(X)[1]

≃
��

M ⊗S HomR(M,X)
θX // X // Coker(θX) // M ⊗S HomR(M,X)[1]

To check the first square in the above diagram, we define F := RM ⊗S − and G′ :=

HomR(M,−). According to Corollary 2.2, it suffices to prove X ∈ RG′ and G′(X) ∈ LF ,

where the categories RG′ and LF are introduced in Lemma 2.1. Note that X ∈ RG′

is due to the axiom (R2), while G′(X) ∈ LF if and only if TorSj (M,SI) = 0 for any

j > 0 and any set I. However, since M is a weak tilting module, the right S-module M

is strongly S-Mittag-Leffler by (R4), and therefore TorSj (M,SI) = 0 by Lemma 2.4(3).

This implies G′(X) ∈ LF .

With the help of the above diagram and the recollement (∗) in Lemma 4.2, we have

i∗i
∗(X) ∈ Y , and therefore

i∗i
∗(X) ≃ Coker(θX) ∈ Y ∩R-Mod = E .

This finishes the proof of (1).

(2) By (R3) in Definition 4.1, M• is a bounded complex such that each of its terms
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belongs to Prod(RM). Notice that θM• is injective in C (R) since θMi is injective for

each 0 ≤ i ≤ n due to (1). This clearly induces a complex Coker(θM•) of the form:

0 → Coker(θM0)
∂0→ Coker(θM1)

∂1→ · · · → Coker(θMn−1)
∂n−1→ Coker(θMn) → 0 in C (R).

It follows from (R3) that there is a quasi-isomorphism R→M• in K (R). Consequently,

one can easily construct the commutative diagram in D(R):

GH(R)
εR //

≃
��

R

≃
��

// i∗i∗(R) //

≃
��

GH(R)[1]

≃
��

M ⊗S HomR(M,M•)
θM• // M• // Coker(θM•) // M ⊗S HomR(M,M•)[1]

In particular,

i∗i
∗(R) ≃ Coker(θM•) (∗)

in D(R), and therefore Hj(i∗i
∗(R)) ≃ Hj(Coker(θM•)) for any j ∈ Z. This shows

Hj(i∗i
∗(R)) = 0 for j < 0 or j > n. Now, it follows from R ≃M• in D(R) that there is

a triangle in D(R):

M ⊗S HomR(M,M•) −→ R −→ Coker
(
θM•

)
−→M ⊗S HomR(M,M•)[1].

Applying the cohomology functor Hj to this triangle, one gets

Hj(i∗i
∗(R)) ≃ Hj

(
Coker(θM•)

)
≃ Hj+1(M ⊗S HomR(M,M•)) for any j > 0. (∗∗)

Thus (2) follows.

(3) For n = 0, the conclusion follows from i∗i
∗(R) ≃ Coker(θM•) trivially. So we

may assume n ≥ 1. Since the (n+ 1)-term of the complex M ⊗S HomR(M,M•) is zero,

we see from (∗) and (∗∗) that Hn(Coker(θM•)) = 0. This implies that the (n − 1)-th

differential ∂n−1 of the complex Coker(θM•) is surjective. It follows that Coker(θM•) is

isomorphic in D(R) to the complex:

0 −→ Coker(θM0)
∂0−→ Coker(θM1)

∂1−→ · · · −→ Coker(θMn−2)
∂n−2−→ Ker(∂n−1) −→ 0.

(†)
SinceMm ∈ Prod(RM) for 0 ≤ m ≤ n by (R3), it follows from (1) that Coker(θMm) ∈ E .
As E is always closed under kernels of surjective homomorphisms in R-Mod, Ker(∂n−1) ∈
E . This means that (†) is a bounded complex with all of its terms in E .

Consequently, the complex i∗i
∗(R) is isomorphic in D(R) to the complex (†) with

the required form in Lemma 4.3(3). This finishes the proof. □

Remark. By Lemma 4.3(2), up to isomorphism, the cohomology groups

Hj(RM ⊗S HomR(M, M•)) for j ∈ Z are independent of the choice of the complex

M• in (R3) of Definition 4.1.

Proposition 4.4. The following statements are equivalent :
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(1) The full triangulated subcategory Y of D(R) is homological.

(2) The category E is an abelian subcategory of R-Mod.

(3) Hj(RM ⊗S HomR(M, M•)) = 0 for any j ≥ 2.

(4) The kernel of the map µ̃ : Coker(θM0) → Coker(θM1) belongs to E.

Proof. The equivalence of (1) and (2) follows from the one of (1) and (6) in

Lemma 3.2 together with Lemma 4.3(3), while the equivalence of (1) and (3) follows from

the one of (1) and (2) in Lemma 3.2 together with Lemma 4.3(2). Now we prove that (1)

and (4) are equivalent. By Lemma 4.3(2) and the equivalence of (1) and (3) in Lemma

3.2, (1) is equivalent to H0(i∗i
∗(R)) ∈ Y . By the proof of Lemma 4.3(3), H0(i∗i

∗(R)) ≃
H0(Coker(θM•)) ≃ Ker(∂0) = Ker(µ̃), where ∂0 = µ̃. Thus (1) is equivalent to Ker(µ̃) ∈
Y ∩R-Mod = E . □

As a consequence of Proposition 4.4, we have characterizations for Y to be homo-

logical.

Corollary 4.5. (1) If the map µ̃ : Coker(θM0) → Coker(θM1) is surjective, then

Y is homological.

(2) If n = 2, then Y is homological if and only if M ⊗S Ext2R(M,R) = 0.

Proof. (1) E is closed under kernels of surjective homomorphisms in R-Mod, and

both Coker(θM0) and Coker(θM1) belong to E by Lemma 4.3(1). So, if µ̃ is surjective,

then Ker(µ̃) ∈ E , and therefore Y is homological by Proposition 4.4(4).

(2) By Proposition 4.4(3), we have to check Hj(RM ⊗S HomR(M, M•)) = 0 for

j ≥ 2. Note that Hj(M ⊗S HomR(M, M•)) = 0 for all j > n.

By (R2), ExtjR(M,M) = 0 for all j ≥ 1. It follows that ExtjR(M,M I) ≃
ExtjR(M,M)I = 0 for any nonempty set I, and therefore ExtjR(M,X) = 0 for any

X ∈ Prod(M). By (R3), there exists an exact sequence in R-Mod:

0 −→ R −→M0 −→M1 −→ · · · −→Mn −→ 0

with Mi ∈ Prod(M) for 0 ≤ i ≤ n. Since ExtjR(M,X) = 0 for any X ∈ Prod(M) and

j ≥ 1, Hk(HomR(M,M•)) ≃ ExtkR(M,R) for k ≥ 1.

If n = 2, then we consider the complex M ⊗S HomR(M, M•) :

0 −→M ⊗S HomR(M,M0) −→M ⊗S HomR(M,M1) −→M ⊗S HomR(M,M2) −→ 0.

Since RM ⊗S − : S-Mod → R-Mod is right exact, H2(M ⊗S HomR(M, M•)) ≃ M ⊗S

H2(HomR(M, M•)) ≃M ⊗S Ext
2
R(M,R). Now, (2) follows from Proposition 4.4(3). □

An application of Corollary 4.5 is the result.

Corollary 4.6. Suppose that the complex M• decomposes into a direct sum of

U• and V • as complexes of R-modules

U• : · · · −→ 0 −→ U0
s−→ U1 −→ 0 −→ · · · −→ 0 −→ · · · ,
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V • : · · · −→ 0 −→ V0
t−→ V1 −→ · · · −→ Vn −→ 0 −→ · · ·

such that V1 ∈ Add(RM). Then Y is homological.

Proof. By definition, M0 = U0 ⊕ V0, M1 = U1 ⊕ V1 and µ =
(
s 0
0 t

)
. Ac-

cording to Corollary 4.5(1), it suffices to show that s̃ : Coker(θU0) → Coker(θU1) and

t̃ : Coker(θV0) → Coker(θV1) are surjective.

Since Hj(M•) = 0 = Ui for j ≥ 1 and 2 ≤ i ≤ n, the map s is surjective, and

therefore s̃ is surjective. As RM is finitely generated by (R1), the functor HomR(M,−) :

R-Mod → S-Mod commutes with direct sums. So, if X ∈ Add(RM), then θX : M ⊗S

HomR(M,X) → X is an isomorphism. It follows that Coker(θV1) = 0 due to V1 ∈
Add(RM). Thus t̃ is surjective. Now, Corollary 4.6 follows from Corollary 4.5(1). □

As another consequence of Proposition 4.4, we mention the result.

Corollary 4.7. (1) If M0 ∈ Add(RM), then RM is a classical tilting module.

(2) If n ≤ 1 or M1 ∈ Add(RM), then Y is homological in D(R).

Proof. (1) Suppose thatM0 ∈ Add(RM). Then θM0 :M⊗SHomR(M,M0) →M0

is an isomorphism, and therefore Coker(θM0) = 0. By the proof of Proposition 4.4, we

have H0(i∗i
∗(R)) ≃ Ker(µ̃) = 0. Note that EndD(R)(i

∗(R)) ≃ H0(i∗(R)) = H0(i∗i
∗(R))

as R-modules by Lemma 3.1(2). This implies EndD(R)(i
∗(R)) = 0 and so Y = 0 by

Lemma 3.1(1). Now, it follows from Lemma 4.2 that RHomR(M,−) : D(R) → D(S) is

a triangle equivalence. Consequently, RM is a classical tilting module (see [24, Theorem

4.1]).

(2) follows from Corollary 4.6. □

5. Proofs of Theorem 1.1 and Corollary 1.2.

In this section, we first develop several properties of (good) tilting modules, and

then give a method to construct weak tilting modules. With these preparations in hand,

we will prove Theorem 1.1 and Corollary 1.2.

Throughout this section, A denotes a ring and n is a natural number. In addition, we

assume that T is a good n-tilting A-module with (T1), (T2) and (T3)′ (see Introduction

for notation). Let B := EndA(T ).

First of all, we collect some basic properties of good tilting modules. For proofs, we

refer to [6, Proposition 1.4 and Lemma 1.5].

Lemma 5.1. The following hold true for the tilting module AT .

(1) The torsion class T⊥ := {X ∈ A-Mod | ExtiA(T,X) = 0 for all i ≥ 1} in

A-Mod is closed under arbitrary direct sums in A-Mod.

(2) The right B-module T has a finitely generated projective resolution of length at

most n :

0 −→ HomA(Tn, T ) −→ · · · −→ HomA(T1, T ) −→ HomA(T0, T ) −→ TB −→ 0

with Ti ∈ add(AT ) for all 0 ≤ i ≤ n.
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(3) The map A
op → EndBop (T ), defined by a 7→ [t 7→ at] for a ∈ A and t ∈ T , is an

isomorphism of rings. Moreover, ExtiBop (T, T ) = 0 for all i ≥ 1.

(4) If Tn = 0 in (T3)′, then AT is an (n− 1)-tilting module.

Throughout this section, we define

G := AT ⊗L
B − : D(B) −→ D(A), H := RHomA(T,−) : D(A) −→ D(B),

Q• := · · · −→ 0 −→ HomA(T, T0) −→ HomA(T, T1) −→
· · · −→ HomA(T, Tn) −→ 0 −→ · · ·

where HomA(T, Ti) is of degree i for 0 ≤ i ≤ n, and Q•∗ := HomB(Q
•, B) ∈ C (Bop-proj).

Note that Q•∗ is isomorphic in C b(Bop-proj) to the complex

· · · −→ 0 −→ HomA(Tn, T ) −→ · · · −→ HomA(T1, T ) −→ HomA(T0, T ) −→ 0 −→ · · ·

The following lemma is taken from [6, Theorem2.2], which says that D(A) is not

equivalent to D(B) in general.

Lemma 5.2. The functor H : D(A) → D(B) is fully faithful, and Im(H) =

Ker(HomD(B)(Ker(G),−)).

The next result supplies a way to understand T by some special objects or by

subcategories of derived module categories. In particular, the category Ker(G) is a

bireflective subcategory of D(B).

Lemma 5.3. For the tilting A-module T , we have

(1) H(A) ≃ Q• in D(B) and HomD(B)(Q
•, Q•[m]) = 0 for any m ̸= 0.

(2) Ker(G) = {Y • ∈ D(B) | HomD(B)(Q
•, Y •[i]) = 0 for all i ∈ Z}.

(3) Let j! : Tria(Q
•) → D(B) and i∗ : Ker(G) → D(B) be the inclusions. Then

there exists a recollement of triangulated categories together with a triangle equivalence :

Ker(G)
i∗ // D(B)

j! //
ff

i∗

xx
Tria(Q•)

Gj∗

≃
//

j∗gg

j!

xx
D(A) (⋆)

such that Gj∗ j
! is naturally isomorphic to G.

Proof. Lemma 5.3 is implied in [6]. For the convenience of the reader, we include

a proof here.

(1) By (T3)′, the stalk complex A is quasi-isomorphic in C (A) to the complex T •

of the form:

· · · −→ 0 −→ T0 −→ T1 −→ · · · −→ Tn −→ 0 −→ · · ·

where Ti ∈ add(T ) is in degree i for 0 ≤ i ≤ n. Further, by (T2), we have Ti ∈ T⊥ :=

{X ∈ A-Mod | ExtiA(T,X) = 0 for all i ≥ 1}. It follows from Lemma 2.1(1) that
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H(A) ≃ H(T •) ≃ HomA(T, T
•) = Q• in D(B). Since the functor H is fully faithful by

Lemma 5.2,

HomD(B)(Q
•, Q•[m]) ≃ HomD(B)(H(A),H(A)[m])

≃ HomD(A)(A,A[m]) ≃ ExtmA (A,A) = 0

for any m ̸= 0. This shows (1).

(2) Since Q• ∈ C b(B-proj) and Q•∗ is quasi-isomorphic to TB by Lemma 5.1(2),

there are natural isomorphisms of triangle functors:

RHomB(Q
•,−)

≃−→ Q•∗ ⊗L
B − ≃−→ ZT ⊗L

B − : D(B) −→ D(Z).

Note that Hm(RHomB(Q
•, Y •)) ≃ HomD(B)(Q

•, Y •[m]) for m ∈ Z and Y • ∈ D(B).

This shows (2).

(3) Since Q• ∈ C b(B-proj), we know from (2) and Lemma 3.5 that there exists a

recollement of triangulated categories:

Ker(G)
i∗ // D(B)

j! //
i!ff

i∗

xx
Tria(Q•)

j∗gg

j!

xx
(⋆⋆)

On the one hand, by the correspondence between recollements and TTF (torsion, torsion-

free) triples (see, for example, [11, Section 2.3]), we infer from (⋆⋆) that Im(j∗) =

Ker(HomD(B)(Ker(G),−)) and that the functor j∗ : Tria(Q•) → Im(j∗) is a triangle

equivalence with the restriction of j! to Im(j∗) as its quasi-inverse. On the other hand,

it follows from Lemma 5.2 that Im(H) = Ker(HomD(B)(Ker(G),−)) and the functor

H : D(A) → Im(H) is a triangle equivalence with the restriction of G to Im(H) as its

quasi-inverse. Consequently, Im(j∗) = Im(H) and the composition Gj∗ : Tria(Q•) →
D(A) of j∗ with G is a triangle equivalence.

For any X• ∈ D(B), by the recollement (⋆⋆), there exists a canonical triangle in

D(B) :

i∗i
!(X•) −→ X• −→ j∗j

!(X•) −→ i∗i
!(X•)[1].

Since Im(i∗i
!) = Im(i∗) = Ker(G), G(X•)

≃−→ Gj∗j
!(X•) in D(B). This proves (3). □

Next, we shall investigate when the subcategory Ker(G) of D(B) is homological.

Lemma 5.4. Ker(G) is a homological subcategory of D(B) if and only if

Ker(RHomBop(T,−)) is a homological subcategory of D(Bop).

Proof. In Proposition 3.7, we take R := B and Σ := {Q•}. Then Σ∗ = {Q•∗}.
Since Q•∗ is quasi-isomorphic to TB by Lemma 5.1(2), there is a natural isomorphism of

triangle functors:

RHomBop(T, −)
≃−→ RHomBop(Q•∗, −) : D(Bop) −→ D(Z).
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This implies

Ker
(
RHomBop(T, −)

)
= Ker

(
RHomBop(Q•∗, −)

)
= {Y • | HomD(Bop)(Q

•∗, Y •[m]) = 0 for m ∈ Z}.

Thus Lemma 5.4 follows from Lemma 3.5 and Proposition 3.7. □

Now we point out that each good tilting module can produce a weak tilting module

over its endomorphism ring. This guarantees that we can apply Proposition 4.4 to show

Theorem 1.1.

Lemma 5.5. The right B-module TB is an n-weak tilting module.

Proof. Clearly, proj.dim(TB) ≤ n. Moreover, (R1) and (R2) hold for TB by

Lemmas 5.1(2) and 5.1(3), respectively. Now, we check (R3) for TB .

In fact, according to (T1), the module AT admits a projective resolution of A-

modules:

0 −→ Pn −→ · · · −→ P1 −→ P0
π−→ T −→ 0

with Pi ∈ Add(AA) for 0 ≤ i ≤ n. Since ExtjA(T, T ) = 0 for all j ≥ 1 by (T2), the

sequence

0 −→ B −→ HomA(P0, T ) −→ HomA(P1, T ) −→ · · · −→ HomA(Pn, T ) −→ 0

of right B-modules is exact. Note that HomA(Pi, T ) ∈ Prod(TB) due to Pi ∈ Add(AA).

Thus TB satisfies (R3).

It remains to prove that TB satisfies (R4).

Actually, by Lemma 5.1(3), the map A
op → EndBop (T ), defined by a 7→ [t 7→ at] for

a ∈ A and t ∈ T , is an isomorphism of rings. Further, it follows from Lemma 2.5 that the

right Aop-module T is strongly Aop-Mittag-Leffler. Hence the right EndBop (T )-module

T is strongly EndBop (T )-Mittag-Leffler. Thus, by definition, the Bop-module T is an

n-weak tilting module. □

Proof of Theorem 1.1. Recall that the complex P • is the deleted projective

resolution of AT :

· · · −→ 0 −→ Pn −→ · · · −→ P1 −→ P0 −→ 0 −→ · · ·

appearing in (T1). Here Pi is in degree −i for 0 ≤ i ≤ n.

By Lemma 5.5, T is an n-weak tilting Bop-module and the exact sequence in (R3)

can be chosen as

0 −→ BB −→ HomA(P0, T ) −→ HomA(P1, T ) −→ · · · −→ HomA(Pn, T ) −→ 0.

In particular, the complex M• in Proposition 4.4 can be chosen as

HomA(P
•, T ) : · · · −→ 0 −→ HomA(P0, T ) −→ HomA(P1, T ) −→
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· · · −→ HomA(Pn, T ) −→ 0 −→ · · ·

Let

H = RHomBop(T,−) : D(Bop) −→ D(Aop).

It follows from Lemma 5.4 that Ker(G) is homological in D(B) if and only if so is Ker(H)

in D(Bop). That is, AT is homological if and only if

(a) Ker(H) is a homological subcategory of D(Bop).

Now, in Proposition 4.4, we take R := Bop , S := Aop and M := RTS . By Proposi-

tion 4.4, (a) is equivalent to

(b) Hj(HomBop(T, M•) ⊗A T ) = 0 for all j ≥ 2, where HomBop(T, M•) :=

HomBop(T,HomA(P
•, T )) is the complex of the form:

0 −→ HomBop(T,HomA(P0, T )) −→ HomBop(T,HomA(P1, T )) −→
· · · −→ HomBop(T,HomA(Pn, T )) −→ 0,

with HomBop(T,HomA(Pi, T )) in degree i for 0 ≤ i ≤ n.

In the following we show HomA(P
•, A) ≃ HomBop(T,HomA(P

•, T )) as complexes

over Aop.

In fact, since T is a good tilting A-module, it follows from the axiom (T3)′ that

there exists an exact sequence 0 → A → T0 → T1 with Ti ∈ add(T ) for i = 0, 1.

Applying the functor Φ := HomA(−,ATB) to this sequence, we obtain another exact

sequence Φ(T1) → Φ(T0) → Φ(A) → 0 of Bop-modules by Lemma 5.1(2), and the exact

commutative diagram:

0 // HomA(X,A) //

Φ

��

HomA(X,T0) //

≃
��

HomA(X,T1)

≃
��

0 // HomBop(Φ(A), Φ(X)) // HomBop(Φ(T0), Φ(X)) // HomBop(Φ(T1), Φ(X))

where the isomorphisms in the second and third columns are due to T0 ∈ add(T ) and

T1 ∈ add(T ), respectively. Consequently, Φ : HomA(X,A) → HomBop(Φ(A), Φ(X)) in

the first column is an isomorphism. This implies

HomA(−, A)
≃−→HomBop(Φ(A), Φ(−))

≃−→
HomBop(T,HomA(−, T )) : A-Mod → Aop-Mod.

Thus HomA(P
•, A) ≃ HomBop(T,HomA(P

•, T )) as complexes over Aop. This completes

the proof of the first part of Theorem 1.1, while the second part of Theorem 1.1 follows

from Lemma 4.2. □

Remark 5.6. (1) Up to isomorphism, the cohomologies Hm(HomA(P
•, A) ⊗A

TB) in Theorem 1.1 are independent of the choice of the projective resolutions of AT .

Moreover, by Lemma 4.3(2) and the proof of Theorem 1.1, there are isomorphisms in

D(Bop):
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HomA(P
•, A)⊗A TB ≃ HomA(P

•, A)⊗L
A TB ≃ RHomBop(T, B)⊗L

A TB .

(2) In Theorem 1.1, if n = 2, then AT is homological if and only if Ext2A(T, A)⊗AT =

0. This follows from Hm(HomA(P
•, A)⊗A TB) = 0 for m ≥ 3 and H2(HomA(P

•, A)⊗A

TB) ≃ H2(HomA(P
•, A))⊗A T ≃ Ext2A(T,A)⊗A T .

To prove Corollary 1.2, we first establish a lemma.

Lemma 5.7. The complex HomA(P
•, A) is isomorphic in D(Z) to the complex :

HomA(T, T
•) : · · · −→ 0 −→ HomA(T, T0) −→ HomA(T, T1) −→

· · · −→ HomA(T, Tn) −→ 0 −→ · · ·

In particular, if A is commutative, then HomA(P
•, A)⊗A TB ≃ HomA(T, T

•)⊗L
A TB in

D(Bop), where T • denotes the complex in (T3)′ without the term A.

Proof. The maps π and ω in (T1) and (T3)′ induce two canonical quasi-

isomorphisms π̃ : P • → T and ω̃ : A → T • in C (A), respectively. Consequently, both π̃

and ω̃ are isomorphisms in D(A). Since π̃ and ω̃ are chain maps in C (A), we obtain two

chain maps in C (Z):

HomA(P
•, A)

(ω̃)∗ // Hom•
A(P

•, T •) HomA(T, T
•).

(π̃)∗oo

Now, we claim that both chain maps are quasi-isomorphisms.

Indeed, applyingHi(−) to these chain maps for i ∈ Z, we construct the commutative

diagram:

Hi(HomA(P
•, A))

≃
��

Hi((ω̃)∗)// Hi(Hom•
A(P

•, T •))

≃
��

Hi(HomA(T, T
•))

Hi((π̃)∗)oo

≃
��

HomK (A)(P
•, A[i])

q1

��

(ω̃)∗ // HomK (A)(P
•, T •[i])

q2

��

HomK (A)(T, T
•[i])

(π̃)∗oo

q3

��
HomD(A)(P

•, A[i])
(ω̃)∗

≃
// HomD(A)(P

•, T •[i]) HomD(A)(T, T
•[i])

(π̃)∗

≃
oo

where the maps qj , 1 ≤ j ≤ 3, are induced by the localization functor q : K (A) → D(A),

and where the isomorphisms in the third row are due to the isomorphisms ω̃ and π̃ in

D(A).

Since P • is a bounded complex of projective A-modules, both q1 and q2 are bijective.

This implies that Hi((ω̃)∗) is also bijective, and therefore (ω̃)∗ is a quasi-isomorphism.

Note that (π̃)∗ is a quasi-isomorphism if and only if Hi((π̃)∗) is bijective for each

i ∈ Z. This is also equivalent to saying that q3 is bijective in the above diagram. Actually,

to prove the bijection of q3, it is enough to show that, for X ∈ add(AT ) and i ∈ Z, the
canonical map HomK (A)(T,X[i]) → HomD(A)(T,X[i]) induced by q is bijective since T •

is a bounded complex with each term in add(AT ). However, this follows directly from
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(T2). Thus (π̃)∗ is a quasi-isomorphism.

Consequently, the complexes HomA(P
•, A) and HomA(T, T

•) are isomorphic in

D(Z).
If A is commutative, then each A-module can be naturally regarded as a right A-

module and even as an A-A-bimodule. Particularly, T • can be regarded as a complex of

A-A-bimodules. In this sense, both π̃ : P • → T and ω̃ : A→ T • are quasi-isomorphisms

of complexes of A-A-bimodules. Moreover, the chain maps (ω̃)∗ and (π̃)∗ are quasi-

isomorphisms in C (Aop). Thus HomA(P
•, A) ≃ HomA(T, T

•) in D(Aop). Note that

HomA(P
•, A) ⊗A TB ≃ HomA(P

•, A) ⊗L
A TB in D(Bop). As a result, HomA(P

•, A) ⊗A

TB ≃ HomA(T, T
•)⊗L

A TB in D(Bop). □

Proof of Corollary 1.2. (1) Let P •
M := (P−i

M )0≤i≤n and P •
N := (P−i

N )0≤i≤n

denote deleted projective resolutions of M and N , respectively. Then P • = P •
M ⊕ P •

N .

Suppose m ∈ N with m ≥ 2. Then

Hm
(
HomA(P

•, A)⊗A TB
)
≃ Hm

(
HomA(P

•
M , A)⊗A T

)
⊕Hm

(
HomA(P

•
N , A)⊗A T

)
.

Due to proj.dim(AM) ≤ 1, we have P−i
M = 0 for all 2 ≤ i ≤ n. This implies

Hm(HomA(P
•
M , A) ⊗A T ) = 0. Note that AT = M ⊕ N is strongly A-Mittag-Leffler

by Lemma 2.5, and therefore so is the first syzygy ΩA(N) of AN . Since ΩA(N) is finitely

generated, it has a finitely generated projective resolution by Lemma 2.4(4). Hence we

can assume P−j
N ∈ add(AA) for all 1 ≤ j ≤ n. Now, we consider the natural transforma-

tion ζ : HomA(−, A) ⊗A T → HomA(−, T ) from A-Mod to Bop-Mod. If X ∈ add(AA),

then ζX is an isomorphism. In particular, HomA(P
−j
N , A) ⊗A T

≃−→ HomA(P
−j
N , T ) for

all 1 ≤ j ≤ n. Since m ≥ 2 and AT is a tilting module,

Hm
(
HomA(P

•
N , A)⊗A T

)
≃ Hm

(
HomA(P

•
N , T )

)
= ExtmA (N,T ) = 0.

Consequently, Hm(HomA(P
•, A)⊗A TB) = 0 and (1) follows from Theorem 1.1.

(2) Suppose that AT is homological. By Theorem 1.1, Hm(HomA(P
•, A)⊗ATB) = 0

for all m ≥ 2. Furthermore, we shall show Tn = 0 if Hn(HomA(P
•, A)⊗A TB) = 0.

In fact, since A is a commutative ring, every one-sided A-module is automatically an

A-bimodule. It follows from the proof of Lemma 5.7 that HomA(P
•, A) ≃ HomA(T, T

•)

in D(Aop). Note that the tensor functor −⊗A TB : Aop-Mod → Bop-Mod is right exact.

This means

0 = Hn
(
HomA(P

•, A)⊗A TB
)
≃ Hn

(
HomA(P

•, A)
)
⊗A T ≃ Hn

(
HomA(T, T

•)
)
⊗A T.

In particular, Hn(HomA(Tn, T
•))⊗A Tn = 0, due to Tn ∈ add(AT ).

Recall that the complex HomA(Tn, T
•) is of the form

· · · −→ 0 −→ HomA(Tn, T0) −→
· · · −→ HomA(Tn, Tn−1) −→ HomA(Tn, Tn) −→ 0 −→ · · ·

As HomA(Tn, Tn−1) = 0 by our assumption in Corollary 1.2(2), we obtain

Hn(HomA(Tn, T
•)) = HomA(Tn, Tn). Thus EndA(Tn) ⊗A Tn = 0. It follows from the
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surjective map

EndA(Tn)⊗A Tn −→ Tn, f ⊗ x 7→ (x)f for f ∈ EndA(Tn) and x ∈ Tn

that Tn = 0.

Now, by our assumption, HomA(Ti+1, Ti) = 0 for 1 ≤ i ≤ n−1. Thus, by induction,

we can show Tj = 0 for 2 ≤ j ≤ n. It then follows from Lemma 5.1(4) that T is a

1-tilting A-module.

The sufficiency of Corollary 1.2(2) follows from Theorem 1.1, see also [11, Theorem

1.1(1)]. □

6. Applications to cotilting modules: Proof of Theorem 1.3.

In this section, we shall apply the results in Section 4 to deal with cotilting modules.

First, we construct weak tilting modules from good cotilting modules, and then use

Proposition 4.4 to show Corollary 6.3 and give a proof of Theorem 1.3. In the course

of our discussions, we also develop some criterions for bireflective subcategories induced

from cotilting modules to be homological.

Suppose that A is a ring and W is a fixed injective cogenerator for A-Mod. Recall

that an A-module W is called a cogenerator for A-Mod if, for any A-module Y , there

exists an injective homomorphism Y →W I in A-Mod with I a set.

Definition 6.1. An A-module U is called an n-cotilting module if the following

three conditions are satisfied:

(C1) inj.dim(AU) ≤ n;

(C2) ExtjA(U
I , U) = 0 for each j ≥ 1 and for every nonempty set I; and

(C3) there exists an exact sequence of A-modules

0 −→ Un −→ · · · −→ U1 −→ U0 −→W −→ 0

such that Ui ∈ Prod(AU) for all 0 ≤ i ≤ n.

An n-cotilting A-module U is said to be good if it satisfies (C1), (C2) and

(C3)′ there is an exact sequence of A-modules

0 −→ Un −→ · · · −→ U1 −→ U0 −→W −→ 0

such that Ui ∈ add(AU) for all 0 ≤ i ≤ n.

We say that U is a (good) cotilting A-module if AU is (good) n-cotilting for some

n ∈ N.

As in the case of tilting modules, for a given n-cotilting A-module U with (C1)–

(C3), the A-module U ′ :=
⊕n

i=0 Ui is a good n-cotilting module which is equivalent to

the given one in the sense that Prod(U) = Prod(U ′).

From now on, we assume that U is a good n-cotilting A-module with (C1), (C2) and

(C3)
′, and call U a good n-cotilting A-module with respect to W . Let R := EndA(U),

M := HomA(U,W ) and Λ := EndA(W ). Then M is an R-Λ-bimodule.
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Lemma 6.2. (1) The R-module M has a finitely generated projective resolution of

length at most n :

0 −→ HomA(U,Un) −→ · · · −→ HomA(U,U1) −→ HomA(U,U0) −→M −→ 0

with Um ∈ add(AU) for all 0 ≤ m ≤ n.

(2) The Hom-functor HomA(U,−) : A-Mod → R-Mod induces an isomorphism of

rings : Λ ≃ EndR(M), and ExtiR(M,M) = 0 for all i ≥ 1.

(3) The module RM satisfies (R1)–(R3).

Proof. (1) Applying HomA(U,−) to (C3)
′, we obtain the sequence in (1)

with all HomA(U,Ui) ∈ add(RR). Its exactness follows directly from (C2). Thus

proj.dim(RM) ≤ n.

(2) Let Ψ be the Hom-functor HomA(U,−) : A-Mod → R-Mod. Then Ψ(U) = R,

Ψ(W ) =M and HomA(X,W )
≃−→ HomR(Ψ(X),Ψ(W )) for any X ∈ add(AU).

If n = 0, then W = U0 and M = HomA(U,U0) as R-modules. In this case, one can

easily check (2).

Suppose n ≥ 1. By (1), the R-moduleM = Ψ(W ) has a finitely generated projective

resolution

0 −→ Ψ(Un) −→ · · · −→ Ψ(U1) −→ Ψ(U0) −→ Ψ(W ) −→ 0

with Um ∈ add(U) for 0 ≤ m ≤ n. Applying HomA(−,W ) to the resolution of W in

(C3)′, we can construct the commutative diagram:

0 // HomA(W,W ) //

Ψ

��

HomA(U0,W ) //

≃

��

HomA(U1,W ) //

≃

��

· · · // HomA(Un,W ) //

≃

��

0

0 // HomR(Ψ(W ),Ψ(W )) // HomR(Ψ(U0),Ψ(W )) // HomR(Ψ(U1),Ψ(W )) // · · · // HomR(Ψ(Un),Ψ(W )) // 0.

Since the module AW is injective, the first row in the diagram is exact. This implies

that Ψ is an isomorphism of rings and that the entire sequence of the second row in

the diagram is exact. Thus ExtiR(M,M) = ExtiR(Ψ(W ),Ψ(W )) = 0 for all i ≥ 1 by

definition.

(3) Clearly, (R1) and (R2) follow from (1) and (2), respectively. It remains to show

(R3) for M . In fact, by (C1), there exists an exact sequence of A-modules: 0 → U →
I0 → I1 → · · · → In → 0 where Ii is an injective module for 0 ≤ i ≤ n. Since W is an

injective cogenerator for A-Mod, Ii ∈ Prod(AW ). Moreover, due to (C2), the sequence

0 −→ R −→ HomA(U, I0) −→ HomA(U, I1) −→ · · · −→ HomA(U, In) −→ 0

is exact. Since HomA(U,−) commutes with arbitrary direct products, it follows from

Ii ∈ Prod(AW ) that HomA(U, Ii) ∈ Prod(RHomA(U,W )) = Prod(RM) and that RM

satisfies (R3). □

By Lemma 6.2(2), the ring EndR(M) can be identified naturally with Λ (up to

isomorphism of rings). Now, we define

G := RM ⊗L
Λ − : D(Λ) −→ D(R) and H := RHomR(M,−) : D(R) −→ D(Λ).
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Since RM satisfies both (R1) and (R2) in Definition 4.1, it follows from Lemma 4.2 that

there exists a recollement of triangulated categories:

Ker(H)
i∗ // D(R)

H //
ff

i∗

xx
D(Λ)

ee

G

yy

where (i∗, i∗) is an adjoint pair of functors with i∗ the inclusion. In this situation, we

are interested in the following

Problem. When is Ker(H) homological in D(R)?

We do not know whether RM satisfies (R4) and cannot directly apply Proposition

4.4 to RM . However, the following holds true.

Corollary 6.3. Suppose that A is a ring together with an injective cogenerator

W for A-Mod. Let U be a good n-cotilting A-module with respect to W . Suppose that

Λ := EndA(W ) is a right noetherian ring.

(1) The following assertions are equivalent :

(a) Ker(H) is homological in D(R).

(b) Hm(RHomA(U,W ) ⊗Λ HomA(W, I
•)) = 0 for m ≥ 2, where I• is a deleted

injective coresolution of AU :

· · · −→ 0 −→ I0 −→ I1 −→ · · · −→ In −→ 0 −→ · · ·

with Ii in degree i for all 0 ≤ i ≤ n.

(2) If one of the above assertions in (1) holds, then the generalized localization λ :

R→ RM of R at M exists and induces a recollement of derived module categories :

D(RM )
D(λ∗) // D(R)

H //
ee

xx
D(Λ)

ee

G

yy

Proof. (1) By the proof of Lemma 6.2(3), the sequence in (R3) can be chosen as

follows:

0 −→ R −→ HomA(U, I0) −→ HomA(U, I1) −→ · · · −→ HomA(U, In) −→ 0.

In this case, the complex M• can be defined as the complex:

HomA(U, I
•) : 0 −→ HomA(U, I0) −→ HomA(U, I1) −→ · · · −→ HomA(U, In) −→ 0.

Since Λ is right noetherian, M is a weak tilting R-module. It follows from Proposition

4.4 that (a) is equivalent to

(b′) Hj(RM ⊗Λ HomR(M, M•)) = 0 for any j ≥ 2, where M• := HomA(U, I
•).

To prove that (a) and (b) in Corollary 6.3 are equivalent, it is sufficient to show

that (b′) and (b) are equivalent. For this purpose, we shall show HomR(M, M•) ≃
HomA(W, I

•) as complexes over Λ.
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Let Ψ = HomA(U,−) : A-Mod → R-Mod. Then Ψ(W ) =M and M• = Ψ(I•). The

functor Ψ induces a natural transformation of functors

HomA(W,−) −→ HomR(Ψ(W ),Ψ(−)) : A-Mod −→ Λ-Mod.

This yields a chain map HomA(W, I
•) → HomR(Ψ(W ),Ψ(I•)) = HomR(M,M•) in

C (Λ). Note that all terms Ii of I
• are injective A-modules. To verify that the chain map

is an isomorphism of complexes, it is enough to show that, for any injective A-module

X, the functor Ψ induces an isomorphism of Λ-modules:

HomA(W,X)
≃−→ HomR(Ψ(W ),Ψ(X)).

However, this follows from (C3)′ and Lemma 6.2(1) even for an arbitrary A-module X.

Consequently, HomA(W, I
•) ≃ HomR(M, M•) as complexes over Λ. Thus (b′) and

(b), and therefore, also (a) and (b), are equivalent.

(2) follows from Lemma 4.2. □

As a consequence of Corollary 6.3, we have the following result.

Corollary 6.4. Let U be a good n-cotilting A-module with respect to an injective

cogenerator AW . Suppose that EndA(W ) is a right Noether ring (for example, A is an

Artin algebra and W is the dual of A). If n ≤ 1, then Ker(H) is homological in D(R).

Proof of Theorem 1.3. Recall that AW is the injective cogenerator D(A) over

the Artin algebra A. Then EndA(W ) is isomorphic to A, and therefore right noether-

ian. Since AU is a good 1-cotilting module with respect to W , the category Ker(H) is

homological by Corollary 6.4. Now, Theorem 1.3 follows from Corollary 6.3. □

7. Homological tilting modules over Gorenstein rings.

In this section, we shall apply Corollary 1.2 to construct two classes of infinitely

generated, good tilting modules over Gorenstein rings such that one is homological, and

the other is not.

A ring A is called Gorenstein (or Iwanaga–Gorenstein) if A is left and right noe-

therian and if both inj.dim(AA) and inj.dim(AA) are finite. In this case, inj.dim(AA) =

inj.dim(AA). The ring A is called n-Gorenstein if it is Gorenstein with inj.dim(AA) = n.

Let A be an n-Gorenstein ring. It is known that, for an A-module M ,

proj.dim(AM) < ∞ if and only if inj.dim(AM) < ∞. Moreover, these two dimen-

sions are at most n (for example, see [17, Theorem 9.1.10]). In particular, each injective

A-module has projective dimension at most n and each projective A-module has injective

dimension at most n.

Let

0 −→ AA −→ I0 −→ I1 −→ · · · −→ In −→ 0
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be a minimal injective resolution of AA. Then T :=
⊕n

i=0 Ii is an n-tilting A-module

(see [2, 32]). This module is good and has projective dimension exactly n. In the fol-

lowing, T is called the canonical n-tilting module associated with A. Moreover, Add(AT )

coincides with the full subcategory of A-Mod consisting of all injective A-modules (see

[26, Corollaries 4.6 and 4.7]).

From now on, A is a commutative n-Gorenstein ring. Let hi be the set of all prime

ideals of A with height i. Then Ii =
⊕

p∈hi
E(A/p) for all 0 ≤ i ≤ n (see [5, Section 1]).

For an A-module M , we denote by E(M) its injective envelope.

Now we construct infinitely generated, homological tilting modules over non-

commutative Gorenstein rings by one-point extensions of rings.

Suppose that m is a fixed maximal ideal of A. Define Λ :=
(

A/m 0
A/m A

)
, where A/m is

regarded as an A-module via the canonical surjection A → A/m. Then Λ is a left and

right noetherian ring.

Each Λ-module can be written as a triple (X,Y, f) with X an (A/m)-module, Y

an A-module and f : X → Y a homomorphism in A-Mod. Since there is a canonical

surjection from Λ to A, each A-module can be regarded as a Λ-module. In the following,

for an A-module Y , the Λ-module (0, Y, 0) will be denoted by ΛY for simplicity. Evidently,

proj.dim(ΛY ) = proj.dim(AY ).

Let

ΛN := (A/m, 0, 0), ΛV := (A/m, E(A/m), µm) and ΛW := N ⊕ V ⊕
⊕
p ̸=m

E(A/p),

where µm : A/m → E(A/m) is the canonical inclusion and p runs through all prime ideals

of A.

Proposition 7.1. Suppose that the localization Am of A at m has global dimension

n ≥ 1. Then

(1) Λ is an (n+ 1)-Gorenstein ring and W is an infinitely generated, good (n+ 1)-

tilting Λ-module.

(2) If n = 1 (for example, Am is a Dedekind domain), then W is a homological

2-tilting Λ-module.

Proof. (1) First, we show that Add(W ) is exactly the full category of Λ-Mod

consisting of all injective Λ-modules.

To see this, let e :=
(
0 0
0 1

)
∈ Λ. Then eΛe ≃ A, V ≃ HomA(eΛ, E(A/m)) and

E(A/p) ≃ HomA(eΛ, E(A/p)) as Λ-modules for p ̸= m. Since AeΛ is finitely gener-

ated, the functor HomA(eΛ,−) : A-Mod → Λ-Mod commutes with direct sums. Then

ΛW ≃ N ⊕ HomA(eΛ, T ). As the modules AT and ΛN are injective, the Λ-module W

is also injective. On the other hand, Λ is a left noetherian ring, this means that direct

sums of injective Λ-modules are again injective. Thus Add(W ) consists of injective Λ-

modules. Further, each Λ-module (X,Y, f) has a submodule ΛY which can be embedded

into a module in Add(HomA(eΛ, T )), and has a quotient module (X, 0, 0) which can be

embedded into a module in Add(N). Thus Add(W ) coincides with the category of all

injective Λ-modules.

Second, we show proj.dim(W ) = n+ 1.
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Since the localization A → Am of A at m is flat, it is homological. Thanks to

Am/mAm ≃ A/m, we have proj.dim(AA/m) = proj.dim(Am
A/m), while the latter is equal

to the global dimension of Am. Thus proj.dim(AA/m) = n. It follows from ΩΛ(N) = A/m

that proj.dim(ΛN) = n+ 1. Note that there is a short exact sequence of Λ-modules

0 −→ (A/m, A/m, Id) −→ V −→ E(A/m)
/
(A/m) −→ 0,

where Id stands for the identity map of A/m. In this sequence, the module (A/m, A/m, Id)

is projective, but V is not projective due to n ≥ 1. This implies proj.dim(ΛV ) =

proj.dim(AE(A/m)/(A/m)). Since A is Gorenstein and proj.dim(AA/m) < ∞,

proj.dim(AE(A/m)/(A/m)) ≤ n, and therefore proj.dim(ΛV ) ≤ n. Moreover,

proj.dim(ΛE(A/p)) = proj.dim(AE(A/p)) ≤ n. Thus proj.dim(W ) = n+ 1.

Third, we prove inj.dim(ΛΛ) = n+ 1.

Note that inj.dim(ΛE(A/m)) = 1 because there is a short exact sequence of Λ-

modules:

0 −→ ΛE(A/m) −→ V −→ N −→ 0, (♦)

where both V and N are indecomposable and injective. Since Am has global dimension

n, it is regular and m is of height n, that is, m ∈ hn. Based on the form of the minimal

injective coresolution of AA, one can describe a minimal injective coresolution of ΛA as

follows:

0 −→ ΛA −→ I0 −→ I1 −→ · · · −→ In−1 −→ V ⊕
⊕

p∈hn\{m}

E(A/p) −→ N −→ 0.

This shows inj.dim(ΛA) = n + 1. Since Am is regular, the dual of the Koszul complex

determined by a regular sequence of m provides an injective resolution of AA/m:

0 −→ AA/m −→ E(A/m) −→ E(A/m)s1 −→ E(A/m)s2 −→ · · · −→ E(A/m)sn −→ 0

with si ∈ N for all 1 ≤ i ≤ n. So there is a long exact sequence of Λ-modules:

0 −→ (A/m, A/m, Id) −→ V −→ E(A/m)s1 −→ E(A/m)s2 −→ · · · −→ E(A/m)sn −→ 0.

This sequence together with (♦) gives rise to an injective resolution of (A/m, A/m, Id) as

follows:

0 −→ (A/m, A/m, Id) −→ V −→W1 −→W2 −→ · · · −→Wn −→Wn+1 −→ 0,

whereWj ∈ add(V ⊕N) for all 1 ≤ j ≤ n+1. This forces inj.dim((A/m, A/m, Id)) ≤ n+1.

Consequently, inj.dim(ΛΛ) = n+ 1 since ΛΛ = A⊕ (A/m, A/m, Id).

Note that Λ is left and right noetherian and that Add(W ) is the category of all

injective Λ-modules. Since inj.dim(ΛΛ) = n + 1 = proj.dim(W ), it follows from [17,

Proposition 9.1.6] that Λ is (n + 1)-Gorenstein. From the injective resolution of ΛΛ

constructed above, it follows that W is a good (n + 1)-tilting Λ-module. Clearly, it is

infinitely generated since V is infinitely generated.
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(2) Let ΛM := V ⊕
⊕

p̸=mE(A/p). Then W =M ⊕N . Moreover, ΩΛ(N) = ΛA/m,

which is finitely generated.

If n = 1, then proj.dim(ΛN) = 2 and proj.dim(ΛM) ≤ 1. In this case, the 2-tilting Λ-

module W does satisfy the assumptions of Corollary 1.2(1). Thus W is homological. □

Under the assumptions of Proposition 7.1, let U be the canonical (n + 1)-tilting

Λ-module associated with the Gorenstein ring Λ. Then add(U) = add(W ). Thus U is

homological if and only if W is homological. By Proposition 7.1(2), if n = 1, then U is

homological. This means that, over non-commutative 2-Gorenstein rings, the canonical

tilting modules may be homological.

The following result, however, shows that, over commutative n-Gorenstein rings with

n ≥ 2, the canonical tilting modules are never homological.

Proposition 7.2. If n ≥ 2, then AT is not homological.

Proof. If p and q are two prime ideals of A, then HomA(E(A/p), E(A/q)) ̸= 0

if and only if p ⊆ q (see [17, Theorem 3.3.8]). This implies that if 0 ≤ i < j ≤ n, then

HomA(E(A/p), E(A/q)) = 0 for p ∈ hj and q ∈ hi, and therefore HomA(Ij , Ii) = 0. If

we take Ti = Ii for 0 ≤ i ≤ n, then the tilting A-module T satisfies the assumptions in

Corollary 1.2(2). Thus, by Corollary 1.2(2), AT is not homological since proj.dim(AT ) =

n ≥ 2. □

In Proposition 7.2, the subcategory Ker(AT ⊗L
B −) cannot be realized as the derived

module category D(C) of a ring C with a homological ring epimorphism B → C. Thus

tilting modules of higher projective dimension do not have to be homological in general.

For general constructions of homological tilting modules over arbitrary rings, we

shall discuss them in a forthcoming paper.
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[ 1 ] L. Angeleri-Hügel and M. Archetti, Tilting modules and universal localization, Forum Math., 24

(2012), 709–731.
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1982, 5–171.

[ 9 ] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer.

Math. Soc., 188 (2007), 1–207.

[10] S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection

functors, In: Representation theory II, (eds. V. Dlab and P. Gabriel), Springer Lecture Notes in

Math., 832, 1980, 103–169.

[11] H. X. Chen and C. C. Xi, Good tilting modules and recollements of derived module categories,

Proc. Lond. Math. Soc., 104 (2012), 959–996.

[12] H. X. Chen and C. C. Xi, Recollements induced from tilting modules over tame hereditary algebras,

Forum Math., 27 (2015), 1849–1901.

[13] H. X. Chen and C. C. Xi, Recollements of derived categories, III: Finitistic dimensions, J. London

Math. Soc. (2), 95 (2017), 633–658.

[14] E. Cline, B. Parshall and L. Scott, Algebraic stratification in representation categories, J. Algebra,

117 (1988), 504–521.

[15] P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2.

Academic Press, London-New York, 1971.

[16] R. Colpi and J. Trlifaj, Tilting modules and tilting torsion theories, J. Algebra, 178 (1995),

614–634.

[17] E. Enochs and O. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics,

30, Walter de Gruyter & Co., Berlin, 2000.

[18] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and

sheaves, J. Algebra, 144 (1991), 273–343.

[19] K. R. Goodearl, Distributing tensor product over direct product, Pacific J. Math., 43 (1972),

107–110.

[20] D. Happel, Triangulated categories in the representation theory of finite dimensional algebras,

Cambridge Univ. Press, Cambridge, 1988.

[21] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc., 274 (1982), 399–443.

[22] D. Happel, Reduction techniques for homological conjectures, Tsukuba J. Math., 17 (1993), 115–

130.

[23] B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4), 27 (1994), 63–102.
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