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1 Introduction

1.1 History

1.1.1. J. Stasheff

1960’s, Stasheff invented A∞-spaces and A∞-algebras, as a tool in the study of ‘group-like’

topological spaces.

• H-space (H: standing for Hopf). The concept arose as a generalization of that of a topological

group, the essential feature which is retained is a continuous multiplication (no associativity) with

a unit; that is, there exists a continuous multiplication map µ : X × X → X and an ‘identity’

element e ∈ X such that the two maps

X
µ(−,e)

µ(e,−)
// X

are homotopy to the identity1.

For example, the (simplest H-) spaces S0, S1, S3 and S7, regarded as the real, complex, quater-

nionic and Cayley numbers of unit norm respectively, possess continuous multiplications, and in the

first three cases are associative. It is possible to define real, complex and quaternionic projective

spaces of arbitrarily large dimension, but this is not possible for the Cayley numbers. A famous

theorem of J. F. Adams asserts that S0, S1, S3, and S7 are the only spheres that are H-spaces.

From the point of view of homotopy theory, it is not the existence of a continuous inverse which

is the important distinguishing feature, but rather the associativity of the multiplication, one can

investigate the ‘mechanism’ which relates the associativity of the multiplication to the possible

existence of projective spaces.
1Of the three axioms for a group, it seems that the least subtle is the existence of an identity element. However,

the identity axiom becomes much more potent when topology is added to the picture.

2



In 1953, Milnor constructed a classical projective spaces for an arbitrary topological group

by fiber bundles. In 1956, Dold and Lashof generalized it to an arbitrary associative H-space.

It seems reasonable to ask whether something weaker than associativity might permit more but

not all of these fibrings to be constructed. In 1957, Sugawara showed that a variant of Milnor’s

construction can be carried one step further than for an arbitrary H-space if the multiplication is

at least homotopy associative.

A ‘short exact sequence of spaces’ A ↪→ X → X/A gives rise to a long exact sequence of

homology groups, but not to a long exact sequence of homotopy groups due to the failure of

excision. However, there is a different sort of ‘short exact sequence of spaces’ that does give a long

exact sequence of homotopy groups. This sort of short exact sequence F → E
p→ B, called a fiber

bundle, is distinguished from the type A ↪→ X → X/A in that it has more homogeneity: All the

subspaces p−1(b) ⊂ E, which are called fibers, are homeomorphic (the topological homogeneity of

all the fibers of a fiber bundle is rather like the algebraic homogeneity in a short exact sequence of

groups 0 → K → G
p→ H → 0 where the ‘fibers’ p−1(h) are the cosets of K in G).

A fiber bundle structure on a space E, with fiber F , consists of a projection map p : E → B such

that each point of B has a neighborhood U for which there is a homeomorphism h : p−1(U) → U×F

making the diagram

p−1(U) h //

p
##FF

FF
FF

FF
F

U × F

||yy
yy

yy
yy

y

U

commute, where the unlabeled map is projection onto the first factor. Commutativity of the

diagram means that h carries each fiber Fb = p−1(b) homeomorphically onto the copy {b} × F of

F . The fiber bundle structure is determined by the projection map p : E → B, but to indicate

what the fiber is we sometimes write a fiber bundle as F → E → B, a ‘short exact sequence of

spaces’. The space B is called the base space of the bundle, and E is the total space.

From the work of Stasheff and Dold-Lashof, the fiber bundle condition is too restrictive. A

weaker replacement is:

An-structure on a space X, which consists of an n-tuple of maps

X = E1 ⊂ E2 ⊂ · · · ⊂ En

↓ p1 ↓ p2 ↓ pn

∗ = B1 ⊂ B2 ⊂ · · · ⊂ Bn

such that pi∗ : πq(Ei, X) → πq(Bi) is an isomorphism for all q together with a contracting homotopy

h : CEn−1 → En such that h(CEi−1) ⊂ Ei (one may think of X → Ei
pi→ Bi as a fiber).
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• A∞-space. An An-structure2 on a space X is equivalent to an An-form; that is, a sequence

of maps M2, · · · ,Mn where each Mi : Ki × Xi → X is appropriately defined on ∂Ki × Xi in

terms of Mj for j < i. Where the associahedra, or ‘Stasheff polytopes’, {Ki} were introduced by

Stasheff in 1963 for the study of homotopy associativity of H-spaces, defined as a subset of Ii−2,

which is homeomorphic to Ii−2 with n(n−1)
2 − 1 faces, consisting of points (t1, · · · , ti) such that

2jt1 · · · tj ≥ 1 for 1 ≤ j ≤ i − 2. {Ki} are the standard cells, similar objects as the standard

simplices 4i and the standard cubes Ii. They are more complicated than 4i and Ii.

An An-space is defined as a topological space endowed with an An-form (note: any associative

H-space; that is, a monoid, admits An-forms for any n by defining Mi(τ, x1, · · · , xi) = x1 · · ·xi,

called it trivial An-form).

An A∞-space is a topological space equipped with a series of maps which is associative up to

homotopy and the homotopy which makes the maps associative can be chosen so that it satisfies a

collection of higher coherence conditions. These coherence conditions involve homotopies between

homotopies and are most neatly formulated in terms of the so-called Stasheff polytopes. The

prime example of A∞-space is the loop space ΩX. Conversely, a topological space that admits the

structure of an A∞-space and whose connected components form a group is homotopy equivalent

to a loop space (J. F. Adams, 1978), so all connected monoids are essentially loop space.

• A∞-algebra is a chain complex equipped with a product which is homotopy associative and the

homotopy which makes the product associative can be chosen so that it satisfies suitable algebraic

higher coherence conditions. If (X, {mn}) is an A∞-space, the singular chain complex C∗(X) is

the paradigmatic example of an A∞-algebra.

Stasheff introduced the term ‘A∞-algebra’ to describe such structures satisfying an infinite

sequence of higher homotopy associativity conditions; hence an A∞-algebra may be regarded as

the homotopy invariant notion of an associative algebra.

Stasheff’s theory of A∞-spaces and A∞-algebras illustrates many of the key ideas.

1.1.2. M. Kontsevich

In 1994, Kontsevich’s talk at the ICM on categorical mirror symmetry played an important

role in developing this subject. Everything starts from the study of twisted topological models
2A space X admits an An-structure if and only if there exists maps Mi : Ki ×Xi → X for 2 ≤ i ≤ n such that

(a) M2(∗, e, x) = M2(∗, x, e) = x for x ∈ X, ∗ = K2,

(b) for ρ ∈ Kr, σ ∈ Ks, r + s = i + 1, we have

Mi(∂k(r, s)(ρ, σ), x1, · · · , xi) = Mr(ρ, x1, · · · , xk−1, Ms(σ, xk, · · · , xk+s−1), xk+s, · · · , xi),

(c) for τ ∈ Ki and i > 2, we have

Mi(τ, x1, · · · , xj−1, e, xj+1, · · · , xi) = Mi−1(sj(τ), x1, · · · , xj−1, xj+1, · · · , xi).
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and their boundary conditions. This is one of the main reasons leading to a conjecture meant

to explain the ‘mathematical mysteries’ of mirror symmetry. This homological mirror symmetry

conjecture states the equivalence of the derived category of coherent sheaves on a Calabi-Yau Y

and of the derived category of the Fukaya category of the mirror Ỹ . But Fukaya category, which

is constructed from symmetry manifolds, is an A∞-category.

1.1.3. B. Keller

In 2000, Keller introduced the A∞-language to the study of ring theory and representation

theory. He proved that every derived category of a Grothendieck category is equivalent to the

derived category of an A∞-algebra provided that the former has a compact generator.

1.1.4. Others

In the 1970’s and 80’s, A∞-algebras were developed further by Smirnov [Smir1], Kadeishvili

[Ka1], Prouté [Pr], Huebschmann [Hu], ... especially with a view towards applications in topology.

J. Huebschmann realized the relevance of A∞ structures and homological perturbation theory

(HPT) to homological algebra. He used HPT to exploit A∞ modules arising in group cohomology.

HPT, introduced by Eilenberg and Mac Lane in 1954, has nowadays become a standard tool

to construct and handle A∞ structures. Any A∞ module structure admits a spectral sequence

which is an invariant of the structure. Many results illustrate a typical phenomenon: Whenever

a spectral sequence arises from a certain mathematical structure, there is, perhaps, a certain A∞

module lurking behind, and the spectral sequence is an invariant thereof. The A∞ structure is

then somewhat finer than the spectral sequence itself, though. In this vein, A∞ structures are

lurking behind a number of other familiar structures in mathematics. One such example arises

from complex manifolds where a certain A∞ structure is hidden behind the Frölicher spectral

sequence.

1.2 Motivation

1.2.1. Keller’s problems

Let A be an associative k-algebra with 1.

Problem 1. The reconstruction of a complex from its homology.

Let M be a complex of A-modules, H∗M its homology. What additional structure is needed if

we want to reconstruct M from its homology.

Problem 2. The reconstruction of the category of iterated selfextensions of module from its

extension algebra.

Let Mi (1 ≤ i ≤ n) be A-modules, filt(Mi) denote the full subcategory of the category of right

A-modules whose objects admit finite filtrations with subquotients among the Mi. What addi-

tional structure on the extension algebra Ext∗A(⊕Mi,⊕Mi) is needed to reconstruct the category
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of iterated extensions.

The answer is that H∗M and Ext∗A(⊕Mi,⊕Mi) admit A∞-structures which encode the addi-

tional information needed for this task.

1.2.2. Classification of AS-regular algebras

Noncommutative projective geometry began with the classification of Artin-Schelter regular

algebras of dimension 3 by Artin, Tate and Van den Bergh in 1990. The reason why that work

was so significant is that it introduced a whole range of powerful geometric techniques into non-

commutative algebra.

• Projective n-space: Pn is the quotient space of Cn+1 modulo the equivalent relation

(a0, a1, · · · , an) ∼ λ(a0, a1, · · · , an) for λ 6= 0. The points of Pn are those lines of Cn+1 pass-

ing through origin. Pn is the most important and basic object in the sense of ‘every’ space is a

subspace of Pn.

Following Grothendieck, to study geometry we don’t need a space, what we need is a category

associated to the space. Grothendieck’s principle applies to algebra, algebraic geometry, differential

geometry, topology and other fields.

Let X be a projective variety (i.e. a projective subspace of Pn), coh X the category of coherent

sheaf over X, then coh X contains all geometry information about X.

Let A be a homogeneous coordinate ring of X. Let Proj A be the category of finitely generated

graded A-modules modulo the finite dimensional graded modules.

By Serre Theorem, we may understand

Pn = Proj A

where A is the polynomial ring C[x0, x1, · · · , xn].

• Quantum projective n-space: qPn is defined to be

qPn = Proj A

where A is an Artin-Schelter regular algebra of global dimension n + 1.

• AS-regular algebras: A connected graded algebra A is called Artin-Schelter regular if it has

finite global dimension, and is Gorenstein with finite Gelfand-Kirillov dimension.

• Classification.

(i) qP1: Quantum projective line is qP1 = Proj A, where A is an AS regular algebra of dimension

2. There is no noncommutative projective line.

(ii) qP2s were classified by Artin, Schelter, Tate, Van den Bergh (1986, 1990, 1991).
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(iii) There are many partial results about qP3s. One of the central questions in noncommutative

projective geometry is

the classification of quantum P3s.

The complete classification of quantum P3s is an extremely difficult project and is probably an

unreachable goal in near future. An algebraic approach of constructing quantum Pns is to form the

noncommutative scheme Proj A where A is a noetherian Artin-Schelter regular connected graded

algebra of global dimension n+1. Therefore the algebraic version of the above mentioned question

is

the classification of noetherian, Artin-Schelter regular, connected graded algebras of global di-

mension 4.

Researchers have been studying many special classes of Artin-Schelter regular algebras of global

dimension 4. The most famous one is the Sklyanin algebra3 of dimension 4, introduced by Sklyanin.

However, up to now, we do not have a clear picture of the complete classification.

Main methods:

• Inductive methods

• Deformation methods

• Homological methods:

Ext-algebra. Let A be a connected graded algebra. Let k also denote the trivial module A/A≥1.

Let E(A) be the Ext-algebra
∞⊕

n=0

Extn
A(k, k).

If A is Koszul, there is one-to-one correspondence between A and E(A) (Kosuzl duality).

Classification of A is equivalent to the classification of E(A) . Now E(A) is finite dimensional, and

Frobenius. This help us to understand E(A).

A∞-Ext-algebra. When A is not Koszul, we need to modify the Koszul duality. E(A) has

a natural A∞-structure such that there is a one-to-one correspondence between A and A∞-Ext-

algebra E(A). Classification of A is equivalent to the classification of E(A). The use of A∞-algebras

is a completely new approach and seems to have several advantages. One idea is to look into a

more general class of algebras, namely, regular A∞-algebras and then to determine which of those

are Artin-Schelter regular.
3The 4-dimensional Sklyanin algebra is defined as the k-free algebra A = k〈x0, x1, x2, x3〉 with relations

x0x1 − x1x0 = α1(x2x3 + x3x2), x0x1 + x1x0 = x2x3 − x3x2,

x0x2 − x2x0 = α2(x3x1 + x1x3), x0x2 + x2x0 = x3x1 − x1x3,

x0x3 − x3x0 = α3(x1x2 + x2x1), x0x3 + x3x0 = x1x2 − x2x1.

The parameter (α1, α2, α3) ∈ k3 lies on the surface α1 + α2 + α3 + α1α2α3 = 0.
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(iv) Recent developments in noncommutative projective algebraic geometry and its applications

to other fields such as mathematical physics demand to have more examples of quantum spaces.

For example, what are the quantum K3 surfaces and the quantum Calabi-Yau 3-folds? One naive

idea is to construct these quantum spaces as subschemes of some higher dimensional quantum Pns

— noncommutative analogues of projective n-spaces. There are a few examples of qPn for n > 3.

A Calabi-Yau manifold is a special kind of subspace of Pn that is used in mathematics physics.

One important question involving CY is the ‘mirror symmetry’ conjecture.

Throughout the notes we work over a fixed field k. One may consider them over a semisimple

ring after careful checking.

2 Differential graded algebras

Before entering into the A∞-world, we review some basics on differential graded algebras (DGA

for short) first. A reasonable explanation is that: each DGA is a special A∞-algebra, and any A∞-

algebra A is quasi-isomorphic to a DGA-model, moreover, when we work with derived functors

or derived categories we may replace an A∞-algebra by a DGA. In particular, one can compute

the derived functor RHomA(k, k) in the DGA-world based on RHomA(k, k) ∼= RHomΩBA(k, k).

Material in this section and other basic notions related to DGAs can be found in [FHT].

2.1 DG algebras

2.1.1. Graded algebra

A graded algebra is a graded module A =
⊕

i∈ZAi with an associative multiplication such that

(a) the unit 1 is in A0 and (b) the multiplication preserves the grading.

A differential in a graded module A is a k-linear map ∂ : A → A of degree +1 such that ∂2 = 0.

We use both |x| and deg x to denote the degree of a graded or homogeneous element x.

A derivation of degree n in a graded algebra A is a k-linear map ∂ : A → A of degree n such

that (graded Leibniz rule)

∂(xy) = (∂x)y + (−1)n|x|x(∂y)

for all elements x, y ∈ A.

The Koszul sign convention, namely, when two symbols of degrees n and m are permuted

the result is multiplied by (−1)nm. Symbols can be elements, operations, etc. The Koszul sign

convention is applied throughout.

2.1.2. Differential graded algebra
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A differential graded algebra is a graded algebra A together with a differential ∂ : A → A of

degree 1 that is a derivation. An augmentation is a morphism ε : A → k.

A graded algebra is a DGA with ∂ = 0.

If A is a DGA, then the cohomology ring

HA =
⊕

i∈Z
Hi(A) = ker ∂/im∂

is a graded algebra (differential vanished, the spectral sequence maybe think of as a remedy of it).

2.1.3. Examples

(1) The algebraic de Rham complex of the line. Define A using generators and relations as

follows:

A =
k〈x, ξ〉

(xξ − ξx, ξ2)
.

The degrees are deg x = 0, deg ξ = 1. The differential is defined on generators by ∂x = ξ, ∂ξ = 0.

It is not hard to verify that ∂ extends by additivity and the Leibnitz rule to all of A.

(2) Suppose A is a commutative k-algebra. Let

I = ker(µ : A⊗A → A), µ(a⊗ b) = ab

and Ω1
A/k = I/I2. Let Ωp

A/k =
∧p

A Ω1
A/k, the pth exterior power of Ω1

A/k = I/I2 as A-module.

Then

Ω∗A/k =
⊕

p

Ωp
A/k

is a DGA. The rule for ∂ : A = Ω0
A/k → I/I2 = Ω1

A/k is ∂(a) = a⊗ 1− 1⊗ a. It extends to all of

Ω∗A/k.

Ω∗A/k is called the de Rham complex of A. The elements of Ωp
A/k are called the Kähler differ-

entials of degree p, and ∂ is called the exterior derivative.

(3) Let X be a topological space. For any p let Sp(X) denote the set of p-dimensional singular

chains in X, namely the set of continuous function σ : ∆p → X. Here ∆p is the standard p-

dimensional simplex

∆p = {(a0, · · · , ap) ∈ Rp+1 | Σi ai = 1, ai ≥ 0}.

Define

Cp(X) = HomSet(Sp(X), k).

Then

C∗(X) =
⊕

p

Cp(X)

is a DGA. It is called the ring of simplicial cochains on X. The multiplication is called the

Alexander-Whitney product; it is not commutative.
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• Remark

(1) A DGA A is called commutative if

xy = (−1)|x||y|yx

for all elements x, y ∈ A.

When 1
2 ∈ k this condition implies that x2 = 0 if x has odd degree. If A is a commutative

graded algebra, then a left A-module, M , is automatically a right A-module, via

mx = (−1)|m||x|xm.

(2) The notions of differential graded coalgebra and coderivation are defined similarly.

A differential graded coalgebra (or DGC for short) is a graded coalgebra C together with a

differential that is a coderivation (a linear map d : C → C of degree 1 such that ∆d = (d⊗1+1⊗d)∆

and εd = 0). We usually assume that a coalgebra has a counit ε : C → k that is dual to the notion

of the identity element (or the unit) in an algebra.

If C =
⊕

i∈Z Ci is a DGC, then the vector space dual C# :=
⊕

i∈ZHomk(C−i, k) is a DGA.

A graded module over k is called locally finite if each homogeneous subspace is finite dimensional

over k. If A =
⊕

i∈ZAi is a locally finite DGA and if A⊗A is locally finite, then the vector space

dual A# :=
⊕

i∈ZHomk(A−i, k) is a DGC. In this case (A#)# ∼= A. Hence locally finite DGAs

and DGCs are dual to each other.

2.2 DG modules

2.2.1. DG category

Let (A, ∂) be a DGA. A left differential graded A-module (or left DG A-module) is a complex

(M, ∂M ) together with a left multiplication A ⊗M → M such that M is a left graded A-module

and the differential ∂M of M satisfies the Leibniz rule

∂M (am) = ∂(a)m + (−1)|a|a∂M (m)

for all a ∈ A,m ∈ M . A DG k-module is just a complex. A right DG A-module is defined similarly.

Note that the Leibniz rule links the actions of A and of the differential of M . It is sometimes

useful to deform the differential, while keeping the module structure ( (AM, ∂) ⇒ (AM, ∂ + δ) ).

For a DGA A, we let A\ denote the underlying graded algebra. Let Cdg(A) (resp. C(A\)) denote

the category of differential graded modules over A (resp. graded modules over A\). A morphism

α : M → N such that H(α) : H(M) → H(N) is an isomorphism is called a quasi-isomorphism.

The functor ( )\ : Cdg(A) → C(A\) is additive exact faithful, and commutative with the shift

functor. Suppose a sequence E ∈ Cdg(A), then:
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E exact in Cdg(A) ⇔ E\ exact in C(A\).

E split exact in Cdg(A) ⇒ E\ split exact in C(A\), but the converse fails in general.

2.2.2. Two constructions

• HomA(M, N): the graded vector space of A-homomorphisms from M to N . As graded module

HomA(M, N) :=
⊕

i∈Z
HomGr

A (M, N)i

with the differential ∂Hom defined to be

∂Hom(f) = ∂N ◦ f − (−1)|f |f ◦ ∂M

for all f ∈ HomA(M, N). In particular, the graded vector space HomA(M, M) is a DGA, and

HomA(L,M) is a DG module over DGA HomA(M, M).

• M ⊗A N : the graded vector space of tensor product over A with the differential ∂⊗ defined

to be

∂⊗(m⊗A n) = ∂M (m)⊗A n + (−1)|m|m⊗A ∂N (n).

There is an adjoint property between HomA and ⊗A:

HomA(L⊗A M, N) ∼= HomA(L,HomA(M, N)).

2.3 Resolutions

2.3.1. Semifree

Let L be a DG module over A. A subset Y ⊆ L is said to be free if for each DG module M

over A and every homogeneous map κ : Y → M of degree 0 there exists a unique DG A-morphism

κ̃ : L → M with κ̃|Y = κ. A DG A-module M is called free if it is isomorphic to a direct sum of

shifts of A.

Construction: For a graded set Y with a degree function g : Y → Z, consider the graded

A\-module with basis EY ∪ E+
Y , where

EY = {ey | deg(ey) = g(y), y ∈ Y } and E+
Y = {e+

y | deg(e+
y ) = g(y) + 1, y ∈ Y }

Free DG module with the basis Y is

F [Y ] :=
⊕

y∈Y

Aey ⊕
⊕

y∈Y

Ae+
y .

with the differential given by

∂(
∑

y∈Y

ayey + a+
y e+

y ) =
∑

y∈Y

(∂(ay)ey + (−1)|ay|aye+
y + ∂(a+

y )e+
y ).
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For each DG module M there exists a surjective morphism L → M , where L is a free DG

module (not a resolution).

There exist enough free DG modules in the category Cdg(A), but such DG modules are always

contractible, so they carry little information on the structure of Cdg(A) (in fact, so are the projective

DG modules). The standard approach to homological algebra of modules over a ring, via free

resolutions, leads to a dead end in the case of DG modules over a DG algebra.

As a remedy for this difficulty, Avramov and Halperin (LNM-1183, 1985) introduced a class

of DG modules, semifree DG modules, retain some characteristics of freeness. Two important

properties, which are the exact analogues of CW complexes, are:

• Any DG module admits a quasi-isomorphism from a semifree module.

• Any morphism from a semifree module lifts (up to homotopy) through a quasi-isomorphism.

A DG A-module M is called semifree if there is a sequence of DG submodules

0 = M(−1) ⊂ M(0) ⊂ · · · ⊂ M(n) ⊂ · · ·

such that M =
⋃

n M(n) and that each M(n)/M(n− 1) is A-free on a basis of cocycles. Such an

increasing sequence is called a semifree filtration of M . A semifree module is a replacement for a

free complex over an associative algebra. A semifree DG module may not be free.

A semifree resolution of a DG A-module M is a quasi-isomorphism L → M from a semifree

DG A-module L. Sometimes we call L itself a semifree resolution of M . By [FHT, Proposition

6.6] every DG module has a (strict, i.e. surjective) semifree resolution. Semifree resolutions play

the same role for modules over DGA’s that ordinary free resolutions do in the ungraded case.

A basic property satisfied by semifree modules is ‘preservation of quasi-isomorphisms’ under

the functors Hom and ⊗.

Suppose {M(k)} is a semifree filtration of M . Then each M(k)/M(k−1) has the form (A, d)⊗
(Z(k), 0) where Z(k) is a free k-module. Thus the surjections M(k) → A⊗ Z(k) split:

M(k) = M(k − 1)⊕ (A⊗ Z(k)), and d : Z(k) → M(k − 1).

In particular, if we forget the differentials, M = A⊗ (⊕∞k=0Z(k)) is a free A-module.

Suppose L is a semifree and η : M → N is a quasi-isomorphism. Then

(a) HomA(L, η) : HomA(L,M) → HomA(L,N) is a quasi-isomorphism.

(b) Given a diagram of morphisms of A-modules,

M

η(')

²²
L

φ
>>

ψ
// N

12



there is a unique homotopy class of morphisms ϕ : L → M such that η ◦ ϕ ∼ ψ.

(c) A quasi-isomorphism between semifree A-modules is an equivalence.

Every A-module M has a semifree resolution m : L
'−→ M ; moreover, if m′ : L′ '−→ M is

a second semifree resolution then there is an equivalence of A-modules α : L′ → L such that

m ◦ α ∼ m′. ([FHT], p.71)

Remark:

1. When A is ordinary ring, L is a module over it, then considered as a DG module L is semifree

if and only if it is free as an A-module.

2. If A is a ring and L is a complex of A-modules, then it follows directly from the definitions

that each A-module Lj is free.

The following result shows the existence of the semifree resolution (see section 3.3.1).

Proposition: Let A be an augmented DGA. Then the augmentations in BA and A define a

quasi-isomorphism ε ⊗ ε : B(A,A) → k. Moreover, if k is a field then B(A,A) is a semifree right

DG A-module. Thus ε⊗ ε is a semifree resolution of the right DG A-module kA.

Given a left DG A-module M , we use a semifree resolution of M to compute the derived functor

of HomA(M,−), which is denoted by RHomA(M,−). Similarly, we can use a semifree resolution of

M to compute the derived functor of N ⊗A M (here N is a right DG A-module), which is denoted

by N ⊗L
A M .

2.3.2. Homotopically projective

A DG module P over A is said to be homotopically projective if HomA(P,−) preserves quasi-

isomorphisms.

A semifree DG module L is homotopically projective, and the graded A\-module L\ is projective.

3 A∞-language

From the point of view of homotopy theory, an A∞-algebra is the same as a DGA. However,

for the purpose of explicit computations, it is often more convenient to work with A∞-algebras

rather than with DGA’s. The reason is the existence of extra structure in the form of higher

multiplications.

In this section we recall some basic definitions about A∞-algebras and A∞-modules mainly

from the papers [Ke1] and [LPWZ1]. Some basic properties of A∞-language have been worked out

by Lefèvre-Hasegawa in his Thesis [Le].

There are many different types of algebras: associative, commutative, Lie, Poisson, etc. Each

comes with an appropriate notion of a module and thus with an associated theory of representa-
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tions. Moreover, as is becoming more and more important in a variety of fields, including algebraic

topology, algebraic geometry, differential geometry, and string theory, it is very often necessary to

deal with ‘algebras up to homotopy’ and with ‘partial algebras’ (structures that behave much like

algebras and modules, except that the relevant maps are only defined on suitable submodules of

tensor products.)[KM]

The idea of a homotopy ‘something’ algebra is to relax the axioms of the ‘something’ algebra,

so that the usual identities are satisfied up to homotopy. For example, in a homotopy associative

algebra, the associativity identity looks like

(ab)c− a(bc) is homotopic to zero.

This kind of relaxation seems to be too lax for many (practical and categorical) purposes,

and one usually requires that the null-homotopies, regarded as new operations, satisfy their own

identities, up to their own homotopy. These homotopies should also satisfy certain identities up

to homotopy and so on. This resembles Hilbert’s chains of syzygies in early homological algebra.

Algebras with such chains of homotopies are called strong homotopy ‘something’ algebras.

3.1 A∞-algebras

3.1.1. Definition

There are different methods to give the definition of A∞-algebras (algebraical, geometrical,

operadic, etc.), we prefer the algebraical definition of an A∞-algebra.

An A∞-algebra over k is a Z-graded vector space

A =
⊕

p∈Z
Ap

endowed with a family of graded k-linear maps

mn : A⊗n → A, n ≥ 1,

of degree (2− n) satisfying the following Stasheff identities:

SI(n)
∑

(−1)r+stmu(id⊗r ⊗ms ⊗ id⊗t) = 0, for all n ≥ 1,

where the sum runs over all decomposition n = r+s+t, r, t ≥ 0 and s ≥ 1, and where u = r+1+t.

Here id denotes the identity map of A. Note that when these formulas are applied to elements,

additional signs appear due to the Koszul sign rule. An A∞-algebra is also called a strongly

homotopy associative algebra (or sha algebra).

For small n the Stasheff identities SI(n) can be expressed without the sigma notation:

14



SI(1) is

m1m1 = 0.

The degree of m1 is 1. This is saying that m1 is a differential of A.

SI(2) can be re-written as

m1m2 = m2(m1 ⊗ id + id⊗m1)

as maps A⊗2 → A. Hence the differential m1 is a graded derivation with respect to m2. Note that

m2 plays the role of multiplication although it may not be associative. The degree of m2 is zero.

SI(3) can be re-written as

m2(id⊗m2 −m2 ⊗ id)

= m1m3 + m3(m1 ⊗ id⊗ id + id⊗m1 ⊗ id + id⊗ id⊗m1)

as maps A⊗3 → A. Note that the left-hand side is the associator for m2 and the right-hand

side is ∂Hom(m3) = ∂A ◦m3 − (−1)|m3|m3 ◦ ∂A⊗3 , the boundary of m3 in the morphism complex

Homk(A⊗3, A). This implies that m2 is associative up to homotopy. If either m1 or m3 is zero,

then m2 is associative.

Remark:

(1) If X admits an A∞-form {Mi}; that is, (X, {Mi}) is an A∞-space, then the singular chain

complex C∗(X) of X admits the structure of an A∞-algebra by defining m1 = ∂ and for i > 1,

mi(u1 ⊗ · · · ⊗ ui) = Mi#(ki ⊗ u1 ⊗ · · · ⊗ ui)

where ki is a suitable generator of C∗(Ki). The signs in the definition were chosen so as to make

it true at the case (note that the dimension of Ki is i− 2).

(2) The idea of an algebra up to homotopy has proved very useful in resolving problems such

as Kontsevich’s formality conjecture and Deligne’s conjecture (on the algebraic structure of the

Hochscild complex). This idea has been greatly clarified by the use of algebraic operads. A∞-

algebras may be viewed as algebras over an operad [KM]. Generally, various types of ‘up to

homotopy’ algebras (that is, where the classical axioms are satisfied just ‘up to higher homo-

topies’): A∞-algebras (associative up to homotopy), G∞-algebras (associative, and commutative

up to homotopy), C∞-algebras (commutative, and associative up to homotopy), B∞-algebras (as-

sociative up to homotopy and commutative up to homotopy), and L∞-algebras (Lie algebras up

to homotopy), etc.

The appropriate language to describe such complex structures is the operad language4.
4Topological operads were introduced by May in his monograph ‘The geometry of iterated loop spaces’. The

main reason for studying topological operads is to generalise Stasheff’s theory of loop spaces to n-fold loop spaces
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(3) Working with a more geometrical definition of an infinity-algebra was advocated by some

authors (A. Lazarev, for example): Given a vector space V , an A∞-structure on V is a continuous

derivation

m : T̂ΣV ∗ → T̂ΣV ∗

of degree one and vanishing at zero (degree), such that m2 = 0. Here Σ denotes the suspension, ∗
denotes the dual (so ΣV ∗ = Homk(ΣV, k)), and T̂ denotes the completed tensor algebra, (TΣV )∗ =

T̂ΣV ∗. There are similar definitions of a C∞ and L∞-structure where T̂ΣV ∗ is replaced with L̂ΣV ∗

and ŜΣV ∗ [HaL].

• higher multiplications: the graded maps mn for n ≥ 3.

• strictly unital condition: a unit 1A with respect to m2, while mn(a1, · · · , an) = 0 for n 6= 2

and ai = 1A for some i. In this case, we say 1A is the strict unit of A. Each strictly united

A∞-algebra is canonically endowed with a strict morphism η : k → A mapping 1k to 1A.

• augmented A∞-algebra: an A∞-algebra is called augmented if there is a graded map ε from

A to the trivial A∞-algebra k such that

ε(m2(a1, a2)) = ε(a1)ε(a2)

and

ε(mn(a1, · · · , an)) = 0, for all n 6= 2.

Note: as in the ring case, the unit can be added to an A∞-algebra without unit. If B is an

A∞-algebra without unit, then there is a unique way to extend the A∞-structure on B to an

and infinite loop spaces — operads play the role of the Stasheff polyhedra in this more general theory.

In the algebraic setting, an operad O consists of k-modules O(j), j ≥ 0, together with a unit map η : k → O(1),

a right action by the symmetric group Σj on O(j) for each j, and maps

γ : O(k)⊗O(j1)⊗ · · · ⊗ O(jk) → O(j)

for k ≥ 1 and js ≥ 0, where
P

js = j. The γ are required to be associative, unital, and equivalent.

An action of O on a chain complex A, O-algebra, is a k-module A together with a unit maps

θ : O(j)⊗⊗Aj → A, j ≥ 0

that are associative, unital, and equivalent.

The O(j) are thought of as parameter complexes for j-ary operations. When the differentials on the O(j) are

zero, we think of O as purely algebraic, and it then determines an appropriate class of (differential) algebras. When

the differentials on the O(j) are non-zero, O determines a class of (differential) algebras ‘up to homotopy’, where

the homotopies are determined by the homological properties of the O(j).

Recently there has been a lot of interest in the algebraic theory of operads, much of it stimulated by theoretical

physics. A particularly striking example is Kontsevitch’s formality theorem in deformation quantization. An

essential ingredient in this theorem is the notion of a Lie algebra up to homotopy (or a Gerstenhaber algebra

up to homotopy) and this is where algebraic operads come in to the picture. The relevant operads are examples of

Koszul operads and the theory of Koszul operads has many very interesting special features.
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A∞-structure on A := k ⊕ B such that A satisfies the strictly unital condition. Clearly, this A is

augmented. Conversely, if A is an augmented A∞-algebra satisfying the strictly unital condition

and we let ε : A → k be the augmentation, then the kernel B := ker ε is an A∞-algebra without

unit and A = k ⊕B.

3.1.2. Examples

There are some interesting examples of A∞-algebras in [LPWZ1, LPWZ2].

(a) An associative algebra A is an A∞-algebra concentrated in degree 0 with all multiplications

mn = 0 for n 6= 2. Hence associative algebras form a subclass of A∞-algebras of the form

(A,m2).

(b) Differential graded algebra (A,m1,m2) (every A∞-algebra A is quasi-isomorphic to a DGA

ΩBA, which is called the DGA-model of A [FHT]).

(c) Pentagonal homotopy associative algebra (A,m1,m2,m3):

SI(4): m2(1⊗m3 + m3 ⊗ 1) = m3(m2 ⊗ 1⊗ 1− 1⊗m2 ⊗ 1 + 1⊗ 1⊗m2).

(d) Massey product: Consider the Borromean rings consisting of three circles which are pairwise

unlinked but all together are linked. If we regard them as situated in S3, then the coho-

mology ring of the complement is a trivial algebra, but m3 is non-zero in cohomology, being

represented by Massey products and detecting the simultaneous linking of all three circles.

(e) Connected cubic zero A∞-algebra.

Note: When A3 6= 0, or A is not connected, then there are obstructions of constructing

higher multiplications. This makes the higher multiplications more interesting.

(f) Quiver and Path-algebra:

A = kQ/I = (kx⊕ ky ⊕ kz ⊕ kt)⊕ (ka⊕ kb⊕ kc)⊕ ke,

with the relations: x + y + z + t = 1, ab = 0, bc = 0. Define: m2 = the multiplication of the

Path-algebra，m3(a, b, c) = e, then (A,m2,m3) forms an A∞-algebra [Ke1, page 9].

(g) Let B = k[x1, x2]/(x2
1), p (p ≥ 3) a fixed integer. Define an A∞-algebra structure on B as

follows.

For s ≥ 0, set

xs =

{
x

s
2
2 if s is even,

x1x
s−1
2

2 if s is odd.

Then {xs}s≥0 is a k-basis of the graded vector space B. For i1, · · · , ip ≥ 0, define

mp(xi1 , · · · , xip) =

{
xj if all is are odd,

0 otherwise,
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where j = 2 − p +
∑

s is. The multiplication m2 is the product of the associative algebra

k[x1, x2]/(x2). Now it is direct to check that (B,m2,mp) is an A∞-algebra, which is denoted

by B(p).

Note: we’ll talk this example again in the following, and it shows that homological properties

of an algebra will be changed when adding a nonzero higher multiplication on it.

(h) (2, p)-algebra: All Stasheff identities are automatically satisfied except for the following three

SI(3): the associative law of m2

m2(m2 ⊗ id) = m2(id⊗m2),

SI(2p-1): the associative law of mp

p−1∑
r=0

(−1)r(p+1)mp(id⊗r ⊗mp ⊗ id⊗p−1−r) = 0,

SI(p+1): the compatibility relation between m2 and mp

p−1∑

i=0

(−1)imp(id⊗i ⊗m2 ⊗ id⊗p−1−i) = m2(id⊗mp) + (−1)p−1m2(mp ⊗ id).

This kind of A∞-algebras is related to the higher Koszul algebra (Section 4).

(i) Ext-algebra: Let A be an algebra over k, then Ext∗A(k, k) is an A∞-algebra (Section 4).

(j) AS-regular algebras of 3 and 4 (Section 5).

3.1.3. A∞-morphisms

For two A∞-algebras A and B. A morphism of A∞-algebras f : A → B is a family of k-linear

graded maps

fn : A⊗n → B

of degree (1− n) satisfying the following Stasheff morphism identities: for all n ≥ 1,

MI(n):
∑

(−1)r+stfu(id⊗r ⊗ms ⊗ id⊗t) =
∑

(−1)wmq(fi1 ⊗ fi2 ⊗ · · · ⊗ fiq
)

where the first sum runs over all decompositions n = r + s + t with s ≥ 1, r, t ≥ 0, we put

u = r + 1 + t, and the second sum runs over all 1 ≤ q ≤ n and all decompositions n = i1 + · · ·+ iq

with all is ≥ 1; the sign on the right-hand side is given by

w = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + · · ·+ 2(iq−2 − 1) + (iq−1 − 1).

• unital morphism conditions: when the A∞-algebras have a strict unit, an A∞-morphism is

also required to satisfy the following extra unital morphism conditions:

f1(1A) = 1B
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where 1A and 1B are strict units of A and B respectively, and

fn(a1, · · · , an) = 0

if some ai = 1A and n ≥ 2.

The unital morphism conditions are compatible with MI(n) in the sense that if A and B are

A∞-algebras without unit and if f : A → B is an A∞-morphism satisfying MI(n) only, then, by

imposing the unital morphism conditions, f can be extended to an A∞-morphism from k ⊕ A to

k ⊕B.

When n = 1, MI(1) is

f1m1 = m1f1,

namely, f1 is a morphism of complexes. When n = 2, MI(2) is

f1m2 = m2(f1 ⊗ f1) + m1f2 + f2(m1 ⊗ id + id⊗m1),

which means that f1 commutes with the multiplication m2 up to a homotopy given by f2.

• strict morphism: a morphism f is called strict if fi = 0 for all i 6= 1. The identity morphism

is the strict morphism f such that f1 is the identity of A. When f is a strict morphism from A to

B, then the identity MI(n) becomes

f1mn = mn(f1 ⊗ · · · ⊗ f1).

Strict morphisms are analogous to homomorphisms in classical ring theory. A morphism f : A → B

is called a strict isomorphism, if f is strict and f1 is an isomorphism of vector spaces. In this case

f−1
1 : B → A is the inverse morphism of f and we write A ∼= B.

A strict isomorphism is similar to an isomorphism in ring theory. However we need a weaker

notion of isomorphism when we work with A∞-algebras.

• quasi-isomorphism: a morphism f : A → B is called a quasi-isomorphism if f1 is a quasi-

isomorphism (and there are no conditions on fi for all i ≥ 2). In this case we write A ' B.

By definition, an A∞-morphism f : A → B is a quasi-isomorphism if and only if H(f1) : HA →
HB is an isomorphism.

If two A∞-algebras are quasi-isomorphic, then they are viewed as the same A∞-algebra since

they have the same homological properties. For this reason usually we are interested in A∞-algebras

up to quasi-isomorphisms.

Note: If A and B are quasi-isomorphic A∞-algebras, then their cohomology rings are isomorphic

to each other. The converse is not true: [LPWZ1, Lemma 4.6] shows that A ∼= B as algebras, but

A is not quasi-isomorphic to B as A∞-algebras. On the other hand, we have an example to show

that A � B as algebras, but A ' B as A∞-algebras [LPWZ1, Lemma 5.2(c), 5.4].
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• The composition of two morphisms f : B → C and g : A → B is given by

(f ◦ g)n =
∑

(−1)wfq ◦ (gi1 ⊗ · · · ⊗ giq
)

where the sum and the sign are as in the defining identities MI(n).

In algebraic topology and homological algebra we usually want to analyze the (co)homology

groups of some complexes associated to the objects we study. A common setting is that we start

with a DGA and then compute the cohomology ring. The following minimal model tells us that

the cohomology ring has an A∞-structure which is quasi-isomorphic to the original DGA in the

A∞ world.

3.1.4. Two models

• DGA model [Le]: Every A∞-algebra A is quasi-isomorphic to a free DGA constructed as

ΩBA.

In Keller’s word, ‘passing from DGA’s to A∞-algebras does not yield new quasi-isomorphism

classes. What it does yield is a new description of these classes by minimal models’ [Ke1, Section

3.3].

The result was induced by using the bar construction. The bar/cobar construction and the

notation ΩBA will be explained in Section 3.3.

The central result is the theorem on the existence of minimal models.

• Minimal model [Ka1, Me]: Let A be an A∞-algebra and let HA be the cohomology ring of

A. There is an A∞-algebra structure on HA with m1 = 0, constructed from the A∞-structure of

A, such that there is a quasi-isomorphism of A∞-algebras HA → A lifting the identity of HA.

Note: The first proof was given by Kadeishvili in [Ka1] and later in other papers [Me]. We’ll

copy a more precise proof of [LPWZ2, p.34] for the use of Basic lemma in the section 4.1.

Theorem: Let A be an algebra over k, then Ext∗A(k, k) is an A∞-algebra.

Indeed, choose a projective resolution P of Ak. Then the morphism complex B = HomA(P, P )

is a differential graded algebra whose homology identifies with the Yoneda algebra Ext∗A(k, k).

Let A be a ring and M an A-module. Choose a projective resolution of M

· · · −→ P−2 δ−→ P−1 δ−→ P 0 φ0

−→ M −→ 0.

Now consider A as a DGA concentrated in degree 0, with 0 differential. Then M is a DG A-module

concentrated in degree 0. defining P i = 0 for i > 0, we can view P = ⊕P i as a DG A-module, with

differential δ. The homomorphism φ0 : P0 → M extends to a morphism φ : P → M in Cdg(A).

Since

H0(φ) : H0P → H0M = M

is bijective and HiP = 0 for all i 6= 0 it follows that φ is a quasi-isomorphism.
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Continuous with the previous example let N be any other A-module. Then

HiHomA(P, N) = Exti
A(M, N).

As we saw before B = HomA(P, P ) is a DGA. A calculation shows that morphism

HomA(P, M) ↔ HomA(P, P ) = B

induced by P → M is a quasi-isomorphism. Hence

HiB = Exti
A(M, M).

The multiplication in the graded ring HB is called the Yoneda product.

In particular, B is a DGA and its homology Ext∗A(k, k) carries the A∞-structure of the minimal

model of B.

3.2 A∞-modules

3.2.1. Definition

Let A be an A∞-algebra.

• A left A∞-module over A is a Z-graded vector space M endowed with maps

mM
n : A⊗n−1 ⊗M → M, n ≥ 1

of degree (2− n) satisfying the same Stasheff identities SI(n)

∑
(−1)r+stmu(id⊗r ⊗ms ⊗ id⊗t) = 0

as one in the definition of A∞-algebra. However, the term mu(id⊗r ⊗ ms ⊗ id⊗t) has to be

interpreted as mM
u (id⊗r ⊗ms ⊗ id⊗t) if t > 0 and as mM

u (id⊗r ⊗mM
s ) if t = 0.

When A has a strict unit 1, then we require that mM
2 (1, x) = x and mM

n (a1, · · · an−1, x) = 0 if

n ≥ 3 for x ∈ M and one of the ai is 1.

In particular, (A, {mn}) itself forms an A∞-module over A.

• A morphism of left A∞-modules f : M → N is a family of graded maps

fn : A⊗n−1 ⊗M → N

of degree (1− n) such that for each n ≥ 1, the following version of the identity MI(n) holds:

MIL(n)
∑

(−1)r+stfu ◦ (id⊗r ⊗ms ⊗ id⊗t) =
∑

m1+w ◦ (id⊗w ⊗ fv),

where the first sum is taken over all decompositions n = r + s + t, r, t ≥ 0, s ≥ 1 and we put

u = r + 1 + t; and the second sum is taken over all decompositions n = v + w, v ≥ 1, w ≥ 0. A

morphism also satisfies the obvious unital conditions which are omitted here.
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A morphism f is called a quasi-isomorphism if f1 is a quasi-isomorphism. The identity mor-

phism f : M → M is given by f1 = idM and fi = 0 for all i ≥ 2.

The composition of two morphisms f : M → N and g : L → M is defined by

(f ◦ g)n =
∑

f1+w ◦ (id⊗w ⊗ gv)

where the sum runs over all decompositions n = v + w.

3.2.2. Derived category

Let A be an A∞-algebra.

• C∞(A): the category of left A∞-modules over A with morphisms of A∞-algebras.

If A is a DGA, we have a faithful functor

Cdg(A) → C∞(A).

Because not every A∞-module is a DG module, C∞(A) has more objects and more morphisms than

Cdg(A). Note that when A is an ordinary associative algebra, Cdg(A) is the category of complexes

of left A-modules.

We say that an A∞-morphism f : M → N is nullhomotopic if there is a family of graded maps

hn : A⊗n−1 ⊗M → N, n ≥ 1,

of degree −n such that

fn =
n∑

v=1

m1+n−v ◦ (id⊗n−v ⊗ hv) +
∑

n=r+s+t,s≥1

(−1)r+sthr+1+t ◦ (id⊗r ⊗ms ⊗ id⊗t).

Two A∞-morphisms f, g : M → N are said to be homotopic if f − g is nullhomotopic (see simple

definition in terms of bar-construction).

• The homotopy category K∞(A) has the same objects as C∞(A), and the morphisms from M

to N are morphisms of A∞-modules modulo the nullhomotopic morphisms.

To define the derived category5, we should formally invert all quasi-isomorphisms. As proved

in [Le, Théorème 4.1.3.1] and [Ke1, Theorem 4.2], every quasi-isomorphism of A∞-modules is a

homotopy equivalence (Note: if k is only assumed to be a commutative ring, the result is no longer

true in general). Therefore one can define

• The derived category D∞(A) to be the homotopy category K∞(A).

If an A∞-algebra does not have a strict unit, then A∞-modules over A can be defined without

the unital condition and the derived category K∞(A) can be defined in the same way.
5The derived category D(A) of an abelian category A is the algebraic analogue of the homotopy category of

topological spaces. D(A) is obtained from the category Ch(A) of (cochain) complexes in two stages: First one

constructs a quotient K(A) of Ch(A) by equating chain homotopy equivalent maps between complexes. Then one

localizes K(A) by inverting quasi-isomorphisms via a calculus of fraction.
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There is a canonical quasi-isomorphism

HomDA(M, N [n]) = Extn
A(M, M)

valid for any n ∈ Z if we take the right hand side to vanish for negative n.

Remark: Some signs of the definition of right A∞-module are slightly different from the left

module case6.

3.2.3. Change of A∞-algebras

Let f : A → B be a morphism of A∞-algebras and let (M, mB
n ) be a left A∞-module over B.

Define

mA
n : A⊗n−1 ⊗M → M, n ≥ 1,

by

INL(n) mA
n =

∑
(−1)wmB

q (fi1 ⊗ · · · ⊗ fiq−1 ⊗ id)

where the sum runs over all decompositions n = i1 + · · · · · ·+ iq−1 + 1 for is ≥ 1 and where

w = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + · · ·+ 2(iq−2 − 1) + (iq−1 − 1)

as in the definition of morphisms of A∞-algebras. It is easy to check that (M, mA
n ) is a left A∞-

module over A. Then f∗ : (M, mB
n ) 7→ (M, mA

n ) defines a functor from C∞(B) to C∞(A), which

induces a functor on the derived categories.

One of the basic properties is the following

Proposition [Ke1, Proposition 6.2]: Let f : A → B be a quasi-isomorphism of A∞-algebras. Then

the induced functor f∗ : D∞(B) → D∞(A) is an equivalence of triangulated categories. Further, A

is isomorphic to f∗B in D∞(A).

3.2.4. From DGAs to A∞-algebras

If A is a DGA, then the inclusion Cdg(A) → C∞(A) induces an equivalence from Ddg(A) to

D∞(A). In [Ke1, Theorem 4.3(a)], Keller considers the derived category of homologically unital

A∞-modules, which contains our D∞(A) as a full triangulated subcategory. Also the inclusion

Cdg(A) → C∞(A) has its image in D∞(A). Hence D∞(A) is equivalent to the derived category of

homologically unital A∞-modules. Thus [Ke1, Theorem 4.3(a)] implies the following

Proposition [Ke1, Le]: If A is a DGA, then the canonical functor Ddg(A) → D∞(A) is an

equivalence of triangulated categories.

As an immediate consequence
6Corresponding categories are written as C∞(A◦), K∞(A◦), and D∞(A◦), respectively. The difference is

(1) MIR(n):
P

(−1)r+stfu ◦ (id⊗r ⊗ms ⊗ id⊗t) =
P

(−1)(v−1)wm1+w ◦ (fv ⊗ id⊗w), and

(2) (f ◦ g)n =
P

(−1)(v−1)wf1+w ◦ (gv ⊗ id⊗w).
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Corollary: Let A → B be a quasi-isomorphism of A∞-algebras where B is a DGA. Then the

induced functor F : Ddg(B) → D∞(A) is an equivalence of triangulated categories such that FB

is isomorphic to A in D∞(A).

3.3 Bar constructions

A clear way to introduce the A∞-algebras is the so-called bar construction.

Bar/cobar constructions of DGAs/DGCs (introduced by Eilenberg-MacLane (1953) and Adams

(1956), respectively) are well-known to topologists and people working on DGAs. The following

material is mainly taken from [LPWZ1], we will follow its convention on double-grading and dif-

ferentials increase degree by 1.

The bar and cobar constructions are functors

Augmented DGAs BÃ Co-augmented DGCs

and

Co-augmented DGCs ΩÃ Augmented DGAs.

These constructions can be extended to A∞-algebras.

3.3.1. Bar constructions for DGAs

Consider an augmented DGA A, namely, DGA endowed with an augmented morphism A → k

of DGAs, viewing k as a trivial DGA. Let I be a graded vector space. The tensor coalgebra on I

is

T (I) = k ⊕ I ⊕ I⊗2 ⊕ I⊗3 ⊕ · · · ,

where an element in I⊗n is written as

[a1|a2| · · · |an]

for ai ∈ I (the name ‘bar construction’ originated here), together with the comultiplication

∆([a1| · · · |an]) =
n∑

i=0

[a1| · · · |ai]⊗ [ai+1| · · · |an].

• Bar construction on A:

Let (A, ∂A) be an augmented DGA and let I denote the augmentation ideal ker(A → k). The

bar construction on A is the coaugmented DGC BA defined as follows:

¦ As a coaugmented graded coalgebra BA is the tensor coalgebra T (I) on I.

¦ The differential in BA is the sum d = d0 + d1 of the coderivations given by

d0([a1| · · · |am]) = −
m∑

i=1

(−1)ni [a1| · · · |∂A(ai)| · · · |am]
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and

d1([a]) = 0

d1([a1| · · · |am]) =
m∑

i=2

(−1)ni [a1| · · · |ai−1ai| · · · |am].

Here ni =
∑

j<i(−1 + deg aj).

The bar construction BA is bigraded by the negative of tensor length and by the grading on

A; that is, the element [a1| · · · |am] has degree (−m,
∑

deg aj). The total degree of [a1| · · · |am] is

(−m +
∑

deg aj). The map d0 has degree (0, 1) and d1 has degree (1, 0). The tensor length is

graded negatively so that the differential on BA increases degree.

Example: Let A = k[x]/(xp) for some p ≥ 2 with zero differential. Let deg x = 0. Then A is

a DGA concentrated in degree zero. Let yi = xi. Then I = ky1 + ky2 + · · · + kyp−1. The bar

construction BA is the cofree coalgebra

T (I) = k ⊕ I ⊕ I2 ⊕ · · ·

with comultiplication determined by

∆([yi1 | · · · |yin ]) =
n∑

s=0

[yi1 | · · · |yis ]⊗ [yis+1 | · · · |yin ].

The differential d is defined by

d([a1| · · · |am]) =
m∑

i=2

(−1)i−1[a1| · · · |ai−1ai| · · · |am]

for all ai ∈ I. If p = 2, then BA is the cofree coalgebra k[y] generated by the primitive element y,

with zero differential.

• Bar construction on M :

If (M, ∂M ) is a left DG A-module, then the bar construction on A with coefficients in M is the

complex B(A,M) = BA⊗M with differential d = d0 + d1 where

d0([a1| · · · |aw]m) = −
w∑

i=1

(−1)ni [a1| · · · |∂A(ai)| · · · |aw]m

−(−1)nw+1 [a1| · · · |aw]∂M (m)

and

d1([a1| · · · |aw]m) =
w∑

i=2

(−1)ni [a1| · · · |ai−1ai| · · · |aw]m

+(−1)nw+1 [a1| · · · |aw−1]awm.

Of course d0m = −∂M (m), d1m = 0 and d1([a]m) = (−1)deg a−1am. This is graded just as BA is,

and for each M , B(A,M) is a left DG BA-comodule.

25



There are two situations in which it is easy to compute H(B(A;M)). The first arises when

A = TV is a tensor algebra, where V = ⊕i≥0Vi or V = ⊕i≥2V
i. The second is when we take

(A, d) as a left module over itself, via multiplication. This yields the complex B(A;A) = BA⊗A.

Note that B(A;A) is a right (A, d)-module via multiplication on the right and that B(A;M) =

B(A;A)⊗A M . One of the main uses of the bar construction maybe

Proposition [FHT, page 270]: Let A be an augmented DGA.

(a) The augmentations in BA and A define a quasi-isomorphism

ε⊗ ε : B(A,A) → k.

(b) If k is a field, then B(A,A) is a semifree right DG A-module. Thus ε ⊗ ε is a semifree

resolution of the right DG A-module kA.

When k is a field and A
ε→ k is an augmented algebra, with no differential. Then B(A,A) is

an A-free resolution of k. But for any left A-module M we have B(A;M) = B(A;A) ⊗A M . It

follows that TorA(k, M) = H(B(A,M)) [FHT, page 278].

3.3.2. Cobar constructions for DGCs

The cobar construction is dual to the bar construction. Let C be a coaugmented DGC with

comultiplication ∆ : C → C ⊗ C and differential d : C → C. Let J be the cokernel of the

coaugmentation k → C. Then the comultiplication on C induces a map ∆ : J → J ⊗ J .

Alternatively, J is isomorphic to the kernel of the counit C → k, and one defines the reduced

comultiplication on this kernel by

∆c = ∆c− (c⊗ 1 + 1⊗ c).

In either case, ∆ is coassociative because ∆ is.

• Cobar construction on C:

Let C be a coaugmented DGC. The cobar construction on C is the augmented DGA ΩC defined

as follows:

¦ As an augmented graded algebra ΩC is the tensor algebra (i.e., the free algebra) T (J) on J .

¦ The differential in ΩC is the sum ∂ = ∂0 + ∂1 of the differentials

∂0([x1| · · · |xm]) = −
m∑

i=1

(−1)ni [x1| · · · |dC(xi)| · · · |xm],

and

∂1([x1| · · · |xm]) =
m∑

i=1

vi∑

j=1

(−1)ni+|yij |+1[x1| · · · |xi−1|yij |zij | · · · |xm]

where ni =
∑

j<i(1 + deg xj) and ∆xi =
∑vi

j=1 yij ⊗ zij .
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This is bigraded by the tensor length and the grading on C, so [x1| · · · |xm] has degree (m,
∑

deg xj).

The total degree of [xj ] is 1 + deg xj . Then ∂0 has degree (0, 1) and ∂1 has degree (1, 0), just as

for BA.

Example: Let C be the dual of the algebra k[x]/(xp) with zero differential. Then C ∼= ⊕p−1
i=0 kzi

with z0 = 1. The comultiplication is determined by ∆(zi) =
∑i

s=0 zs ⊗ zi−s. So ∆(z1) = 0 and

∆(zi) =
∑i−1

s=1 zs ⊗ zi−s for all i ≥ 2. In particular, ∆(z2) = z1 ⊗ z1. The cobar construction ΩC

is the free algebra T (J) = k〈y1, · · · , yp−1〉 where yi = [zi] with differential determined by

∂(y1) = 0 and ∂(yi) = −
i−1∑
s=1

ys ⊗ yi−s.

• Bar construction on Y :

If Y is a left DG C-comodule, then Ω(C, Y ) is equal to ΩC ⊗ Y , with differential ∂ = ∂0 + ∂1

defined by

∂0([x1| · · · |xm]y) = −
m∑

i=1

(−1)ni [x1| · · · |dC(xi)| · · · |xm]y

−(−1)nm+1 [x1| · · · |xm]dY (y)

and

∂1([x1| · · · |xm]y) =
m∑

i=1

vi∑

j=1

(−1)ni+|yij |+1[x1| · · · |yij |zij | · · ·xm]y

+
∑

s

(−1)nm+1+|cs|+1[x1| · · · |xm|cs]ys,

where y → ∑
s cs ⊗ ys is the reduced coaction on y.

The following lemma is standard. Part (c) is [FHT, Sect.19, Ex.3, p.272].

Proposition: Suppose C is a coaugmented DGC such that C⊗n is locally finite for all n. Let M

be a DG C-comodule such that C⊗n ⊗M is locally finite for all n. Let A = C#.

(a) A is an augmented DGA such that A⊗n is locally finite.

(b) ΩC and BA are locally finite with respect to the bigrading.

(c) Ω#C ∼= BA and B#A ∼= ΩC. (will be used in the subsection 4.1.3)

(d) M# is a left DG A-module.

(e) B(A,M#) ∼= Ω#(C, M) as DG BA-comodules.

Remark: One of the most different problem is the problem of calculating the homology groups

of iterated loop spaces. The first steps toward solving this problem were made by J. F. Adams.

To calculate the homology H∗(ΩX) of the loop space ΩX of a topological space X he introduced
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the notion of the cobar construction on a coalgebra. For a 1-connected7 pointed space X (i.e.

π1(X, ∗) = 0), Adams found a natural isomorphism of graded modules H(B(C∗(X)) ∼= H∗(ΩX),

where B(C∗(X)) is the bar construction of DG-algebra C∗(X). The method cannot be extended

directly for iterated loop spaces ΩkX for k ≥ 2, since the bar construction B(A) of a DG-algebra

A is just a DG-coalgebra, and it does not carry the structure of a DG-algebra in order to produce a

double bar construction B(B(A)). However, for A = C∗(X) Baues has constructed an associative

product µ which turns B(C∗(X)) into a DG-algebra and which is geometric. In general, in order

to produce the bar construction B(A) it is not necessary to have, on a DG-module A, a strict

associative product µ : A⊗A → A; it suffices to have a strong homotopy associative product; that

is, to have an A∞-algebra structure on A.

Let X be an n-connected pointed space. Then there exists a sequence of A∞-algebra structures

{m(k)
i }, k = 1, 2, · · · , n, such that for each k ≤ n there exists an isomorphism of graded algebras

H∗(ΩkX) ∼=
(
H

(
B(· · · (B(BC∗(X); {m(1)

i }); {m(2)
i }); · · · ); {m(k−1)

i })); m
(k)
i

)
.

The latter (H(· · · ); m
(k)
i ) allows one to product the next bar construction, but it is not clear

whether it is geometric, i.e., whether homology of this bar construction is isomorphic to H∗(Ωn+1X)

if X is not (n + 1)-connected [KS].

3.3.3. Bar constructions for A∞-algebras

Let A be an A∞-algebra. Recall that if A is augmented then there is a strict A∞-morphism

f : A → k. We assume that A satisfies the strict unital condition. Write A = k⊕I where I = ker f .

Then I is an A∞-algebra without unit and the A∞-structure on A is uniquely determined by the

A∞-structure on I.

Suppose we are given a k-linear map mn : I⊗n → I for some n ∈ N. Since T (I) is cofree

coalgebra, mn determines uniquely a coderivation bn (but not a differential) on T (I) via the map

T (I) → I⊗n → I. The explicit formula8 for bn is the following:

bn([a1| · · · |am]) =
∑

(−1)w[a1| · · · |aj |mn(aj+1, · · · , aj+n)|aj+n+1| · · · |am]

7A space X is connected if any two points in can be connected by a curve lying wholly within X. A space is

0-connected (pathwise-connected) if every map from a 0-sphere to the space extends continuously to the 1-disk.

Since the 0-sphere is the two endpoints of an interval (1-disk), every two points have a path between them. A space

is 1-connected (simply connected) if it is 0-connected and if every map from the 1-sphere to it extends continuously

to a map from the 2-disk. In other words, every loop in the space is contractible. A space is n-connected if it is

(n− 1)-connected and if every map from the n-sphere into it extends continuously over the (n +1)-disk. A theorem

of Whitehead says that a space is infinitely connected iff it is contractible.
8In [Le, p.26], mn is chosen to be −mn, so the formula given here differs from the formula in [Le, p.26] by a sign.

We choose the sign this way so that the definition agrees with the bar construction in the case when an A∞-algebra

is a DGA.
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where mn = (−1)nmn and

w =
∑

1≤s≤j

(|as|+ 1) +
∑

1≤t≤n

(n− t)(|aj+t|+ 1).

For m1 and m2, the formulas b1 and b2 coincide with d0 and d1 respectively as given in the bar

construction of a DGA. Let b =
∑

n≥1 bn, then b is a coderivation of T (I). The following are

equivalent.

(a) The k-linear maps mn : I⊗n → I yield an A∞-structure on I (without unit).

(b) The coderivation b : T (I) → T (I) satisfies b2 = 0.

• Bar construction: There is a bijection9 between the A∞-structures on A and the coalgebra

differentials on T (I). Given an A∞-algebra, the corresponding coaugmented DGC T (I) is denoted

by BA, and called the bar construction of A. The bar construction of a DGA is just a special case.

Note that each bn has degree +1 when we are using the total degree, which is defined by

deg([a1| · · · |an]) = −n +
n∑

i=1

|ai|.

Example: Let A = k[x]/(x3) = k1⊕ kx1 ⊕ kx2 be a connected cubic zero A∞-algebra with

mi(x1, · · · , x1) = x2

for all i ≥ 1. Let ai ∈ {1, x1, x2}. Then the differential b in BA is defined by

b([a1| · · · |an]) =
∑

ai=···=aj=x1

(−1)w[a1| · · · |ai−1|x2|aj+1| · · · |an]

where i ≤ j and w = j +
∑

1≤s<i deg as.

9There is a one-to-one correspondence between systems of maps mi : V ⊗i → V, i ≥ 1 and systems of maps

mi : ΣV ⊗i → ΣV, i ≥ 1 via the following commutative diagram:

ΣV ⊗i

(Σ−1)⊗i

²²

mi // ΣV

Σ−1

²²
V ⊗i

mi // V

Of course the mi’s will inherit additional signs from the Koszul sign rule. It is well known that any system of maps

mi : ΣV ⊗i → ΣV, i ≥ 1 can be uniquely extended to a coderivation m̄ on the tensor coalgebra TΣV which vanishes

on k ⊂ TΣV . Furthermore all coderivations vanishing on k are obtained in this way, hence there is a one-to-one

correspondence

Homk(TΣV/k, ΣV ) ↔ {m ∈ Coder(TΣV ) : m(k) = 0}.

The condition m2 = 0 turns out to be equivalent to the higher homotopy associativity axioms for the mi’s. Now

simply observe that the dual of a coderivation on TΣV is a continuous derivation on (TΣV )∗ = bTΣV ∗. It follows

from [HaL, Prop. A.6] that the geometrical alternative style of definition is equivalent to above definition of A∞-

algebra [HaL, page 22].
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• Relations between A and BA:

Lemma [Ke1, 3.6]: Let A and R be two A∞-algebras. There is a bijection between the A∞-

morphisms from A to R and the DGC morphisms from BA to BR.

Let A and R be A∞-algebras. Let f be an A∞-morphism from A to R. By the above lemma,

there is a corresponding DGC morphism from BA to BR, which is denoted by F . Let g be another

A∞-morphism from A to R with corresponding DGC morphism G from BA to BR. Then f and

g are homotopic if and only if there is a map H : BA → BR of degree −1 such that

∆H = (F ⊗H + H ⊗G)∆ and F −G = b ◦H + H ◦ b.

One can translate this into the existence of a family of maps hn : A⊗n → R satisfying conditions

given in the section 3.3.2. We say an A∞-morphism f : A → R is a homotopy equivalence if there is

another A∞-morphism g : R → A such that fg and gf are homotopic to idR and idA respectively.

Theorem: [Ka3] [Pr] [Le, Corollaire 1.3.1.3]

(1) Homotopy is an equivalence relation on the set of morphisms of A∞-algebras A → R.

(2) An A∞-morphism A → R is a quasi-isomorphism if and only if it is a homotopy equivalence.

In particular, part (2) implies that any quasi-isomorphism has a quasi-inverse.

4 Ext-algebras

There are two natural problems related to the Ext-algebras.

(1) Whether Ext∗A(M, M) is finitely generated provided M is a finitely generated A-module?

(2) How to recover an algebra from its Ext-algebra?

The first problem has been discussed in various contexts. For a local commutative noetherian

ring A with residue field k, it has been conjectured that Ext∗A(k, k) would always be a finitely

generated A-algebra. Another result is: if A = kQ/I admits a pure (with weight δ(i)) minimal

resolution of k, then Ext∗A(k, k) is finitely generated if and only if there is some positive integer N

such that, if n > N , then there exists i (0 < i < n), such that δ(i)+δ(n−i) = δ(n) (Green-Marcos).

Koszul algebra and d-Koszul algebra are at the cases. An interesting result related to a Koszul

algebra is due to Smith [Sm]: suppose that A is Koszul and noetherian, then A is Artin-Schelter

regular if and only if Ext∗A(k, k) is Frobenius.

The second problem is far more complicated. This is a highly nontrivial task. A useful approach

to attaching the problem is applying methods from homological algebra. We are interested in this

problem below.

There are two distinguished modules over an augmented algebra A with the augmentation map

ε : A → k, namely, the left and right trivial modules A/ker(ε), we will denote these by k and kA
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respectively. Typical examples of augmented k-algebras are commutative local rings, Hopf algebras

(group algebras and enveloping algebras) where ε is the co-unit, and connected graded algebras.

Let A be a graded algebra generated in degree 1. Then the Ext-algebra Ext∗A(kA, kA) is

equipped with an A∞-algebra structure. We use Ext∗A(kA, kA) to denote both the usual associative

Ext-algebra and the Ext-algebra with its A∞-structure. An example shows that the associative

algebra Ext∗A(kA, kA) does not contain enough information to recover the original algebra A; on

the other hand, the information from the A∞-algebra Ext∗A(kA, kA) is sufficient to recover A.

4.1 A∞-structures on Ext-algebras

The classical Ext-algebra Ext∗A(kA, kA) is the cohomology ring of EndA(PA), where PA is any

free resolution of kA. Since E = EndA(PA) is a DGA, by Kadeishvlli’s result, Ext∗A(kA, kA) = HE

has a natural A∞-structure, which is called an A∞-Ext-algebra of A. By abuse of notation we use

Ext∗A(kA, kA) to denote an A∞-Ext-algebra.

Kadeishvili’s construction is very general. We would like to describe the A∞-structure on

Ext∗A(kA, kA) by using Merkulov’s construction.

4.1.1. Merkulov’s construction

Merkulov constructed a special class of higher multiplications for HE in [Me], in which the

higher multiplications can be defined inductively; this way, the A∞-structure can be described

more explicitly, and hence used more effectively. For our purposes we will describe a special case

of Merkulov’s construction, assuming that E is a DGA.

• Split the complex: Let E be a DGA with differential ∂ and multiplication ·. Denote by Bn

and Zn the coboundaries and cocycles of En, respectively. Then there are subspaces Hn and Ln

such that

Zn = Bn ⊕Hn

and

En = Zn ⊕ Ln = Bn ⊕Hn ⊕ Ln.

We will identify HE with
⊕

n Hn, or embed HE into E by cocycle-sections Hn ⊂ En. There are

many different choices of Hn and Ln.

• Choose a homotopy: Let p = PrH : E → E be a projection to H =
⊕

n Hn, and let Q : E → E

be a homotopy from idE to p. Hence we have idE − p = ∂Q + Q∂. The map Q is not unique.

From now on we choose Q with the following properties: for every n, Qn : En → En−1 is defined

by: Qn|Ln = Qn|Hn = 0, and Qn|Bn = (∂n−1|Ln−1)−1. So the image of Qn is Ln−1. It follows

that Qn+1∂n = PrLn and ∂n−1Qn = PrBn .

• Pre-define maps λn : E⊗n → E of degree 2− n inductively as follows.
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There is no map λ1, but we formally define the ‘composite’ Qλ1 by Qλ1 = −idE . λ2 is the

multiplication of E, namely, λ2(a1⊗a2) = a1 ·a2. For n ≥ 3, λn is defined by the recursive formula

λn =
∑

s+t=n,
s,t≥1

(−1)s+1λ2(Qλs ⊗Qλt).

We abuse notation slightly, and use p to denote both the map E → E and also (since the image

of p is HE) the map E → HE; we also use λi both for the map E⊗i → E and for its restriction

(HE)⊗i → E.

• Define multiplications and morphisms

Theorem: [Me] Define mi = pλi : (HE)⊗i → HE, and fi = −Qλi : (HE)⊗i → E. Then

(1) (HE, m2,m3, · · · ) is an A∞-algebra;

(2) f = {fi} is a quasi-isomorphism between HE and E as A∞-algebras.

4.1.2. Ext1A(kA, kA) and Ext2A(kA, kA)

Consider a connected graded algebra (no differential here!)

A = k ⊕A1 ⊕A2 ⊕ · · · ,

which is viewed as an A∞-algebra concentrated in degree 0, with the grading on A being the Adams

grading. Let V ⊂ A be a minimal graded vector space which generates A. Then V ∼= I/I2 where

I = A≥1 is the unique maximal graded ideal of A. Let R ⊂ T 〈V 〉 be the minimal graded vector

space which generates the relations of A. Then A ∼= T 〈V 〉/(R) where (R) is the ideal generated

by R, and the start of a minimal graded free resolution of the trivial right A-module kA is

· · · → ?⊗A → R⊗A → V ⊗A → A → k → 0.

Lemma: Let A be a connected graded algebra. Then there are natural isomorphisms of graded

vector spaces

Ext1A(kA, kA) ∼= V # and Ext2A(kA, kA) ∼= R#.

This comes from the property of the minimal resolution. We wonder what ‘?’ is in the resolution

above. We expect to explain it in the A∞-world.

In the following, we assume that A is generated by V = A1 and that A1 is finite-dimensional;

hence A = T 〈A1〉/(R). Let E be the A∞-Ext-algebra Ext∗A(kA, kA).

4.1.3. Basic Lemma

A remarkable result that how to recover an algebra from its Ext-algebra was stated by Keller

in [Ke3, Section 2] without proof. It is available for a general class of algebras kQ/I where Q is a

finite quiver and I is an admissible ideal of kQ.
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Basic Lemma works only for graded algebras generated in degree 1, so it is a special case of

Keller’s result. The result is relating the A∞-structure on Ext∗A(kA, kA) to the relations in A; that

is, Basic Lemma shows the information from the A∞-algebra Ext∗A(kA, kA) is sufficient to recover

A, which is also essential for the classification of AS regular algebras of global dimension 4 that

are generated by two elements.

Basic Lemma (Keller’s higher-multiplication theorem in the connected graded case): Let A be

a graded algebra, finitely generated in degree 1, and let E be the A∞-algebra Ext∗A(kA, kA). Let

R =
⊕

n≥2 Rn be the minimal graded space of relations of A such that Rn ⊂ An−1 ⊗ A1 ⊂ A⊗n
1 .

Let i : Rn → A⊗n
1 be the inclusion map and let i# be its k-linear dual. Then the multiplication mn

of E restricted to (E1)⊗n is equal to the map

i# : (E1)⊗n = (A#
1 )⊗n −→ R#

n ⊂ E2.

To show the basic lemma, we need a precise Merkulov’s data on Ext∗A(kA, kA). We sketch the

steps for this purpose below.

Continue to consider a connected graded algebra A = k ⊕ A1 ⊕ A2 ⊕ · · · that is viewed as an

A∞-algebra concentrated in degree 0, with the grading on A being the Adams grading. As before,

denote I = A≥1.

• Ext ∗A(k, k) ∼= H(ΩA#)

Denote P = T (ΣI) ⊗k A =
⊕

s≥0 P s, where P s = I⊗s ⊗k A. Then, P (= B(A;A)) is a free

resolution of k, and P ⊗A k ∼= T (ΣI), we have

· · · → P s ⊗A k → P s−1 ⊗A k → · · · → P 0 ⊗A k → 0;

that is,

· · · −→ I⊗s d−s

−→ I⊗(s−1) −→ · · · −→ I⊗1 d−1

−→ I⊗0 → 0.

Note that the grading on the differential graded coalgebra T (ΣI) is by the negative of the wordlength,

namely, (T (ΣI))−i = I⊗i. The differential d = (di) of the bar construction T (ΣI) is induced by

the multiplication I ⊗ I → I in A:

d−1([a1]) = 0,

d−s([a1| · · · |as]) =
s−1∑

i=1

(−1)i[a1| · · · |aiai+1| · · · |as], for s ≥ 2.

Thus, we get H(BA) = TorA
∗ (k, k). Note that T (ΣI)# ∼= T (Σ−1I#), (Σ−1I#)⊗s ∼= (ΣI⊗s)#,

we get Ext ∗A(k, k) ∼= H(T (Σ−1I#)) = H(ΩA#).

• Describe Merkulov’s data of the cobar construction ΩA# by its dual BA

We need to construct analogue of the maps λ and Q on DGA ΩA#. Due to ΩA# ∼= B#A, so

we start the construction from BA.
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By the duality, ∂ : (I#)⊗s → (I#)⊗s+1 is defined by

∂(f1, · · · , fs) = d#(f1, · · · , fs) = −(−1)s(f1 ⊗ · · · ⊗ fs) ◦ d

for f1, · · · , fs ∈ T (Σ−1I#).

Since A is generated by A1, the multiplication An−1 ⊗ A1 → An is surjective. For n ≥ 2, let

the linear maps ξn : An → An−1 ⊗A1 be a split injection such that the composition

An
ξn−→ An−1 ⊗A1 → An

is the identity. Let θn be the composition

An
ξn−→ An−1 ⊗A1

ξn−1⊗1

−−−−→ An−2 ⊗A⊗2
1

ξn−2⊗1⊗2

−−−−−−→ · · · ξ2⊗1⊗n−1

−−−−−−→ A⊗n
1 .

Since R is a minimal graded vector space of the relations of A, there is an injection ηn : Rn →
An−1 ⊗A1. View Rn as a subspace of An−1 ⊗A1 via this injection.

Denote W−s = I⊗s =
⊕

n W−s
n , where W−s

n =
⊕

i1+···+is=n Ai1 ⊗ · · · ⊗ Ais
. Write d−s

n to be

the restriction of d−s on the subspace W−s
n . Then there is a decomposition

W−2
n = im(d−3

n )⊕Rn ⊕ ξn(An).

In fact, it is clear that W−2
n = ker(d−2

n ) ⊕ ξn(An). Since R# ∼= Ext2A(k, k) ∼= H2(T (Σ−1I#)),

there is a decomposition ker(d−2
n ) = im(d−3

n )⊕Rn.

Now let T 2 = I#⊗I# and T 2
−n =

⊕
i+j=n A#

i ⊗A#
j . Dualizing above, we have a decomposition

T 2
−n = (ξn(An))# ⊕R#

n ⊕ (im(d−3
n ))#.

This decomposition is just the decomposition T 2
−n = B2

−n ⊕H2
−n ⊕ L2

−n in splitting of a complex.

Hence we can define Q2
−n : T 2

−n → T 1
−n = A#

n as the composition A#
1 ⊗A#

n−1
∼= (An−1⊗A1)#

−ξ#
n−→

A#
n for all n ≥ 2. Then we get a map Q2 : T 2 → T 1 = I#.

Next, let Pr be the projection in Merkulov’s construction, in particular, Pr : T 2
−n → R#

n .

• Apply Merkulov’s construction on ΩA#.

For our purpose, let p = Pr|T 2
−n

. Then p |A#
1 ⊗A#

n−1
is the composition

A#
1 ⊗A#

n−1
∼= (An−1 ⊗A1)#

η#
n−→ R#

n

and p (others) = 0.

By the construction above, up to quasi-isomorphism, there is an augmented A∞-algebra struc-

ture (H(ΩA#), {mn}) with m1 = 0 and for n ≥ 2,

mn = Prλn = Pr
∑

i+j=n

(−1)i+1λ2(Qλi ⊗Qλj).
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Note that the homotopy Q2 is defined from A#
1 ⊗ A#

n−1 to A#
n for all n ≥ 2, by the definition

of p, when restricted to (A#
1 )⊗n we have

mn = −pλ2(1⊗Qλn−1)

= (−1)2pλ2(1⊗Qλ2(1⊗Qλn−2))

· · · · · ·
= (−1)n−2pλ2(1⊗Qλ2(1⊗Qλ2(· · ·Qλ2(1⊗Qλ2))))

= (−1)n−2pλ2(1⊗Qλ2)(1⊗2 ⊗Qλ2) · · · (1⊗n−2 ⊗Qλ2)

Note that λ2 is the multiplication of T (Σ−1I#). Consider the following commutative diagram

(A#
1 )⊗n

−1⊗n−2⊗Qλ2−−−−−−−−→ (A#
1 )⊗n−2 ⊗A#

2

−1⊗n−3⊗Qλ2−−−−−−−−→ · · · −1⊗Qλ2−−−−−−→ A#
1 ⊗A#

n−1

p−−→ R#
n

‖ ‖ ‖ ‖

(A⊗n
1 )#

(ξ2⊗1⊗n−2)#

−−−−−−−−→ (A2 ⊗A⊗n−2
1 )#

(ξ3⊗1⊗n−3)#

−−−−−−−−→ · · ·
(ξn−1⊗1)#

−−−−−−→ (An−1⊗A1)#
η#

n−−→ R#
n .

We see that mn, when restricted to (A#
1 )⊗n, is the composition

(A#
1 )⊗n ∼= (A⊗n

1 )#
(θn−1⊗1)#

−−−−−−−→ (An−1 ⊗A1)#
η#

n−−→ R#
n .

4.2 An example of recovering an algebra from its Ext-algebra

We copy an example from [LPWZ1, Example 13.4] to show the nice recovering property of

A∞-Ext-algebra Ext∗A(kA, kA). The example explains that some information has been neglected

in the course of transferring an algebra to its associative Ext-algebra.

Let α, β be scalars in k with α 6= 0. Let A be an associative algebra generated by x and y of

Adams degree 1 subject to two relations of Adams degree 3

xy2 + αy2x + βyxy = 0 and x2y + αyx2 + βxyx = 0.

Then A is an AS regular algebra of global dimension 3 [AS, p.203]. The Ext-algebra of A is

Ext∗A(k, k) = k ⊕ V 1 ⊕ V 2 ⊕ V 3

with

deg V 1 = (1,−1), deg V 2 = (2,−3), deg V 3 = (3,−4)

and

dimV 1 = 2, dimV 2 = 2, dimV 3 = 1.
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We want to show that as a minimal model of E(A) the A∞-algebra Ext∗A(k, k) is isomorphic

to C(α, β) defined in [LPWZ1, Example 3.7]10.

For every n ≥ 4, the graded map mn has degree (2− n, 0). This implies that the image of mn

must be zero since every homogeneous subspace of A⊗n has degree (i,−j) with j ≥ i. For n = 3,

we see that m3 = 0 when applied to a subspace of degree other than (3,−3), and the image of m3

is in degree (2,−3). Let a and b be the elements in V 1 that are k-linear dual to x and y in A and

let c and d be the elements in V 2 that are k-linear dual to the two relations in A (see Lemma in

section 4.1.1). By Basic Lemma, m3 = 0 except for

m3(a, b, b) = c, m3(b, b, a) = αc, m3(b, a, b) = βc

and

m3(a, a, b) = d, m3(b, a, a) = αd, m3(a, b, a) = βd.

These are exactly the formulas given in C(α, β). It remains to show that the multiplication of

Ext∗A(k, k) is the same as that of C(α, β) in C(α, β). It follows from the degree argument that the

following subspaces are zero:

V 1V 1, V 2V 2, V 3V 3, V 1V 3, V 3V 1, V 2V 3, V 3V 2.

Use SI(4) we will recover all multiplications of V 1 and V 2. Applied to (a, a, a, b), SI(4) becomes

am3(a, a, b) = m3(a, a, a)b,

which implies ad = 0 since m3(a, a, a) = 0 and m3(a, a, b) = d. Similarly, applying SI(4) to

(b, a, a, a) (respectively, (b, b, b, a) and (a, b, b, b)) we obtain da = 0 (respectively, bc = 0 and
10Let α and β be two elements in the base field k. First we define an associative graded algebra C with a parameter

α. As a graded vector space

C = C0 ⊕ C1 ⊕ C2 ⊕ C3 = k1⊕ (ka⊕ kb)⊕ (kc⊕ kd)⊕ ke.

The multiplication m2 is given by the following rules:

1 is the identity

ac = e ad = 0 bc = 0 bd = αe

ca = αe da = 0 cb = 0 db = e

other products = 0.

Then C is an associative graded algebra. It is a Frobenius algebra if and only if α is nonzero. Assume now α 6= 0.

Next we define the higher multiplications on C. For n 6= 2, 3, mn = 0. For n = 3 we define m3(x1, x2, x3) = 0

except for

m3(a, b, b) = c, m3(b, b, a) = αc, m3(b, a, b) = βc

and

m3(a, a, b) = d, m3(b, a, a) = αd, m3(a, b, a) = βd.

This defines an A∞-algebra.
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cb = 0). Applying SI(4) to (a, a, b, b), we have

am3(a, b, b) = m3(a, a, b)b.

Let e = ac ∈ V 3. Then the above equation shows that db = e. Similarly, applying SI(4) to

(a, b, b, a) (respectively, (b, a, a, b)) we obtain ca = αe (respectively, bd = αe). In particular,

V 1V 2 = ke. Since Ext∗A(k, k) is Frobenius, V 1V 2 6= 0. Hence e is nonzero and is a basis element

of V 3. We now recover the multiplication table listed in C(α, β). Therefore the A∞-algebra

Ext∗A(k, k) is the same as C(α, β) of C(α, β) after we make the obvious identification of elements.

In this example the Ext-algebra (Ext∗A(k, k),m2) contains only a part of the data about

the algebra A; in particular, β does not appear in this associative algebra. The A∞-algebra

(Ext∗A(k, k),m2,m3) contains the complete data about A and A can be recovered from this A∞-

algebra.

4.3 Koszul duality

In this short subsection, we state in brief that how Ext-algebras work on higher Koszul algebras,

which related to a class of A∞-algebra of Ext∗A(k, k) in the sense of only one non-zero higher

multiplication.

Let A be a locally finite connected graded algebra. By a Koszul dual of A here we mean the

A∞-Ext-algebra (up to quasi-isomorphism) Ext∗A(kA, kA), denoted by E(A).

We say a p-homogeneous algebra A is (right) p-Koszul if the trivial A-module kA admits a

linear projective resolution: · · · → Pn → · · · → P1 → P0 → kA → 0 with Pn generated in degree

p(n), where p : N→ N is defined by

p(n) =

{
pm if n = 2m,

pm + 1 if n = 2m + 1.

A 2-Koszul algebra is a usual Koszul algebra. Some important graded algebras are p-Koszul

algebras. Some significant applications of p-Koszul algebras were found in algebraic topology,

algebraic geometry, quantum group, and Lie algebra. For example, some AS regular algebras [AS]

of global dimension 3 are p-Koszul algebras which are fundamental in non-commutative projective

geometry.

It is an effective method to describe algebras by their Ext-algebras as mentioned before. A

well-known criterion theorem for Koszul algebras is: Let A be a quadratic algebra, then A is

Koszul if and only if its Koszul dual E(A) = Ext∗A(k, k) is generated by E1(A). There is a similar

result for a p-homogeneous algebra to be a p-Koszul algebra: Let A be a p-homogeneous algebra,

and E(A) its Koszul dual. Then A is a p-Koszul algebra if and only if E(A) is generated by E1(A)

and E2(A).
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What will be the case if using the A∞-language?

A (2, p)-algebra E is an A∞-algebra with two non-trivial multiplications m2 and mp. Roughly

speaking E is a graded associative algebra such that some compatibility conditions between m2

and mp are required. These algebras was discussed by He in his Ph.D Thesis [He], we refer to [HL]

for details.

Since a (2, p)-algebra has only two nontrivial multiplications, the Stasheff Identities are auto-

matically satisfied except for SI(3), SI(2p− 1) and SI(p + 1) (see section 3.1.1).

Definition: An augmented (2, p)-algebra (E, m2,mp) is called a reduced (2,p)-algebra if the fol-

lowing conditions are satisfied:

(1) E = k ⊕ E1 ⊕ E2 ⊕ · · · ;
(2) m2(E2t1+1 ⊗ E2t2+1) = 0 for all t1, t2 ≥ 0;

(3) mp(Ei1 ⊗ · · · ⊗ Eip) = 0 unless all of i1, . . . , ip are odd.

A reduced (2, p)-algebra E is said to be generated by E1 if for all n ≥ 2,

En =
∑

i+j=n
i,j≥1

m2(Ei ⊗ Ej) +
∑

i1+···+ip+2−p=n
i1,··· ,ip≥1

mp(Ei1 ⊗ · · · ⊗ Eip).

It was proved in [He] that if A is a p-Koszul algebra then each A∞-structure of the Koszul dual

E(A) is a (2, p)-algebra, moreover, all the (2, p)-algebra structures are isomorphic. Suppose that

A is a locally finite connected graded algebra generated by A1, E = E(A) is the Koszul dual of

A with an augmented bigraded A∞-structure {mi}. A criterion for a connected graded algebra to

be a p-Koszul algebra in terms of A∞-algebra is: For p ≥ 3, A is a p-Koszul algebra if and only if

that (E(A), {mi}) is a reduced (2, p)-algebra generated by E1. This is an A∞-version of criterion

theorem for higher Koszul algebra analogue to the classical one for Koszul algebra.

5 Application (a brief introduction to AS regular algebras)

As an application in noncommutative algebras, we explain roughly in this section that A∞-

algebras can be used to solve some questions which have not been solved by classical methods. We

outline the work [LPWZ2] for the classification of AS regular algebra of global dimension 4.

From known results, it seems that Koszul regular algebras are more popular than the non-

Koszul ones. There are two explanations. One is that the non-Koszul regular algebras may be

more difficult to study since the relations of such algebras are not quadratic. The other is that a

non-Koszul algebra A is not a deformation of the commutative polynomial ring k[x0, x1, x2, x3].

A crucial step in finding non-Koszul AS regular algebras is to use the A∞-structure on Ext-

algebras. This method has advantages for non-Koszul regular algebras because one can get more

information from the non-trivial higher multiplications on the Ext-algebras.
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We recall the definition of AS regular algebras, explain their Hilbert series, and describe the

possible shapes of their Ext-algebras. We try to convince the readers of that A∞-algebra method

is an extremely powerful tool for the question.

5.1 Artin-Schelter regular algebras

5.1.1. Definition and properties

A connected graded algebra A is called Artin-Schelter regular (or AS regular) if the following

three conditions hold.

(AS1) A has finite global dimension d,

(AS2) A is Gorenstein, i.e., for some integer l,

Exti
A(k, A) =

{
k(l) if i = d

0 if i 6= d

where k is the trivial module A/I, and

(AS3) A has finite Gelfand-Kirillov dimension; that is, there is a positive number c such that

dimAn < c nc for all n ∈ N.

The notation (l) in (AS2) is the degree l shift operation on graded modules.

AS regular algebras have been studied in many recent papers, and in particular, AS regular

algebras of global dimension 3 have been classified [AS].

Lemma: [SZ] Suppose A is connected graded and satisfies (AS1) and (AS2).

(a) A is finitely generated.

(b) The trivial A-module kA has a minimal free resolution of the form

0 → Pd → · · · → P1 → P0 → kA → 0,

where Pw =
⊕nw

s=1 A(−iw,s) for some finite integers nw and iw,s.

(c) The above free resolution is symmetric in the following sense: P0 = A, Pd = A(−l), nw =

nd−w, and iw,s + id−w,nw−s+1 = l for all w, s.

Proposition: (1) If A is a noetherian AS regular algebra of global dimension at least 3, then the

GK-dimension of A is at least 3.

(2) If A is a noetherian connected graded AS regular algebra of global dimension 4, then it is

an integral domain.

5.1.2. Hilbert series and types
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The Hilbert series of a graded vector space M =
⊕

i∈ZMi is defined to be

HM (t) =
∑

i∈Z
(dimk Mi)ti ∈ Z[[t, t−1]].

By analyzing the minimal resolution of the trivial module k, we can determine the Hilbert

series of A when it is generated in degree 1.

Three Types

Let A be a graded AS regular algebra of global dimension 4 that is generated in degree 1. Suppose

that A is a domain. Then A is minimally generated by either 2, 3, or 4 elements.

(a) If A is generated by 2 elements, then there are two relations whose degrees are 3 and 4. The

minimal resolution of the trivial module is of the form

0 → A(−7) → A(−6)⊕2 → A(−4)⊕A(−3) → A(−1)⊕2 → A → k → 0.

The Hilbert series of A is

HA(t) = 1/(1− t)2(1− t2)(1− t3).

(b) If A is generated by 3 elements, then there are two relations in degree 2 and two relations in

degree 3. The minimal resolution of the trivial module is of the form

0 → A(−5) → A(−4)⊕3 → A(−3)⊕2 ⊕A(−2)⊕2 → A(−1)⊕3 → A → k → 0.

The Hilbert series of A is

HA(t) = 1/(1− t)3(1− t2).

(c) If A is generated by 4 elements, then there are six quadratic relations. The minimal resolution

of the trivial module is of the form

0 → A(−4) → A(−3)⊕4 → A(−2)⊕6 → A(−1)⊕4 → A → k → 0.

The Hilbert series of A is

HA(t) = 1/(1− t)4.

In each of these cases, the GK-dimension of A is 4.

Proof: (Sketch) kA has a minimal free resolution

0 → A(−l) → A(−l + 1)⊕n → ⊕v
s=1 A(−ns) → A(−1)⊕n → A → k → 0.

Hence the Hilbert series of A is HA(t) = 1/p(t), where p(t) = 1− nt +
∑v

s=1 tns − ntl−1 + tl.
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By analyzing the GK-dimension of A (= the order of the zero of p(t) at 1), we have

∑
s

ns = (n− 1)l, and
n−1∑
s=1

nv−s+1ns = (l − 1)n.

Discussing the equation above, possible three solutions are:

(a) n = 2 implies l = 7, and n1 = 3, n2 = 4.

(b) n = 3 implies l = 5, and n1 = n2 = 2, n3 = n4 = 3.

(c) n = 4 implies l = 4, and ns = 2 (1 ≤ s ≤ 6).

Remark: If an algebra satisfies the hypotheses above, we label it according to the dimensions

of vector spaces Exti
A(k, k). That is, algebras as in the class (a) are said to be of type (12221),

algebras as in the class (b) are of type (13431), and algebras as in the class (c) are of type (14641).

5.2 A∞-structures on Ext-AS-regular algebras

By Koszul duality, A is (quasi-)isomorphic to E(E(A)) as A∞-algebras and the relations of

A can be recovered from the multiplications of E(A) (Basic Lemma). Hence to classify the AS

regular algebras of global dimension 4 that is generated in degree 1, it is sufficient to classify the

A∞-algebras E(A) listed in each classes above.

Proposition: Let A be an algebra as above and let E be the Ext-algebra of A.

(a) (type (12221)) If A is minimally generated by 2 elements, then E is isomorphic to

k
⊕

E1
−1

⊕
(E2
−3 ⊕ E2

−4)
⊕

E3
−6

⊕
E4
−7

as a Z2-graded vector space, where the lower index is the Adams grading inherited from the

grading of A and the upper index is the homological grading of the Ext-group. The dimensions

of the subspaces are

dimE1
−1 = dim E3

−6 = 2, dimE2
−3 = dim E2

−4 = dim E4
−7 = 1.

As an A∞-algebra, mn = 0 for all n ≥ 5; that is, E = (E, m2,m3,m4).

(b) (type (13431)) If A is minimally generated by 3 elements, then E is isomorphic to

k
⊕

E1
−1

⊕
(E2
−2 ⊕ E2

−3)
⊕

E3
−4

⊕
E4
−5

as a Z2-graded vector space. As an A∞-algebra, mn = 0 for all n ≥ 4; that is, E =

(E, m2,m3). The dimensions of the subspaces are

dimE1
−1 = dim E3

−4 = 3, dimE2
−2 = dim E2

−3 = 2, dimE4
−5 = 1.

41



(c) (type (14641)) If A is minimally generated by 4 elements, then E is isomorphic to

k
⊕

E1
−1

⊕
E2
−2

⊕
E3
−3

⊕
E4
−4

as a Z2-graded vector space. The algebras A and E are Koszul and mn of E is zero for all

n 6= 2. The dimensions of the subspaces are

dimE1
−1 = dim E3

−3 = 4, dimE2
−2 = 6, dimE4

−4 = 1.

Proof: (Sketch) The vector space decomposition of E and the dimensions of the subspaces of

E are clear from the form of the minimal free resolution of the trivial module.

It’s clear that all m1 = 0 since the degree of m1 is (1, 0).

Consider the maps mn, restricted to a homogeneous subspace:

mn : Ei1
−j1

⊗ · · · ⊗ Ein
−jn

→ Ei
−j

where i =
∑n

s=1 is−n + 2 and j =
∑n

s=1 js. We may assume that is ≥ 1 (for all s) since the strict

unital condition. Then note that is ≤ js ≤ is + 3 in case (a), and is ≤ js < is + 2 in case (b). In

case (c), kA has a linear resolution. Hence A and E are Koszul, and this implies that the higher

multiplications of E are trivial.

Remark:

(1) In type (14641), both A and E(A) are Koszul. Most known examples fall into this type. In

this type, A∞-algebra methods are not available since higher multiplications on E(A) are zero. For

type (12221), we can construct first (E, m2), second m3, and third m4, each step is relatively easy.

For type (14641), we have to finish the construction at one move. We will have other methods to

study these algebras, for example, using the matrices constructed from the multiplication of E.

The people working in representation theory may also be interested in this type.

(2) In type (13431), m2 and m3 of E are nonzero. By Basic lemma, the relations of A, two of

which are in degree 2 and other two are in degree 3, are determined completely by m2 and m3 of

E. In the near future we will look into the possibility of classifying those A∞-algebras (E, m2,m3).

(3) In type (12221), there are two nonzero higher multiplications m3 and m4. For such algebras,

all Stasheff’s identities are automatic except for SI(4), SI(5), SI(6), SI(7) (in type (12221), the

identity SI(7) is also automatic).

5.3 Non-Koszul AS regular algebras

A point in translating an algebra to its Ext-algebra is a generalization result11 of Smith [Sm]

that we listed in the section 4. Smith’s another result is interesting too: Let A be a left noetherian,
11By using A∞-algebras, the result can be generalized to non-Koszul non-noetherian algebras: Let A be a connected

graded algebra and let E be the Ext-algebra of A. Then A is AS regular if and only if E is Frobenius. [LPWZ1,

Th. 12.5]
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augmented algebra, and suppose that A is Gorenstein and that gldim(A) = n, then Ext∗A(k, k) is

Frobenius.

We concentrate on algebras of type (12221) in this subsection. We describe formulas for the

possible multiplication maps mn on their A∞-Ext-algebras. In this type, the Ext-algebras are

E = k
⊕

E1
−1

⊕
(E2
−3 ⊕ E2

−4)
⊕

E3
−6

⊕
E4
−7.

We construct A∞-structures on E step by step.

5.3.1. Frobenius data on (E, m2)

Except for the multiplying by the unit element, the possible nonzero m2’s of E are

E1
−1 ⊗ E3

−6 → E4
−7, E3

−6 ⊗ E1
−1 → E4

−7,

E2
−3 ⊗ E2

−4 → E4
−7, E2

−4 ⊗ E2
−3 → E4

−7.

By Theorem above, if A is an AS regular algebra, then E is a Frobenius algebra. The multiplication

m2 of a Frobenius algebra E of type (12221) can be described as follows.

Let δ be a basis element of E4
−7. Pick a basis element β1 ∈ E2

−3. Since E is a Frobenius algebra,

m2 : E2
−3 ⊗ E2

−4 → E4
−7 and m2 : E2

−4 ⊗ E2
−3 → E4

−7

are both nonzero. So we can pick a basis element β2 ∈ E2
−4 such that β1β2 = δ and β2β1 = t δ for

some 0 6= t ∈ k. Pick a basis {α1, α2} for E1
−1. Since E is a Frobenius algebra,

m2 : E1
−1 ⊗ E3

−6 → E4
−7 and m2 : E3

−6 ⊗ E1
−1 → E4

−7

are perfect pairings. Hence we may choose a basis {γ1, γ2} of E3
−6 such that αiγj = δijδ. Let

γiαj = rijδ for some rij ∈ k. Then the matrix Λ := (rij)2×2 ∈ M2(k) is non-singular.

(Λ, t) is called the Frobenius data of E or of A.

5.3.2. Determine (E, m2,m3) satisfying SI(4)

Given such an (E, m2), note that m1 = 0, the Stasheff identity SI(4) becomes

m3(m2 ⊗ id⊗2 − id⊗m2 ⊗ id + id⊗2 ⊗m2)−m2(m3 ⊗ id + id⊗m3) = 0,

which only involves m2 and m3. Possible nonzero components of m3 on E⊗3 are

(E1
−1)

⊗3 → E2
−3,

(E1
−1)

⊗2 ⊗ E2
−4 → E3

−6, E1
−1 ⊗ E2

−4 ⊗ E1
−1 → E3

−6, E2
−4 ⊗ (E1

−1)
⊗2 → E3

−6,

E1
−1 ⊗ (E2

−3)
⊗2 → E4

−7, E2
−3 ⊗ E1

−1 ⊗ E2
−3 → E4

−7, (E2
−3)

⊗2 ⊗ E1
−1 → E4

−7.
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We have, for 1 ≤ i, j, k ≤ 2,

m3(αi, αj , αk) = aijk β1;

m3(αi, αj , β2) = b13ij γ1 + b23ij γ2,

m3(αi, β2, αj) = b12ij γ1 + b22ij γ2,

m3(β2, αi, αj) = b11ij γ1 + b21ij γ2;

m3(αi, β1, β1) = c1i δ,

m3(β1, αi, β1) = c2i δ,

m3(β1, β1, αi) = c3i δ,

all other applications of m3 are zero.

Here aijk, bipjk and cpi are scalars in the field k.

Applying SI(4) to the elements (αi, αj , αk, β2), (αi, αj , β2, αk), (αi, β2, αj , αk), and (β2, αi, αj , αk),

respectively, we obtain

(SI(4))

aijk = bi3jk, bi2jk =
2∑

s=1

rsk bs3ij ,

bi1jk =
2∑

s=1

rsk bs2ij , −t aijk =
2∑

s=1

rsk bs1ij .

Note that Koszul sign rule applies when two symbols are commuted. As a consequence of SI(4),

we have

(SI(4’)) −t aijk =
2∑

s,t,u=1

rsk rtj rui auts.

5.3.3. Determine possible A∞-algebras (E, m2,m3,m4)

Given the list of all (E, m2,m3) satisfying SI(4). The next step is to determine all possible

A∞-algebras (E, m2,m3,m4) satisfying SI(5) and SI(6). Possible nonzero applications of m4 on

E⊗4 are

(E1
−1)

⊗4 → E2
−4,

(E1
−1)

⊗3 ⊗ E2
−3 → E3

−6, (E1
−1)

⊗2 ⊗ E2
−3 ⊗ E1

−1 → E3
−6,

E1
−1 ⊗ E2

−3 ⊗ (E1
−1)

⊗2 → E3
−6, E2

−3 ⊗ (E1
−1)

⊗3 → E3
−6.
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We write down the coefficients of these maps. For 1 ≤ i, j, k, h ≤ 2,

m4(αi, αj , αk, αh) = yijkh β2,

m4(αi, αj , αk, β1) = x14ijk γ1 + x24ijk γ2,

m4(αi, αj , β1, αk) = x13ijk γ1 + x23ijk γ2,

m4(αi, β1, αj , αk) = x12ijk γ1 + x22ijk γ2,

m4(β1, αi, αj , αk) = x11ijk γ1 + x21ijk γ2,

all other applications of m4 are zero.

Here yijkh and xhpijk are scalars in the field k.

The Stasheff identity SI(5) becomes

m4(m2 ⊗ id⊗3 − id⊗m2 ⊗ id⊗2 + id⊗2 ⊗m2 ⊗ id− id⊗3 ⊗m2)+

+ m3(m3 ⊗ id⊗2 + id⊗m3 ⊗ id + id⊗2 ⊗m3) + m2(m4 ⊗ id− id⊗m4) = 0.

As with SI(4), after applied to elements (αi, αj , αk, αh, β1), (αi, αj , αk, β1, αh), (αi, αj , β1, αk, αh),

(αi, β1, αj , αk, αh) and (β1, αi, αj , αk, αh), respectively, SI(5) gives the following equations:

(SI(5))

aijk c2h − ajkh c1i + t yijkh − xi4jkh = 0,

aijk c3h + r1h x14ijk + r2h x24ijk − xi3jkh = 0,

r1h x13ijk + r2h x23ijk − xi2jkh = 0,

c1i ajkh − r1h x12ijk − r2h x22ijk + xi1jkh = 0,

ajkh c2i − aijk c3h − r1h x11ijk − r2h x21ijk + yijkh = 0.

The Stasheff identity SI(6) becomes

m4(−m3 ⊗ id⊗3 − id⊗m3 ⊗ id⊗2 − id⊗2 ⊗m3 ⊗ id− id⊗3 ⊗m3)

+ m3(m4 ⊗ id⊗2 − id⊗m4 ⊗ id + id⊗2 ⊗m4) = 0.

Applying SI(6) to (αi, αj , αk, αh, αm, αn), we obtain the equation

SI(6) − aijkxs1hmn + ajkhxs2imn − akhmxs3ijn + ahmnxs4ijk

+ bs1mnyijkh − bs2inyjkhm + bs3ijykhmn = 0.

We now have all of the equations we need since the identity SI(n) holds for every n ≥ 7 for

E = E(m2,m3,m4).

Remark: Now we are in the face of determining all parameters

t, rij , aijk, bipjk, cpi, yijkl, xlqijk,
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for 1 ≤ i, j, k, l ≤ 2, 1 ≤ p ≤ 3, 1 ≤ q ≤ 4, suiting the equations SI(4), SI(5) and SI(6).

Technically, it will be complicated and tedious (123 parameters). We have used Maple to solve the

equations after reduction and simplification.

5.3.4. Reducing

We first work on m2 of E. If B is an invertible 2 × 2 matrix, then replacing (α1, α2) by

(α1, α2)B−1 and (γ1, γ2) by (γ1, γ2)BT changes the Frobenius data of E from (Λ, t) to (BΛB−1, t).

So choosing B properly, we may assume that the matrix Λ is either
(

g1 0

0 g2

)
or

(
g1 1

0 g1

)

for some nonzero gi ∈ k.

The generic condition for m2 is

(GM2) Let g1 and g2 be the eigenvalues of Λ. Then (g1g
−1
2 )i 6= 1 for 1 ≤ i ≤ 4.

Ideally if A is ‘generic’, then gi and g1g
−1
2 should not be a root of unity. Hence (GM2) can be

viewed as a sort of generic condition. Suppose now that (GM2) holds. Then g1 6= g2, so we may

assume that Λ =

(
g1 0

0 g2

)
. The multiplication map m2 is now described by the Frobenius data.

Next we work with m3 by considering SI(4). By SI(4’), we have

−taijk = gigjgkaijk for all i, j, k = 1, 2.

After some technical process, and then some hypothesis, we may write r3 as following without

loss of generality,

r3 = a122z1z
2
2 + a212z2z1z2 + a221z

2
2z1, (a122 · a221 6= 0).

The generic condition for m3 is

(GM3) a122 + a212 + a221 6= 0.

This condition is not very essential, but it guarantees that the matrix Λ is diagonal, so when we

make changes to the relation r4, the structure of m2 and m3 will not change. In a word, we have

an algebra A of the form

A = k〈z1, z2〉/(r3, r4),

where k is a field, and the relations are

r3 = a122z1z
2
2 + a212z2z1z2 + a221z

2
2z1,

r4 =
∑

yijkh zizjzkzh.
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we may assume that y1122 = y2122 = y1221 = y1222 = 0.

5.3.5. Solving

An AS regular algebra of type (12221) is called (m2,m3)-generic if its A∞-Ext-algebra satisfies

both (GM2) and (GM3).

After reducing, using SI(4) we get the solution of biqjk; then using SI(5) to find formulas

for xisjkh, and then input those into SI(6). This produces 27 equations, which can be generated

by Maple. After a few steps of simplification, we are able to list all possible solutions. We have

used Bill Schelter’s program ‘Affine’ to check the Hilbert series of the algebras in the cases. After

analyzing, we finally get the solutions corresponding to a class of AS regular algebras

5.3.6. Recover A from E

Given an AS regular algebra A = k〈z1, z2〉/(R) of type (12221), we know that A has two

relations r3 and r4 of degree 3 and 4, respectively, which we have written as

(RA) r3 =
∑

aijk zizjzk, and r4 =
∑

yijkh zizjzkzh.

By Basic lemma, for the Ext-algebra E of A, we have

(RE) m3(αi, αj , αk) = aijk β1, and m4(αi, αj , αk, αh) = yijkh β2.

Conversely, if we know for the Ext-algebra E that (RE) holds, then the relations of A are given by

(RA). The basic idea of recovering is to classify all possible higher multiplications m3 and m4 on

E, thus all possible coefficients aijk and yijkh. Then we define the relations r3 and r4 using (RA),

and we investigate when the resulting algebra k〈z1, z2〉/(r3, r4) is AS regular.

5.3.7. Main result

Non-Koszul AS regular algebras:

The following algebras are Artin-Schelter regular of global dimension four.

(a) A(p) := k〈x, y〉/(xy2 − p2y2x, x3y + px2yx + p2xyx2 + p3yx3), where 0 6= p ∈ k.

(b) B(p) := k〈x, y〉/(xy2 + ip2y2x, x3y +px2yx+p2xyx2 +p3yx3), where 0 6= p ∈ k and i2 = −1.

(c) C(p) := k〈x, y〉/(xy2 + pyxy + p2y2x, x3y + jp3yx3), where 0 6= p ∈ k and j2 − j + 1 = 0.

(d) D(v, p) := k〈x, y〉/(xy2 + vyxy + p2y2x, x3y + (v + p)x2yx + (p2 + pv)xyx2 + p3yx3), where

v, p ∈ k and p 6= 0.

If k is algebraically closed, then this list (after deleting some special algebras in each family) is,

up to isomorphism, a complete list of (m2,m3)-generic Artin-Schelter regular algebras of global

dimension four that are generated by two elements.
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[KM] Igor Kř́ıž and J. P. May, I. Kriz and J. P. May, Operads, algebras, modules and motives,
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