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1 Introduction

1.1 History

1.1.1. J. Stasheff

1960’s, Stasheff invented A∞-spaces and A∞-algebras, as a tool in the study of ‘group-like’

topological spaces.

1.1.2. M. Kontsevich

In 1994, Kontsevich’s talk at the ICM on categorical mirror symmetry played an important

role in developing this subject.

1.1.3. B. Keller

In 2000, Keller introduced the A∞-language to the study of ring theory and representation

theory.

1.1.4. Others

1.2 Motivation

1.2.1. Keller’s problems

Let A be an associative k-algebra with 1.

Problem 1. The reconstruction of a complex from its homology.

Problem 2. The reconstruction of the category of iterated selfextensions of module from its

extension algebra.

1.2.2. Classification of AS-regular algebras

One of the central questions in noncommutative projective geometry is

the classification of quantum P3s.

An algebraic approach of constructing quantum Pns is to form the noncommutative scheme Proj

A where A is a noetherian Artin-Schelter regular connected graded algebra of global dimension

n + 1. Therefore the algebraic version of the above mentioned question is

the classification of noetherian, Artin-Schelter regular, connected graded algebras of global di-

mension 4.
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2 Differential graded algebras

2.1 DG algebras

2.1.1. Graded algebra

A graded algebra is a graded module A =
⊕

i∈ZAi with an associative multiplication such that

(a) the unit 1 is in A0 and (b) the multiplication preserves the grading.

A differential in a graded module A is a k-linear map ∂ : A → A of degree +1 such that ∂2 = 0.

A derivation of degree n in a graded algebra A is a k-linear map ∂ : A → A of degree n such

that (graded Leibniz rule)

∂(xy) = (∂x)y + (−1)n|x|x(∂y)

for all elements x, y ∈ A.

The Koszul sign convention, namely, when two symbols of degrees n and m are permuted the

result is multiplied by (−1)nm.

2.1.2. Differential graded algebra

A differential graded algebra is a graded algebra A together with a differential ∂ : A → A of

degree 1 that is a derivation. An augmentation is a morphism ε : A → k.

2.1.3. Examples

2.2 DG modules

2.2.1. DG category

Let (A, ∂) be a DGA. A left differential graded A-module (or left DG A-module) is a complex

(M, ∂M ) together with a left multiplication A ⊗M → M such that M is a left graded A-module

and the differential ∂M of M satisfies the Leibniz rule

∂M (am) = ∂(a)m + (−1)|a|a∂M (m)

for all a ∈ A,m ∈ M . A DG k-module is just a complex.

2.2.2. Two constructions

• HomA(M, N).

• M ⊗A N .

2.3 Resolutions

For a graded set Y with a degree function g : Y → Z, consider the graded A\-module with

basis EY ∪ E+
Y , where

EY = {ey | deg(ey) = g(y), y ∈ Y } and E+
Y = {e+

y | deg(e+
y ) = g(y) + 1, y ∈ Y }
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Free DG module with the basis Y is

F [Y ] :=
⊕

y∈Y

Aey ⊕
⊕

y∈Y

Ae+
y .

with the differential given by

∂(
∑

y∈Y

ayey + a+
y e+

y ) =
∑

y∈Y

(∂(ay)ey + (−1)|ay|aye+
y + ∂(a+

y )e+
y ).

A DG A-module M is called semifree if there is a sequence of DG submodules

0 = M(−1) ⊂ M(0) ⊂ · · · ⊂ M(n) ⊂ · · ·

such that M =
⋃

n M(n) and that each M(n)/M(n− 1) is A-free on a basis of cocycles. Such an

increasing sequence is called a semifree filtration of M . A semifree module is a replacement for a

free complex over an associative algebra.

A semifree resolution of a DG A-module M is a quasi-isomorphism L → M from a semifree

DG A-module L.

Proposition: Let A be an augmented DGA. Then the augmentations in BA and A define a

quasi-isomorphism ε ⊗ ε : B(A,A) → k. Moreover, if k is a field then B(A,A) is a semifree right

DG A-module. Thus ε⊗ ε is a semifree resolution of the right DG A-module kA.

3 A∞-language

From the point of view of homotopy theory, an A∞-algebra is the same as a DGA. However,

for the purpose of explicit computations, it is often more convenient to work with A∞-algebras

rather than with DGA’s. The reason is the existence of extra structure in the form of higher

multiplications.

3.1 A∞-algebras

3.1.1. Definition

An A∞-algebra over k is a Z-graded vector space

A =
⊕

p∈Z
Ap

endowed with a family of graded k-linear maps

mn : A⊗n → A, n ≥ 1,

of degree (2− n) satisfying the following Stasheff identities:
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SI(n)
∑

(−1)r+stmu(id⊗r ⊗ms ⊗ id⊗t) = 0, for all n ≥ 1,

where the sum runs over all decomposition n = r+s+t, r, t ≥ 0 and s ≥ 1, and where u = r+1+t.

Here id denotes the identity map of A. Note that when these formulas are applied to elements,

additional signs appear due to the Koszul sign rule. An A∞-algebra is also called a strongly

homotopy associative algebra (or sha algebra).

3.1.2. Examples

(a) An associative algebra A is an A∞-algebra concentrated in degree 0 with all multiplications

mn = 0 for n 6= 2. Hence associative algebras form a subclass of A∞-algebras of the form

(A,m2).

(b) Differential graded algebra (A,m1,m2).

(c) Pentagonal homotopy associative algebra (A,m1,m2,m3):

SI(4): m2(1⊗m3 + m3 ⊗ 1) = m3(m2 ⊗ 1⊗ 1− 1⊗m2 ⊗ 1 + 1⊗ 1⊗m2).

(d) Connected cubic zero A∞-algebra.

(e) Let B = k[x1, x2]/(x2
1), p (p ≥ 3) a fixed integer. Define an A∞-algebra structure on B as

follows.

For s ≥ 0, set

xs =

{
x

s
2
2 if s is even,

x1x
s−1
2

2 if s is odd.

Then {xs}s≥0 is a k-basis of the graded vector space B. For i1, · · · , ip ≥ 0, define

mp(xi1 , · · · , xip
) =

{
xj if all is are odd,

0 otherwise,

where j = 2 − p +
∑

s is. The multiplication m2 is the product of the associative algebra

k[x1, x2]/(x2). Now it is direct to check that (B,m2,mp) is an A∞-algebra, which is denoted

by B(p).

(f) (2, p)-algebra.

(g) Ext-algebra: Let A be an algebra over k, then Ext∗A(k, k) is an A∞-algebra (Section 4).

(h) AS-regular algebras of 3 and 4 (Section 5).

3.1.3. A∞-morphisms

For two A∞-algebras A and B. A morphism of A∞-algebras f : A → B is a family of k-linear

graded maps

fn : A⊗n → B
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of degree (1− n) satisfying the following Stasheff morphism identities: for all n ≥ 1,

MI(n):
∑

(−1)r+stfu(id⊗r ⊗ms ⊗ id⊗t) =
∑

(−1)wmq(fi1 ⊗ fi2 ⊗ · · · ⊗ fiq
)

where the first sum runs over all decompositions n = r + s + t with s ≥ 1, r, t ≥ 0, we put

u = r + 1 + t, and the second sum runs over all 1 ≤ q ≤ n and all decompositions n = i1 + · · ·+ iq

with all is ≥ 1; the sign on the right-hand side is given by

w = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + · · ·+ 2(iq−2 − 1) + (iq−1 − 1).

3.1.4. Two models

DGA model: Every A∞-algebra A is quasi-isomorphic to a free DGA constructed as ΩBA.

Minimal model: Let A be an A∞-algebra and let HA be the cohomology ring of A. There is

an A∞-algebra structure on HA with m1 = 0, constructed from the A∞-structure of A, such that

there is a quasi-isomorphism of A∞-algebras HA → A lifting the identity of HA.

Corollary: Let A be an algebra over k, then Ext∗A(k, k) is an A∞-algebra.

3.2 A∞-modules

3.2.1. Definition

Let A be an A∞-algebra.

• A left A∞-module over A is a Z-graded vector space M endowed with maps

mM
n : A⊗n−1 ⊗M → M, n ≥ 1

of degree (2− n) satisfying the same Stasheff identities SI(n)

∑
(−1)r+stmu(id⊗r ⊗ms ⊗ id⊗t) = 0

as one in the definition of A∞-algebra. However, the term mu(id⊗r ⊗ ms ⊗ id⊗t) has to be

interpreted as mM
u (id⊗r ⊗ms ⊗ id⊗t) if t > 0 and as mM

u (id⊗r ⊗mM
s ) if t = 0.

• A morphism of left A∞-modules f : M → N is a family of graded maps

fn : A⊗n−1 ⊗M → N

of degree (1− n) such that for each n ≥ 1, the following version of the identity MI(n) holds:

MIL(n)
∑

(−1)r+stfu ◦ (id⊗r ⊗ms ⊗ id⊗t) =
∑

m1+w ◦ (id⊗w ⊗ fv),

where the first sum is taken over all decompositions n = r + s + t, r, t ≥ 0, s ≥ 1 and we put

u = r + 1 + t; and the second sum is taken over all decompositions n = v + w, v ≥ 1, w ≥ 0.

A morphism f is called a quasi-isomorphism if f1 is a quasi-isomorphism. The identity mor-

phism f : M → M is given by f1 = idM and fi = 0 for all i ≥ 2.
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The composition of two morphisms f : M → N and g : L → M is defined by

(f ◦ g)n =
∑

f1+w ◦ (id⊗w ⊗ gv)

where the sum runs over all decompositions n = v + w.

3.2.2. Derived category

Let A be an A∞-algebra.

• C∞(A): the category of left A∞-modules over A with morphisms of A∞-algebras.

• The homotopy category K∞(A) has the same objects as C∞(A), and the morphisms from M

to N are morphisms of A∞-modules modulo the nullhomotopic morphisms.

• The derived category D∞(A) to be the homotopy category K∞(A).

3.2.3. Change of A∞-algebras

Let f : A → B be a morphism of A∞-algebras and let (M, mB
n ) be a left A∞-module over B.

Define

mA
n : A⊗n−1 ⊗M → M, n ≥ 1,

by

INL(n) mA
n =

∑
(−1)wmB

q (fi1 ⊗ · · · ⊗ fiq−1 ⊗ id)

where the sum runs over all decompositions n = i1 + · · · · · ·+ iq−1 + 1 for is ≥ 1 and where

w = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + · · ·+ 2(iq−2 − 1) + (iq−1 − 1)

as in the definition of morphisms of A∞-algebras. It is easy to check that (M, mA
n ) is a left A∞-

module over A. Then f∗ : (M, mB
n ) 7→ (M, mA

n ) defines a functor from C∞(B) to C∞(A), which

induces a functor on the derived categories.

One of the basic properties is the following

Proposition: Let f : A → B be a quasi-isomorphism of A∞-algebras. Then the induced functor

f∗ : D∞(B) → D∞(A) is an equivalence of triangulated categories. Further, A is isomorphic to

f∗B in D∞(A).

3.2.4. From DGAs to A∞-algebras

Proposition: If A is a DGA, then the canonical functor Ddg(A) → D∞(A) is an equivalence

of triangulated categories.

3.3 Bar constructions

A clear way to introduce the A∞-algebras is the so-called bar construction.

3.3.1. Bar constructions for DGAs
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Let I be a graded vector space. The tensor coalgebra on I is

T (I) = k ⊕ I ⊕ I⊗2 ⊕ I⊗3 ⊕ · · · ,

where an element in I⊗n is written as

[a1|a2| · · · |an]

for ai ∈ I (the name ‘bar construction’ originated here), together with the comultiplication

∆([a1| · · · |an]) =
n∑

i=0

[a1| · · · |ai]⊗ [ai+1| · · · |an].

• Bar construction on A:

Let (A, ∂A) be an augmented DGA and let I denote the augmentation ideal ker(A → k). The

bar construction on A is the coaugmented DGC BA defined as follows:

¦ As a coaugmented graded coalgebra BA is the tensor coalgebra T (I) on I.

¦ The differential in BA is the sum d = d0 + d1 of the coderivations given by

d0([a1| · · · |am]) = −
m∑

i=1

(−1)ni [a1| · · · |∂A(ai)| · · · |am]

and

d1([a]) = 0

d1([a1| · · · |am]) =
m∑

i=2

(−1)ni [a1| · · · |ai−1ai| · · · |am].

Here ni =
∑

j<i(−1 + deg aj).

• Bar construction on M :

If (M, ∂M ) is a left DG A-module, then the bar construction on A with coefficients in M is the

complex B(A,M) = BA⊗M with differential d = d0 + d1 where

d0([a1| · · · |aw]m) = −
w∑

i=1

(−1)ni [a1| · · · |∂A(ai)| · · · |aw]m

−
∑

(−1)nw+1 [a1| · · · |aw]∂M (m)

and

d1([a1| · · · |aw]m) =
w∑

i=2

(−1)ni [a1| · · · |ai−1ai| · · · |aw]m

+(−1)nw+1 [a1| · · · |aw−1]awm.

Of course d0m = −∂M (m), d1m = 0 and d1([a]m) = (−1)deg a−1am. This is graded just as BA is,

and for each M , B(A,M) is a left DG BA-comodule.

3.3.2. Cobar constructions for DGCs
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• Cobar construction on C:

• Bar construction on Y :

Proposition: Suppose C is a coaugmented DGC such that C⊗n is locally finite for all n. Let

M be a DG C-comodule such that C⊗n ⊗M is locally finite for all n. Let A = C#.

(a) A is an augmented DGA such that A⊗n is locally finite.

(b) ΩC and BA are locally finite with respect to the bigrading.

(c) Ω#C ∼= BA and B#A ∼= ΩC. (will be used in the subsection 4.1.3)

(d) M# is a left DG A-module.

(e) B(A,M#) ∼= Ω#(C, M) as DG BA-comodules.

3.3.3. Bar constructions for A∞-algebras

Let A be an A∞-algebra. Write A = k ⊕ I where I = ker f .

Given a k-linear map mn : I⊗n → I for some n ∈ N. Determine uniquely a coderivation bn on

T (I) via the map T (I) → I⊗n → I. The explicit formula for bn is the following:

bn([a1| · · · |am]) =
∑

(−1)w[a1| · · · |aj |mn(aj+1, · · · , aj+n)|aj+n+1| · · · |am]

where mn = (−1)nmn and

w =
∑

1≤s≤j

(|as|+ 1) +
∑

1≤t≤n

(n− t)(|aj+t|+ 1).

There is a bijection between the A∞-structures on A and the coalgebra differentials on T (I).

Given an A∞-algebra, the corresponding coaugmented DGC T (I) is denoted by BA, and called

the bar construction of A. The bar construction of a DGA is just a special case.

The following are equivalent.

(a) The k-linear maps mn : I⊗n → I yield an A∞-structure on I (without unit).

(b) The coderivation b : T (I) → T (I) satisfies b2 = 0.

4 Ext-algebras

4.1 A∞-structures on Ext-algebras

The classical Ext-algebra Ext∗A(kA, kA) is the cohomology ring of EndA(PA), where PA is any

free resolution of kA. Since E = EndA(PA) is a DGA, by Kadeishvlli’s result, Ext∗A(kA, kA) = HE
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has a natural A∞-structure, which is called an A∞-Ext-algebra of A. By abuse of notation we use

Ext∗A(kA, kA) to denote an A∞-Ext-algebra.

We would like to describe the A∞-structure on Ext∗A(kA, kA) by using Merkulov’s construction.

4.1.1. Ext1A(kA, kA) and Ext2A(kA, kA)

4.1.2. Merkulov’s construction

4.1.3. Basic Lemma

Basic Lemma (Keller’s higher-multiplication theorem in the connected graded case): Let A

be a graded algebra, finitely generated in degree 1, and let E be the A∞-algebra Ext∗A(kA, kA). Let

R =
⊕

n≥2 Rn be the minimal graded space of relations of A such that Rn ⊂ A1 ⊗ An−1 ⊂ A⊗n
1 .

Let i : Rn → A⊗n
1 be the inclusion map and let i# be its k-linear dual. Then the multiplication mn

of E restricted to (E1)⊗n is equal to the map

i# : (E1)⊗n = (A#
1 )⊗n −→ R#

n ⊂ E2.

4.2 An example of recovering an algebra from its Ext-algebra

An example shows that the associative algebra Ext∗A(kA, kA) does not contain enough informa-

tion to recover the original algebra A; on the other hand, the information from the A∞-algebra

Ext∗A(kA, kA) is sufficient to recover A.

4.3 Koszul duality

In this short subsection, we state in brief that how Ext-algebras work on higher Koszul algebras,

which related to a class of A∞-algebra of Ext∗A(k, k) in the sense of only one non-zero higher

multiplication.

5 Application (a brief introduction to AS regular algebras)

As an application in noncommutative algebras, we explain roughly in this section that A∞-

algebras can be used to solve some questions which have not been solved by classical methods.

We try to convince the readers of that A∞-algebra method is an extremely powerful tool for the

question.
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5.1 Artin-Schelter regular algebras

5.1.1. Definition and properties

A connected graded algebra A is called Artin-Schelter regular (or AS regular) if the following

three conditions hold.

(AS1) A has finite global dimension d,

(AS2) A is Gorenstein, i.e., for some integer l,

Exti
A(k, A) =

{
k(l) if i = d

0 if i 6= d

where k is the trivial module A/I, and

(AS3) A has finite Gelfand-Kirillov dimension; that is, there is a positive number c such that

dimAn < c nc for all n ∈ N.

The notation (l) in (AS2) is the degree l shift operation on graded modules.

Three Types

Let A be a graded AS regular algebra of global dimension 4 that is generated in degree 1. Suppose

that A is a domain. Then A is minimally generated by either 2, 3, or 4 elements.

(a) If A is generated by 2 elements, then there are two relations whose degrees are 3 and 4. The

minimal resolution of the trivial module is of the form

0 → A(−7) → A(−6)⊕2 → A(−4)⊕A(−3) → A(−1)⊕2 → A → k → 0.

(b) If A is generated by 3 elements, then there are two relations in degree 2 and two relations in

degree 3. The minimal resolution of the trivial module is of the form

0 → A(−5) → A(−4)⊕3 → A(−3)⊕2 ⊕A(−2)⊕2 → A(−1)⊕3 → A → k → 0.

(c) If A is generated by 4 elements, then there are six quadratic relations. The minimal resolution

of the trivial module is of the form

0 → A(−4) → A(−3)⊕4 → A(−2)⊕6 → A(−1)⊕4 → A → k → 0.

In each of these cases, the GK-dimension of A is 4.
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5.2 A∞-structures on Ext-AS-regular algebras

Proposition: Let A be an algebra as above and let E be the Ext-algebra of A.

(a) (type (12221)) If A is minimally generated by 2 elements, then E is isomorphic to

k
⊕

E1
−1

⊕
(E2
−3 ⊕ E2

−4)
⊕

E3
−6

⊕
E4
−7.

As an A∞-algebra, mn = 0 for all n ≥ 5; that is, E = (E, m2,m3,m4).

(b) (type (13431)) If A is minimally generated by 3 elements, then E is isomorphic to

k
⊕

E1
−1

⊕
(E2
−2 ⊕ E2

−3)
⊕

E3
−4

⊕
E4
−5.

As an A∞-algebra, mn = 0 for all n ≥ 4; that is, E = (E, m2,m3).

(c) (type (14641)) If A is minimally generated by 4 elements, then E is isomorphic to

k
⊕

E1
−1

⊕
E2
−2

⊕
E3
−3

⊕
E4
−4.

The algebras A and E are Koszul and mn of E is zero for all n 6= 2.

5.3 Non-Koszul AS regular algebras

We concentrate on algebras of type (12221) in this subsection. We describe formulas for the

possible multiplication maps mn on their A∞-Ext-algebras. In this type, the Ext-algebras are

E = k
⊕

E1
−1

⊕
(E2
−3 ⊕ E2

−4)
⊕

E3
−6

⊕
E4
−7.

We construct A∞-structures on E step by step.

Non-Koszul AS regular algebras:

The following algebras are Artin-Schelter regular of global dimension four.

(a) A(p) := k〈x, y〉/(xy2 − p2y2x, x3y + px2yx + p2xyx2 + p3yx3), where 0 6= p ∈ k.

(b) B(p) := k〈x, y〉/(xy2 + ip2y2x, x3y +px2yx+p2xyx2 +p3yx3), where 0 6= p ∈ k and i2 = −1.

(c) C(p) := k〈x, y〉/(xy2 + pyxy + p2y2x, x3y + jp3yx3), where 0 6= p ∈ k and j2 − j + 1 = 0.

(d) D(v, p) := k〈x, y〉/(xy2 + vyxy + p2y2x, x3y + (v + p)x2yx + (p2 + pv)xyx2 + p3yx3), where

v, p ∈ k and p 6= 0.

If k is algebraically closed, then this list (after deleting some special algebras in each family) is,

up to isomorphism, a complete list of (m2,m3)-generic Artin-Schelter regular algebras of global

dimension four that are generated by two elements.
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