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1 Introduction

As is known, derived categories (or more generally, triangulated categories)
and derived equivalences, introduced by Grothendieck and Verdier in [57], have
connections with many branches of mathematics and physics. Rickard’s Morita
theory for derived categories of rings (see [52,54]) and Keller’s Morita theory
for derived categories of differential graded algebras (see [41]) provide powerful
tools to understand derived module categories and equivalences of rings and
graded rings. However, the following fundamental problem in the study of
derived categories and equivalences still remains:

How can we construct derived equivalences for algebras and rings?
By Rickard’s theory, this problem is reduced to constructing all tilting
complexes and understanding their endomorphism rings. However, the latter
is a very hard task and still not yet solved completely.

Related to the construction problem, it seems that the following three cases
are worthy to be considered:

(1) Given an algebra or ring R, to find a class of rings that are derived
equivalent to R.

(2) Given two rings R and S, to decide whether they are derived equivalent.
(3) Given a derived equivalence, to find a new derived equivalence based
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on the given one.
Case (1) is somewhat equivalent to getting the endomorphism rings of a

class of tilting complexes. In this case, even one knows all tilting complexes
over a ring, the next tough challenge encountered is how to work out their
endomorphism rings. Here, we just mention a couple of discussions in this
direction. For self-injective algebras with radical-square zero, every tilting
complex is a shift of a free module (Dong Yang told the author that this seems
to be a folk tale, but no proof has been yet published). For representation-
finite, standard self-injective algebras, a derived classification is provided in [3].
For preprojective algebras, a complete description of tilting complexes is given
in [1]. Partial answers to (1) are gotten for many classes of algebras, namely,
one may construct some tilting complexes and determine their endomorphism
rings. In this direction, see, for example, [32,33,43,60]. Regrettably, we cannot
pursue all references here.

Case (2) is also a difficult question, let us just mention one open problem
related to it, namely, the famous Broué Abelian Defect Group Conjecture in
the modular representation theory of finite groups, which says that the module
categories of a block algebra A of a finite group algebra and its Brauer
correspondent B have equivalent derived categories if their common defect
group is abelian (see [55]). This conjecture is considered as one of the hardest
problems in the representation theory of finite groups. Though this conjecture
is verified for many cases (see, for example, [22,47]), it seems far away from
being solved completely. This may reflect a little flavor of difficulty of deciding
whether two given algebras are derived equivalent. For further information on
the developments of this conjecture, we refer the reader to [56] and the home
page of Rickard: http://www.maths.bris.ac.uk/˜majc/.

Related to case (3), Rickard used tensor products and trivial extensions
to produce new derived equivalences in [52,53], Barot and Lenzing employed
one-point extensions to transfer certain a derived equivalence to a new one in
[8]. Up to the present time, however, it seems that not much is available for
constructing new derived equivalences based on given ones.

In this article, we shall survey some of recent constructions of derived
equivalences related to the last two cases. Here, the main idea is to construct
derived equivalences from certain exact sequences, or by passing to quotient
algebras or pullback algebras of derived equivalent algebras. After fixing some
notation and recalling Rickard’s theorem on derived equivalences for rings in
Section 2, we survey, in Section 3, some developments on constructions of
derived equivalences of the endomorphism rings of objects involved in a class
of short exact sequences, including almost split sequences and certain triangles.
In this section, a class of Yoneda algebras is introduced. In Section 4, we
give some methods of constructing derived equivalences from given ones,
including methods of getting derived equivalences from almost ν-stable derived
equivalences and of passing to quotient algebras. In Section 5, we first recall
the definitions of Frobenius type and stable equivalences of Morita type, and
then show a result which gives a way to get derived equivalences from stable
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equivalences of Morita type for Frobenius-finite algebras. In the last section,
we mention some new constructions given by Ladkani and by Hu-Xi. To limit
the length of this article, the latter is illustrated only by an example, and the
details will appear in a forthcoming preprint [39].

2 Preliminaries

In this section, we first fix some notation, and then recall some basic facts on
derived equivalences of rings.

Let C be an additive category. Given two morphisms f : X → Y and g : Y →
Z in C, we write fg for their composite which is a morphism from X to Z. The
convenience of this writing is that HomC(X,Y ) is always a left EndC(X)- and
right EndC(Y )-bimodule. But for two functors F : C → D and G : D → E of
categories, their composite is denoted by GF. For an object X in C, we write
add(X) for the full subcategory of C consisting of all direct summands of finite
sums of copies of X.

A sequence of morphisms di
X between objects Xi in C :

· · · → Xi−1 di−1
X−→ Xi di

X−→ Xi+1 di+1
X−→ Xi+2 → · · · ,

with di
Xdi+1

X = 0 for all i ∈ Z, is called a complex over C, and denoted by
X• = (Xi, di

X ). The category of all complexes over C with the usual complex
maps of degree zero is denoted by C (C). The homotopy and derived categories
of complexes over C are denoted by K (C) and D(C), respectively. The full
subcategory of C (C) consisting of bounded complexes over C is denoted by
C b(C). Similarly, K b(C) and Db(C) denote the full subcategories consisting of
bounded complexes in K (C) and D(C), respectively. As usual, the i-th shift
functor of complexes is denoted by [i].

Let D be a full subcategory of C and X be an object of C. A morphism
f : D → X in C is called a right D-approximation of X (in the sense of
Auslander-Smalø) if D ∈ D and, for any morphism g : D′ → X with D′ ∈ D,
there is a morphism g′ : D′ → D such that g = g′f. Similarly, there is defined a
left D-approximation of X.

Let A be a ring with identity. By an A-module we mean a left A-module.
We denote by A-Mod the category of all A-modules, by A-mod the category of
all finitely presented A-modules, and by A-proj (resp., A-inj) the category of
finitely generated projective (resp., injective) A-modules.

Let X be an A-module. If f : P → X is a projective cover of X with P
projective, then the kernel of f is called a syzygy of X, denoted by Ω(X). Dually,
if g : X → I is an injective envelope with I injective, then the cokernel of g is
called a co-syzygy of X, denoted by Ω−1(X). Note that a syzygy or a co-syzygy
of an A-module X (if it exists) is determined, up to isomorphism, uniquely by
X. Hence, we may speak of the syzygy and the co-syzygy of a module.

It is well known that K (A-Mod), K b(A-Mod), D(A-Mod), and Db(A-Mod)
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all are triangulated categories. For simplicity, if A is a ring or algebra, we also
write C (A) and K (A) for C (A-Mod) and K (A-Mod), respectively. Similarly,
we will do the same abbreviations for other categories.

For further information on triangulated categories, we refer the reader to
[30,46].

2.1 Rickard’s Theorem for derived equivalences

In this section, we briefly recall a beautiful result of Rickard which describes
the derived equivalences for algebras and rings. This result is a basis for the
most of our discussion.

Recall that two rings R and S with identity are said to be derived
equivalent if the derived categories D(R-Mod) and D(S-Mod) are equivalent as
triangulated categories.

It is known that Db(R-Mod) and Db(S-Mod) are triangle equivalent if and
only if so are D(R-Mod) and D(S-Mod).

The following is a useful description of derived equivalences by Rickard.

Theorem 2.1 [52] For two rings A and B with identity, the following are
equivalent:

(a) Db(A-Mod) and Db(B-Mod) are equivalent as triangulated categories;
(b) K b(A-proj) and K b(B-proj) are equivalent as triangulated categories;
(c) B � EndK b(A-proj)(T

•), where T • is a complex in K b(A-proj)
satisfying

(1) T • is self-orthogonal in K b(A-proj), that is, HomK b(A-proj)(T
•, T •[i])

= 0 for all integers i �= 0, and
(2) add(T •) generates K b(A-proj) as a triangulated category.

A complex T • in K b(A-proj) satisfying conditions (1) and (2) in Theorem
2.1 is called a tilting complex over A. Given a derived equivalence F between A
and B, there is a unique (up to isomorphism) tilting complex T • over A such
that FT • = B. This complex T • is called a tilting complex associated to F.

For Artin algebras, derived equivalences can be reformulated in terms
of finitely generated modules: Two Artin R-algebras A and B are derived
equivalent if and only if Db(A-mod) and Db(B-mod) are equivalent as
triangulated categories.

To get derived equivalences, one may use tilting modules. Recall that a
module T over a ring A is called a tilting module if

(1) T has a finite projective resolution P • → T :

0 → Pn → · · · → P 0 → T → 0,

where each P i is a finitely generated projective A-module;
(2) ExtiA(T, T ) = 0 for all i > 0; and
(3) there is an exact sequence

0 → A → T0 → · · · → Tm → 0
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of A-modules with each Ti in add(T ).
Clearly, the projective resolution P • of a tilting A-module T is a tilting

complex over A. Thus, each tilting module supplies a derived equivalence
between A and EndA(T ) via the tilting module T.

There is a class of special tilting modules which were first discussed by
Brenner-Butler [12]. Recall that an A-module T is then called a BB-tilting
module (after the names of Brenner and Butler) if it is of the form T = P ⊕
τ−(S), where τ is the Auslander-Reiten translation, S is a simple, non-injective
module such that

HomA(D(A), S) = 0 = Ext1A(S, S),

and P is the direct sum of all indecomposable projective modules which are not
isomorphic to the projective cover of S. In case that S is projective, the BB-
tilting module is called an APR-tilting module (after the name of Auslander,
Platzeck and Reiten). For a more general definition of n-BB-tilting modules,
we refer the reader to [35, Section 4].

2.2 Some invariants of derived equivalences

Though derived equivalent algebras may have significant differences in algebraic
structures, they can still have many common features in other aspects. Here,
we shall list some of invariants of derived equivalences. A property P is said to
be invariant under derived equivalences provided that if a ring (or an algebra)
A has the property P, then so do all rings (or algebras) B which are derived
equivalent to A.

The following theorem shows a few invariants of derived equivalences.

Theorem 2.2 The following are invariants of derived equivalences between
rings.

(1) The Hochschild (co-)homology and cyclic homology, in particular, the
centers of rings (see [41,54]).

(2) The number of non-isomorphic simple modules if we are restricted to
Artin algebras.

(3) Finiteness of global (or finitistic) dimensions (see [30,40,50]).
(4) The Cartan determinants, and the characteristic polynomials of Coxeter

matrices if the Cartan matrices of Artin algebras are invertible (see [31, Lemma
4.1]; for a detailed proof, see [59, Proposition 6.8.9]).

(5) Algebraic K-groups (see [26]).
(6) Self-injectivity of algebras over an algebraically closed field (resp.,

symmetry of algebras over an arbitrary field) (see [2,52]).

Thus, to understand some properties of a given algebra (or mathematical
object), it may be convenient to pass to its derived equivalent algebras (or
mathematical objects) which may be easy to handle. For example, to
understand properties of weighted projective lines X, Lenzing and Meltzer used
Ringel’s tubular algebras because the derived category of coherent sheaves over
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X and the derived module category of tubular algebras are equivalent (see [44]).
Another example is the well-known work of Beilinson who reduced the study of
derived category of coherent sheaves over P

n to the one of a triangular matrix
algebras (see [10]). For computation formulas of algebraic K-groups of matrix
subrings, we refer to [58] where derived equivalences induced from D-split
sequences (see the next section) are used.

3 Short exact sequences and derived equivalences

In this section, we shall show that each short exact sequence or triangle leads
to a derived equivalence of two rings which are defined by the objects in the
sequence.

First, we recall the definition of relative split sequences from [35]. Suppose
that C is an additive category and D is a full subcategory of C. A sequence

X
f−→ M

g−→ Y

of morphisms between objects in C is said to be D-split if the following three
conditions are satisfied:

(1) M ∈ D;
(2) f is a left D-approximation of X, and g is a right D-approximation of

Y ; and
(3) f is a kernel of g, and g is a cokernel of f.

Canonical examples of relative split sequences are almost split sequences,
introduced by Auslander and Reiten. They are the most important sequences
in the representation theory of Artin algebras (see, for example, [5] for more
details). For an almost split sequence 0 → X → M → Y → 0 in A-mod with
A an Artin algebra, we take C = A-mod and D = add(M). Then the sequence
X → M → Y is a D-split sequence in C.

We have the following relationship between derived equivalences and relative
split sequences.

Theorem 3.1 [35] Let C be an additive category and M an object in C.
Suppose that X → M ′ → Y is an add(M)-split sequence in C. Then the
endomorphism rings EndC(M ⊕ X) and EndC(M ⊕ Y ) are derived equivalent.

In fact, the above derived equivalence between the endomorphism rings is
given by a tilting module of projective dimension at most 1. Applying the above
result to almost split sequences, we get a more substantial conclusion which
reveals a close relation between BB-tilting modules and almost split sequences.

Corollary 3.2 If 0 → X → M → Y → 0 is an almost split sequence in
A-mod, then EndA(X ⊕ M) is derived equivalent to EndA(M ⊕ Y ) via a BB-
tilting module.

Since triangles in a triangulated category are a natural generalization of
exact sequences, one may ask what happens with the above result for triangles.
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Unfortunately, if we replace the almost split sequence by an Auslander-Reiten
triangle in Corollary 3.2, then the result is no longer true in general. To get a
more general statement, two generalizations of Theorem 3.1 are done in different
directions. One is to use subalgebras of the endomorphism algebras, and the
other is to pass to quotient algebras of the endomorphism algebras.

The first case is carried out by Yiping Chen [21] for exact sequences in
abelian categories, and is then extended to triangles in triangulated categories
by Shengyong Pan [48]. Recently, another two generalizations are given in [19]
for additive categories and in [49] for a class of Beilinson-Green algebras. Here,
we do not pursue these constructions and refer the reader to the original papers
for details.

In the following, we summarize some constructions of derived equivalences
via quotient algebras, these constructions deal with the so-called Auslander-
Yoneda algebras. Let us now recall some relevant definitions from [36].

Let Φ be a subset of N := {0, 1, 2, . . .}. Following [36], we call Φ an admissible
subset of N if 0 ∈ Φ and, for any a, b, c ∈ Φ with a+b+c ∈ Φ, we have a+b ∈ Φ
if and only if b + c ∈ Φ.

For example, {0, 1, . . . , n} and nN := {nx | x ∈ N} are admissible for any n,
and any subset {0, a, b} of N is admissible. But the set {0, a, 2a, 2a+b}\{a+b}
is not admissible for any nonzero natural numbers a and b.

Clearly, the definition of admissible sets in N can be extend to the one in Z

(or in a monoid). For the purpose of our applications in this note, we restrict us
just to subsets of N. Admissible subsets Φ of N can be used to define associative
algebras with identity as follows.

Let T be a triangulated k-category with k a comutative ring, and let X be
an object in T . We define

R(T ,Φ,X) :=
⊕

i∈Φ

HomT (X,X[i]).

The multiplication on R(T ,Φ,X) is given by

(fi)i∈Φ · (gj)j∈Φ = (hl)l∈Φ,

where
hl =

∑

u,v∈Φ, u+v=l

fu(gv[u]).

The admissibility of Φ ensures that R(T ,Φ,X) is an associative algebra.
The condition 0 ∈ Φ guarantees that this algebra has identity. Following [36],
the algebra R(T ,Φ,X) is called the Φ-Auslander-Yoneda algebra of X.

Let us mention a few cases of this kind of algebras. Let T be D(A) with A a
ring, and let X be an A-module, If Φ = N, then R(T , N,X) is just the Yoneda
algebra Ext∗A(X) of X with concatenation of exact sequences as its multipli-
cation. If Φ = {0, a}, then R(T ,Φ,X) is precisely the trivial extension of
EndA(X) by the bimodule ExtaA(X,X). If Φ = {0, 1, . . . , n}, then R(T ,Φ,X)
is the quotient algebra of the Yoneda algebra Ext∗A(X) of X by the ideal
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⊕i>nExti
A(X). If Φ = nN, then R(T ,Φ,X) is just the n-th Veronese

algebra of Ext∗A(X). For some properties of Veronese algebras of graded
algebras in commutative algebra, we refer to [6].

Clearly, for each admissible subset Φ, one may define a Φ-orbit category
T /Φ of T in a natural way: The objects of T /Φ are the same as the objects of
T , the Hom-set of two objects X and Y is defined as

HomT /Φ(X,Y ) :=
⊕

i∈Φ

HomT (X,Y [i]),

and the composition of morphisms is defined in obvious way. Now, one has to
check the associativity of the composition (see [36] for details). Here, there is
an open question: For which admissible sets Φ are the orbit categories T /Φ
triangulated?

In the following, we assume that T is a triangulated k-category with k a
field and M is an object in T . Furthermore, we fix an admissible subset Φ of N

and a triangle in T :
X

α−→ M1
β−→ Y → X[1].

We define α̃ to be the diagonal morphism

diag(α, 1): M1 ⊕ M → X ⊕ M,

and β̃ the skew-diagonal morphism

skewdiag(1, β) : M1 ⊕ M → M ⊕ Y.

Recall that a morphism f : X → D in T is called a left (add(M),Φ)-
approximation of X if D ∈ add(M) and for any i ∈ Φ and any morphism
h : X → D′[i] with D′ ∈ add(M), there is a morphism h′ : D → D′[i] such that
h = fh′. Similarly, we have the definition of right (add(M),Φ)-approximations.
So an (add(M),Φ)-approximation of X must be an add(M)-approximation of
X in the sense of Auslander-Smalø.

The following result tells us how to get derived equivalences for Auslander-
Yoneda algebras from triangles in a triangulated category.

Theorem 3.3 [34] For the above-given triangle in T , if the following two
conditions are satisfied:

(i) the morphism α is a left (add(M),Φ)-approximation of X and β is a
right (add(M),−Φ)-approximation of Y, and

(ii) HomT (M,X[i]) = 0 = HomT (Y [−i],M) for all 0 �= i ∈ Φ,

then the quotient rings R(T ,Φ,M ⊕ X)/I and R(T ,Φ,M ⊕ Y )/J are derived
equivalent, where I is the ideal of R(T ,Φ,M ⊕ X) consisting of all elements
(xi)i∈Φ such that xi = 0 for 0 �= i ∈ Φ, x0 factorizes through add(M) and
x0α̃ = 0, and where J is the ideal of R(T ,Φ,M ⊕ Y ) consisting of all elements
(yi)i∈Φ such that yi = 0 for 0 �= i ∈ Φ, y0 factorizes through add(M) and
β̃y0 = 0.
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Theorem 3.3 looks complicated, but it supplies a large class of derived
equivalences by flexible choices of Φ. Moreover, there are many cases where
both I and J vanish. For example, this happens when we deal with exact
sequences in the module categories of rings.

Corollary 3.4 Let A be an Artin algebra, and let M ∈ A-mod. If

0 → X
α−→ M1

β−→ Y → 0

is an exact sequence in A-mod such that α is a left (add(M),Φ)-approximation
of X and β is a right (add(M),−Φ)-approximation of Y in Db(A-mod), and
that

ExtiA(M,X) = 0 = ExtiA(Y,M)

for all 0 �= i ∈ Φ, then the Φ-Auslander-Yoneda algebras of X ⊕M and M ⊕ Y
are derived equivalent.

A special case of Corollary 3.4 is the following situation of self-injective
algebras. So we re-obtain the result [36, Corollary 3.4].

Corollary 3.5 [36] If A is a self-injective Artin algebra, then, for any
admissible subset Φ of N and any integer i, the Φ-Auslander-Yoneda algebras
of A ⊕ X and A ⊕ Ωi(X) are derived equivalent.

There are two further generalizations of Theorem 3.3. One is to extend it
to n-angulated categories which are more general than triangulated categories.
This is carried out in [20]. The other is to introduce one or two auto-functors of
T into the definition of Φ-Auslander-Yoneda algebras, so that the result can be
applied in a more general context (see [36, Appendix A]). For example, the AR-
translation on derived module categories of hereditary algebras can be covered.
In this case, preprojective algebras, introduced by Gelfand and Ponomarev [27],
are included (see, for example, [7]). For further details of these generalizations,
the interested reader is referred to the original papers [20,36].

Finally, let us mention a recent construction given by Dugas [25], where the
conditions for approximations are modified.

Suppose that T is an algebraic, Krull-Schmidt triangulated category with a
suspension denoted by [1]. Let D be a full subcategory of T . We denote by 〈D〉
the full, additive subcategory of T generated by ∪i∈ZD[i]. The following result
was proved in [25].

Theorem 3.6 [25] Suppose that T contains a triangle

X
f−→ M ′ g−→ Y → X[1],

where M ′ ∈ 〈M〉 for some M ∈ T , and
(a) f is a left 〈M〉-approximation,
(b) g is a right 〈M〉-approximation.

Then
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(1) R(T , Z,X ⊕ M) and R(T , Z,M ⊕ Y ) are derived equivalent;
(2) for any M ′′ ∈ 〈M〉 with M ′ ∈ add(M ′′), the rings

Λ := EndT (M ′′ ⊕ X), Γ := EndT (M ′′ ⊕ Y ),

are derived equivalent.

This result is then applied to get derived equivalent, symmetric algebras.

Corollary 3.7 [25, Theorem 5.2] Let A be a finite-dimensional, symmetric
k-algebra, and let X,M be any complexes in K b(A-proj). Then there exists a
left 〈M〉-approximation f : X → M ′ of X in K (A). If Y is the mapping cone
of f, then

(1) R(K (A), Z,X ⊕ M) and R(K (A), Z, Y ⊕ M) are derived equivalent,
symmetric algebras;

(2) EndK (A)(X ⊕ M ′′) and EndK (A)(Y ⊕ M ′′) are derived equivalent,
symmetric algebras for any M ′′ ∈ 〈M〉 with M ′ ∈ add(M ′′).

Note that the symmetry of the endomorphism algebras in the above
corollary follows from a simple but an interesting observation (see [25, Propo-
sition 5.1]): Let A be a finite-dimensional, symmetric k-algebra. Then for any
X• ∈ K b(A-proj), the rings EndK (A)(X•) and R(K (A), Z,X•) are finite-
dimensional, symmetric k-algebras.

For applications to Calabi-Yau categories, one may also find them in [25].

4 Derived equivalences constructed from given ones

In this section, we give two methods to construct new derived equivalences from
given ones. One is to form Φ-Auslander-Yoneda algebras, and the other is to
form quotient algebras of derived equivalent algebras.

Throughout this section, we consider T = Db(A-mod) with A an Artin
algebra.

To state our results, we first introduce a few terminologies.
Suppose that

F : Db(A-mod) → Db(B-mod)

is a derived equivalence between two Artin algebras A and B, with the quasi-
inverse functor G. Furthermore, suppose that

T • : · · · → 0 → T−n → · · · → T−1 → T 0 → 0 → · · ·
is a radical tilting complex over A associated to F, and suppose that

T
• : · · · → 0 → T

0 → T
1 → · · · → T

n → 0 → · · ·
is a radical tilting complex over B associated to G. The functor F is called
almost ν-stable if

add
( −n⊕

i=−1

T i

)
= add

( −n⊕

i=−1

νAT i

)
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and

add
( n⊕

i=1

T
i
)

= add
( n⊕

i=1

νBT
i
)

,

where νA is the Nakayama functor for A.
Given an almost ν-stable functor F, it was shown in [37] that there is an

equivalence functor F , associated to F, between the stable module categories
A-mod and B-mod.

Theorem 4.1 [36] Let A and B be two Artin algebras, and let

F : A-mod → B-mod

be the stable equivalence induced by an almost ν-stable derived equivalence F
between A and B. Suppose that X is an A-module, we set

M := A ⊕ X, N := B ⊕ F (X).

Let Φ be an admissible subset of N. Then
(1) the Φ-Auslander-Yoneda algebras R(A-mod,Φ,M) and R(B-mod,Φ, N)

are derived equivalent;
(2) if Φ is finite, then there is an almost ν-stable derived equivalence between

the Φ-Auslander-Yoneda algebras R(A-mod,Φ,M) and R(B-mod,Φ, N), and
in particular, there is an almost ν-stable derived equivalence and a stable
equivalence between EndA(M) and EndB(N).

Recall that an Auslander algebra is by definition an algebra of the form
EndB(X), where B is a representation-finite Artin algebra and X is the direct
sum of all non-isomorphic indecomposable B-modules. Since Auslander
algebras and Yoneda algebras are special classes of Φ-Auslander-Yoneda
algebras, Theorem 4.1 supplies a lot of examples of derived equivalences
between Auslander algebras, and between Yoneda algebras. For example, we
have the following corollary for self-injective algebras.

Corollary 4.2 [36] (1) For a self-injective Artin algebra A and an A-module
Y, the Φ-Auslander-Yoneda algebras of A ⊕ Y and A ⊕ Ωi

A(Y ) are derived
equivalent for all i ∈ Z, where Ω is the syzygy operator.

(2) Suppose that A and B are self-injective Artin algebras of finite
representation type with AX and BY additive generators for A-mod and
B-mod, respectively. If A and B are derived equivalent, then

(i) the Auslander algebras of A and B are both derived and stably equivalent;
(ii) the Yoneda algebra Ext∗A(X) of X and the Yoneda algebra Ext∗B(Y ) of

Y are derived equivalent.

Note that for self-injective algebras, every derived equivalence (up to shift) is
almost ν-stable, and the syzygy functor on stable categories is closely related to
the auto-equivalence functor K ⊗A −, where K is a kernel of the multiplication



12 Changchang XI

map A⊗A → A. This explains why Theorem 4.1 can be applied to self-injective
algebras.

Another natural idea for getting derived equivalences from given ones is to
pass to quotient algebras.

Suppose that A is an Artin algebra and I is an ideal in A. Let A := A/I.
Then the category A-mod can be regarded as a full subcategory of A-mod.
There is a canonical functor from A-mod to A-mod which sends each X ∈ A-
mod to X := X/IX. This functor induces a functor − : C (A) → C (A), which
sends X• to the quotient complex X

• := X•/IX•, where IX• = (IXi)i∈Z is a
sub-complex of X•. The action of − on a chain map can be defined canonically.
For each complex X• of A-modules, we have a canonical exact sequence of
complexes:

0 → IX• i•−→ X• π•
−→ X

• → 0.
For a complex Y • of A-modules, this sequence induces another exact sequence:

0 → HomC (A)(X
•
, Y •) π∗

−→ HomC (A)(X
•, Y •) i∗−→ HomC (A)(IX•, Y •).

Since Y • ∈ C (A), the map i∗ must be zero, and consequently, π∗ is
an isomorphism. Moreover, π∗ actually induces an isomorphism between
HomK (A)(X

•
, Y •) and HomK (A)(X•, Y •).

Given arbitrary complexes X• and X ′• of A-modules, we have a natural
map

η : HomK (A)(X
•,X ′•) → HomK (A)(X

•
,X ′•),

which is the composite of

π•
∗ : HomK (A)(X

•,X ′•) → HomK (A)(X
•,X ′•)

with the map (π∗)−1. In particular, if X• = X ′•, then we get a homomorphism
of algebras

η : EndK (A)(X
•) → EndK (A)(X

•).

Now, let T • be a tilting complex over A, and let

B = EndK (A)(T
•).

Furthermore, suppose that I is an ideal in A. By the above discussion, there is
an algebra homomorphism

η : EndK (A)(T
•) → EndK (A)(T

•).

Let JI be the kernel of η, which is an ideal of B. We define B := B/JI . Then
we have the following theorem on quotient algebras.

Theorem 4.3 [36] Let A be an Artin algebra, and let T • be a tilting complex
over A with the endomorphism algebra

B = EndK b(A)(T
•).
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Suppose that I is an ideal in A. Then T
• is a tilting complex over A and induces

a derived equivalence between A and B if and only if

HomK b(A)(T
•, IT •[i]) = 0 (∀ i �= 0), HomK b(A)(T

•
, T

•[−1]) = 0.

Applying this result to self-injective algebras, we have the following result
for a class of quotient algebras.

Corollary 4.4 [36] Let F : Db(A) → Db(B) be a derived equivalence between
two self-injective, basic Artin algebras A and B. Suppose that P is a direct
summand of AA, and Q is a direct summand of BB such that F (soc(P )) is
isomorphic to soc(Q), where soc(P ) denotes the socle of the module P. Then
the quotient algebras A/soc(P ) and B/soc(Q) are derived equivalent.

5 Derived equivalences from stable equivalences

In the foregoing discussion, what we have done is to get a new derived
equivalence from a given derived equivalence. Now, we consider how to get
a derived equivalence from a given stable equivalence.

Asashiba [4] showed that, for representation-finite, standard self-injective
k-algebras A and B not of type (D3m, s/3, 1) with m � 2 and 3 � s, each
individual stable equivalence between A and B can be lifted to a derived
equivalence. His proof is based on his classification of derived equivalences
for representation-finite, standard self-injective algebras in [3]. The case left
by Asashiba is handled recently by Dugas [24]. Thus, every stable equivalence
between representation-finite, standard self-injective algebras over an
algebraically closed field can be lifted to a derived equivalence. In [38], we
extend this result somehow to Frobenius-finite algebras, including representa-
tion finite algebras.

Let A be an Artin algebra. Recall from [45] that an A-module X is said
to be ν-stably projective if νi

AX is projective for all i � 0, where νA stands
for the Nakayama functor of A. The full subcategory of all ν-stably projective
A-modules is denoted by A-stp. Clearly, there is an idempotent element e ∈ A
such that Ae is a basic A-module with add(Ae) = A-stp. The algebra eAe is
called the Frobenius part of A. It is a self-injective algebra (see [45], and also
[38, Lemma 2.5]) and uniquely (up to Morita equivalence) determined by A.
The algebra A is said to be Frobenius-finite (-tame, or -wild) if its Frobenius
part eAe is representation-finite (-tame, or -wild).

For Frobenius-finite algebras, a special type of stable equivalences can
always be lifted to derived equivalences. They are the so-called stable
equivalences of Morita type introduced by Broué (see [13]). Recall that two
finite-dimensional algebras A and B over a field is said to be stably equivalent
of Morita type if there are bimodules AMB and BNA such that

(1) M and N are all projective as one-sided modules; and
(2) M ⊗B N � A⊕P as A-A-bimodules for some projective A-A-bimodule
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P, and N ⊗A M � B ⊕Q as B-B-bimodules for some projective B-B-bimodule
Q.

Clearly, such a bimodule M induces an equivalence of the stable module
categories of A and B. The following result in [38] shows that one can always
get a derived equivalence from a stable equivalence of Morita type between
Frobenius-finite algebras.

Theorem 5.1 [38] Let A and B be finite-dimensional k-algebras over an
algebraically closed field and without semisimple direct summands. If A is
Frobenius-finite, then each individual stable equivalence of Morita type between
A and B gives rise a derived equivalence.

We remark that the methods developed in [38] can be used to check Broué’s
Abelian Defect Group Conjecture for many cases studied by Okuyama [47].
Also, observe that Frobenius-finite algebras include Auslander algebras and
cluster-tilted algebras. For more details and examples of Frobenius-finite
algebras, we refer the reader to [38, Section 5]. Unfortunately, derived
equivalent algebras may have different Frobenius parts that are not derived
equivalent (see [39]).

6 Some other constructions

Related to constructions of derived equivalences, the following question seems
to be interesting.

Suppose that algebras are given by quivers with relations, how can we get
derived equivalences from given ones between these algebras just by certain
operations on quivers and relations?

Of course, one may think of mutations of quivers in cluster tilting theory,
but, as we know, this will not provide derived equivalences of algebras in general.

Recently, Ladkani has constructed some interesting derived equivalent
algebras by tensor products [43], where algebras with a linear quiver can be
derived equivalent to algebras with a triangle quiver or a rectangle quiver. So
one gets derived equivalences directly by certain “operations” on quivers and
relations.

More recently, we use operations like gluing vertices, unifying arrows and
identifying socle elements, on quivers with relations to construct derived
equivalences from given ones. These techniques fit well in the framework of
constructing derived equivalences for pullback algebras. The details of these
constructions will be included in a forthcoming paper [39]. Here, we merely
give a simple example to illustrate the procedure of gluing vertices.

Example Let A and B be algebras given by the following quivers with
relations, respectively:
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A : 1• α �� 2•
δ

��
β �� 3•
γ

�� B : • β′
2′ 3′�� •

γ′
����

��
��

�

•
α′

1′

��

αδα, αβγ, γβγ, γδ, δα − βγ α′β′γ′α′, γ′α′β′γ′

Then it was shown in [39] that there is a derived equivalence between A and B,
which sends the simple A-module corresponding to the vertex 3 to the simple
B-module corresponding to the vertex 3′. Now, if we glue a loop at the vertices
3 and 3′ in A and B, respectively, then, by a result in [39], we can get a derived
equivalence between the resulting algebras Λ and Γ (for n � 1):

Λ: • α1 2�� •
δ

��
β 3�� •
γ

�� ε�� Γ: • β′
2′ 3′�� •

γ′
����

��
��

�
ε′��

•
α′

1′

��

αδα, αβγ, γβγ, γδ, δα − βγ, εn, βε, εγ α′β′γ′α′, γ′α′β′γ′, (ε′)n, β′ε′, ε′γ′

In fact, one can glue any given algebra kQ/I at the vertices 3 and 3′ in A and
B, respectively, so that the resulting algebras are derived equivalent.

In the above example, the algebras A and B are subalgebras of Λ and Γ,
respectively. So, we have extended the derived equivalence between two algebras
A and B to a derived equivalence between their extension algebras. For more
examples, we refer to the preprint [39].

A further generalization of derived equivalences is the notion of
recollements of derived (or triangulated) categories introduced originally in
[11] to describe the derived categories of perverse sheaves. Now, recollements
are broadly used in the study of rings and homological dimensions (see, for
instance, [17,18,23,28,29,42,51]) and of infinitely generated tilting modules (see,
for example, [9,14,16]). Here, we will not touch all of these topics. We just refer
the reader to [15,16] for some recent results on constructions of recollements of
derived module categories.
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