# Introduction to $A_{\infty}$-algebras 

Di-Ming Lu<br>Department of Mathematics, Zhejiang University

November 7-11, 2005


#### Abstract

This is an outline of talks on a short course for the graduate students at Beijing Normal University. The goal of the talks is to give a brief introduction to $A_{\infty}$-algebras with a view towards noncommutative algebras.


## Contents

1 Introduction 2
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Differential graded algebras 3
2.1 DG algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 DG modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
$3 A_{\infty}$-language 4
$3.1 \quad A_{\infty}$-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
$3.2 A_{\infty}-\mathrm{modules} .4 . \operatorname{~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~} 6$
3.3 Bar constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Ext-algebras 9
$4.1 \quad A_{\infty}$-structures on Ext-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 An example of recovering an algebra from its Ext-algebra . . . . . . . . . . . . . . 10
4.3 Koszul duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Application (a brief introduction to AS regular algebras) ..... 10
5.1 Artin-Schelter regular algebras ..... 11
$5.2 \quad A_{\infty}$-structures on Ext-AS-regular algebras ..... 12
5.3 Non-Koszul AS regular algebras ..... 12

## 1 Introduction

### 1.1 History

### 1.1.1. J. Stasheff

1960's, Stasheff invented $A_{\infty}$-spaces and $A_{\infty}$-algebras, as a tool in the study of 'group-like' topological spaces.

### 1.1.2. M. Kontsevich

In 1994, Kontsevich's talk at the ICM on categorical mirror symmetry played an important role in developing this subject.

### 1.1.3. B. Keller

In 2000, Keller introduced the $A_{\infty}$-language to the study of ring theory and representation theory.

### 1.1.4. OTHERS

### 1.2 Motivation

### 1.2.1. KELLER'S PROBLEMS

Let $A$ be an associative $k$-algebra with 1 .
Problem 1. The reconstruction of a complex from its homology.
Problem 2. The reconstruction of the category of iterated selfextensions of module from its extension algebra.

### 1.2.2. Classification of AS-REgular algebras

One of the central questions in noncommutative projective geometry is the classification of quantum $\mathbb{P}^{3} s$.

An algebraic approach of constructing quantum $\mathbb{P}^{n} \mathrm{~S}$ is to form the noncommutative scheme Proj $A$ where $A$ is a noetherian Artin-Schelter regular connected graded algebra of global dimension $n+1$. Therefore the algebraic version of the above mentioned question is
the classification of noetherian, Artin-Schelter regular, connected graded algebras of global dimension 4.

## 2 Differential graded algebras

### 2.1 DG algebras

### 2.1.1. Graded algebra

A graded algebra is a graded module $A=\bigoplus_{i \in \mathbb{Z}} A^{i}$ with an associative multiplication such that (a) the unit 1 is in $A^{0}$ and (b) the multiplication preserves the grading.

A differential in a graded module $A$ is a $k$-linear map $\partial: A \rightarrow A$ of degree +1 such that $\partial^{2}=0$.
A derivation of degree $n$ in a graded algebra $A$ is a $k$-linear map $\partial: A \rightarrow A$ of degree $n$ such that (graded Leibniz rule)

$$
\partial(x y)=(\partial x) y+(-1)^{n|x|} x(\partial y)
$$

for all elements $x, y \in A$.
The Koszul sign convention, namely, when two symbols of degrees $n$ and $m$ are permuted the result is multiplied by $(-1)^{n m}$.

### 2.1.2. Differential graded algebra

A differential graded algebra is a graded algebra $A$ together with a differential $\partial: A \rightarrow A$ of degree 1 that is a derivation. An augmentation is a morphism $\epsilon: A \rightarrow k$.

### 2.1.3. Examples

### 2.2 DG modules

### 2.2.1. DG category

Let $(A, \partial)$ be a DGA. A left differential graded $A$-module (or left $D G A$-module) is a complex $\left(M, \partial_{M}\right)$ together with a left multiplication $A \otimes M \rightarrow M$ such that $M$ is a left graded $A$-module and the differential $\partial_{M}$ of $M$ satisfies the Leibniz rule

$$
\partial_{M}(a m)=\partial(a) m+(-1)^{|a|} a \partial_{M}(m)
$$

for all $a \in A, m \in M$. A DG $k$-module is just a complex.

### 2.2.2. Two constructions

- $\operatorname{Hom}_{A}(M, N)$.
- $M \otimes_{A} N$.


### 2.3 Resolutions

For a graded set $Y$ with a degree function $g: Y \rightarrow \mathbb{Z}$, consider the graded $A^{\natural}$-module with basis $E_{Y} \cup E_{Y}^{+}$, where

$$
E_{Y}=\left\{e_{y} \mid \operatorname{deg}\left(e_{y}\right)=g(y), y \in Y\right\} \quad \text { and } \quad E_{Y}^{+}=\left\{e_{y}^{+} \mid \operatorname{deg}\left(e_{y}^{+}\right)=g(y)+1, y \in Y\right\}
$$

Free DG module with the basis $Y$ is

$$
F^{[Y]}:=\bigoplus_{y \in Y} A e_{y} \oplus \bigoplus_{y \in Y} A e_{y}^{+} .
$$

with the differential given by

$$
\partial\left(\sum_{y \in Y} a_{y} e_{y}+a_{y}^{+} e_{y}^{+}\right)=\sum_{y \in Y}\left(\partial\left(a_{y}\right) e_{y}+(-1)^{\left|a_{y}\right|} a_{y} e_{y}^{+}+\partial\left(a_{y}^{+}\right) e_{y}^{+}\right) .
$$

A DG $A$-module $M$ is called semifree if there is a sequence of DG submodules

$$
0=M(-1) \subset M(0) \subset \cdots \subset M(n) \subset \cdots
$$

such that $M=\bigcup_{n} M(n)$ and that each $M(n) / M(n-1)$ is $A$-free on a basis of cocycles. Such an increasing sequence is called a semifree filtration of $M$. A semifree module is a replacement for a free complex over an associative algebra.

A semifree resolution of a DG $A$-module $M$ is a quasi-isomorphism $L \rightarrow M$ from a semifree DG $A$-module $L$.

Proposition: Let $A$ be an augmented DGA. Then the augmentations in $B A$ and $A$ define a quasi-isomorphism $\epsilon \otimes \epsilon: B(A, A) \rightarrow k$. Moreover, if $k$ is a field then $B(A, A)$ is a semifree right DG $A$-module. Thus $\epsilon \otimes \epsilon$ is a semifree resolution of the right $\mathrm{DG} A$-module $k_{A}$.

## $3 A_{\infty}$-language

From the point of view of homotopy theory, an $A_{\infty}$-algebra is the same as a DGA. However, for the purpose of explicit computations, it is often more convenient to work with $A_{\infty}$-algebras rather than with DGA's. The reason is the existence of extra structure in the form of higher multiplications.

## $3.1 \quad A_{\infty}$-algebras

### 3.1.1. Definition

An $A_{\infty}$-algebra over $k$ is a $\mathbb{Z}$-graded vector space

$$
A=\bigoplus_{p \in \mathbb{Z}} A^{p}
$$

endowed with a family of graded $k$-linear maps

$$
m_{n}: A^{\otimes n} \rightarrow A, \quad n \geq 1,
$$

of degree $(2-n)$ satisfying the following Stasheff identities:

$$
\sum(-1)^{r+s t} m_{u}\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)=0, \quad \text { for all } n \geq 1
$$

where the sum runs over all decomposition $n=r+s+t, r, t \geq 0$ and $s \geq 1$, and where $u=r+1+t$. Here $i d$ denotes the identity map of $A$. Note that when these formulas are applied to elements, additional signs appear due to the Koszul sign rule. An $A_{\infty}$-algebra is also called a strongly homotopy associative algebra (or sha algebra).

### 3.1.2. Examples

(a) An associative algebra $A$ is an $A_{\infty}$-algebra concentrated in degree 0 with all multiplications $m_{n}=0$ for $n \neq 2$. Hence associative algebras form a subclass of $A_{\infty}$-algebras of the form $\left(A, m_{2}\right)$.
(b) Differential graded algebra $\left(A, m_{1}, m_{2}\right)$.
(c) Pentagonal homotopy associative algebra $\left(A, m_{1}, m_{2}, m_{3}\right)$ :
$\mathbf{S I}(4): \quad m_{2}\left(1 \otimes m_{3}+m_{3} \otimes 1\right)=m_{3}\left(m_{2} \otimes 1 \otimes 1-1 \otimes m_{2} \otimes 1+1 \otimes 1 \otimes m_{2}\right)$.
(d) Connected cubic zero $A_{\infty}$-algebra.
(e) Let $B=k\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}\right), p(p \geq 3)$ a fixed integer. Define an $A_{\infty}$-algebra structure on $B$ as follows.

For $s \geq 0$, set

$$
x_{s}= \begin{cases}x_{2}^{\frac{s}{2}} & \text { if } s \text { is even } \\ x_{1} x_{2}^{\frac{s-1}{2}} & \text { if } s \text { is odd }\end{cases}
$$

Then $\left\{x_{s}\right\}_{s \geq 0}$ is a $k$-basis of the graded vector space $B$. For $i_{1}, \cdots, i_{p} \geq 0$, define

$$
m_{p}\left(x_{i_{1}}, \cdots, x_{i_{p}}\right)= \begin{cases}x_{j} & \text { if all } i_{s} \text { are odd } \\ 0 & \text { otherwise }\end{cases}
$$

where $j=2-p+\sum_{s} i_{s}$. The multiplication $m_{2}$ is the product of the associative algebra $k\left[x_{1}, x_{2}\right] /\left(x^{2}\right)$. Now it is direct to check that $\left(B, m_{2}, m_{p}\right)$ is an $A_{\infty}$-algebra, which is denoted by $B(p)$.
(f) $(2, p)$-algebra.
(g) Ext-algebra: Let $A$ be an algebra over $k$, then $\operatorname{Ext}_{A}^{*}(k, k)$ is an $A_{\infty}$-algebra (Section 4).
(h) AS-regular algebras of 3 and 4 (Section 5).

### 3.1.3. $A_{\infty}$-MORPHISMS

For two $A_{\infty}$-algebras $A$ and $B$. A morphism of $A_{\infty}$-algebras $f: A \rightarrow B$ is a family of $k$-linear graded maps

$$
f_{n}: A^{\otimes n} \rightarrow B
$$

of degree $(1-n)$ satisfying the following Stasheff morphism identities: for all $n \geq 1$,
MI(n):

$$
\sum(-1)^{r+s t} f_{u}\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)=\sum(-1)^{w} m_{q}\left(f_{i_{1}} \otimes f_{i_{2}} \otimes \cdots \otimes f_{i_{q}}\right)
$$

where the first sum runs over all decompositions $n=r+s+t$ with $s \geq 1, r, t \geq 0$, we put $u=r+1+t$, and the second sum runs over all $1 \leq q \leq n$ and all decompositions $n=i_{1}+\cdots+i_{q}$ with all $i_{s} \geq 1$; the sign on the right-hand side is given by

$$
w=(q-1)\left(i_{1}-1\right)+(q-2)\left(i_{2}-1\right)+\cdots+2\left(i_{q-2}-1\right)+\left(i_{q-1}-1\right)
$$

### 3.1.4. Two models

DGA model: Every $A_{\infty}$-algebra $A$ is quasi-isomorphic to a free $D G A$ constructed as $\Omega B A$.
Minimal model: Let $A$ be an $A_{\infty}$-algebra and let $H A$ be the cohomology ring of $A$. There is an $A_{\infty}$-algebra structure on $H A$ with $m_{1}=0$, constructed from the $A_{\infty}$-structure of $A$, such that there is a quasi-isomorphism of $A_{\infty}$-algebras $H A \rightarrow A$ lifting the identity of $H A$.

Corollary: Let $A$ be an algebra over $k$, then $\operatorname{Ext}_{A}^{*}(k, k)$ is an $A_{\infty}$-algebra.

## $3.2 A_{\infty}$-modules

### 3.2.1. Definition

Let $A$ be an $A_{\infty}$-algebra.

- A left $A_{\infty}$-module over $A$ is a $\mathbb{Z}$-graded vector space $M$ endowed with maps

$$
m_{n}^{M}: A^{\otimes n-1} \otimes M \rightarrow M, \quad n \geq 1
$$

of degree $(2-n)$ satisfying the same Stasheff identities $\mathbf{S I}(\mathbf{n})$

$$
\sum(-1)^{r+s t} m_{u}\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)=0
$$

as one in the definition of $A_{\infty}$-algebra. However, the term $m_{u}\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)$ has to be interpreted as $m_{u}^{M}\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)$ if $t>0$ and as $m_{u}^{M}\left(i d^{\otimes r} \otimes m_{s}^{M}\right)$ if $t=0$.

- A morphism of left $A_{\infty}$-modules $f: M \rightarrow N$ is a family of graded maps

$$
f_{n}: A^{\otimes n-1} \otimes M \rightarrow N
$$

of degree $(1-n)$ such that for each $n \geq 1$, the following version of the identity $\mathbf{M I}(\mathbf{n})$ holds:
MIL(n)

$$
\sum(-1)^{r+s t} f_{u} \circ\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)=\sum m_{1+w} \circ\left(i d^{\otimes w} \otimes f_{v}\right),
$$

where the first sum is taken over all decompositions $n=r+s+t, r, t \geq 0, s \geq 1$ and we put $u=r+1+t$; and the second sum is taken over all decompositions $n=v+w, v \geq 1, w \geq 0$.

A morphism $f$ is called a quasi-isomorphism if $f_{1}$ is a quasi-isomorphism. The identity morphism $f: M \rightarrow M$ is given by $f_{1}=i d_{M}$ and $f_{i}=0$ for all $i \geq 2$.

The composition of two morphisms $f: M \rightarrow N$ and $g: L \rightarrow M$ is defined by

$$
(f \circ g)_{n}=\sum f_{1+w} \circ\left(i d^{\otimes w} \otimes g_{v}\right)
$$

where the sum runs over all decompositions $n=v+w$.

### 3.2.2. Derived category

Let $A$ be an $A_{\infty}$-algebra.

- $\mathcal{C}_{\infty}(A)$ : the category of left $A_{\infty}$-modules over $A$ with morphisms of $A_{\infty}$-algebras.
- The homotopy category $\mathcal{K}_{\infty}(A)$ has the same objects as $\mathcal{C}_{\infty}(A)$, and the morphisms from $M$ to $N$ are morphisms of $A_{\infty}$-modules modulo the nullhomotopic morphisms.
- The derived category $\mathcal{D}_{\infty}(A)$ to be the homotopy category $\mathcal{K}_{\infty}(A)$.


### 3.2.3. Change of $A_{\infty}$-Algebras

Let $f: A \rightarrow B$ be a morphism of $A_{\infty}$-algebras and let $\left(M, m_{n}^{B}\right)$ be a left $A_{\infty}$-module over $B$. Define

$$
m_{n}^{A}: A^{\otimes n-1} \otimes M \rightarrow M, \quad n \geq 1,
$$

by

INL(n) $\quad m_{n}^{A}=\sum(-1)^{w} m_{q}^{B}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{q-1}} \otimes i d\right)$
where the sum runs over all decompositions $n=i_{1}+\cdots \cdots+i_{q-1}+1$ for $i_{s} \geq 1$ and where

$$
w=(q-1)\left(i_{1}-1\right)+(q-2)\left(i_{2}-1\right)+\cdots+2\left(i_{q-2}-1\right)+\left(i_{q-1}-1\right)
$$

 module over $A$. Then $f^{*}:\left(M, m_{n}^{B}\right) \mapsto\left(M, m_{n}^{A}\right)$ defines a functor from $\mathcal{C}_{\infty}(B)$ to $\mathcal{C}_{\infty}(A)$, which induces a functor on the derived categories.

One of the basic properties is the following
Proposition: Let $f: A \rightarrow B$ be a quasi-isomorphism of $A_{\infty}$-algebras. Then the induced functor $f^{*}: \mathcal{D}_{\infty}(B) \rightarrow \mathcal{D}_{\infty}(A)$ is an equivalence of triangulated categories. Further, $A$ is isomorphic to $f^{*} B$ in $\mathcal{D}_{\infty}(A)$.

### 3.2.4. From DGAs to $A_{\infty}$-Algebras

Proposition: If $A$ is a DGA, then the canonical functor $\mathcal{D}_{\mathrm{dg}}(A) \rightarrow \mathcal{D}_{\infty}(A)$ is an equivalence of triangulated categories

### 3.3 Bar constructions

A clear way to introduce the $A_{\infty}$-algebras is the so-called bar construction.
3.3.1. Bar constructions for DGAs

Let $I$ be a graded vector space. The tensor coalgebra on $I$ is

$$
T(I)=k \oplus I \oplus I^{\otimes 2} \oplus I^{\otimes 3} \oplus \cdots,
$$

where an element in $I^{\otimes n}$ is written as

$$
\left[a_{1}\left|a_{2}\right| \cdots \mid a_{n}\right]
$$

for $a_{i} \in I$ (the name 'bar construction' originated here), together with the comultiplication

$$
\Delta\left(\left[a_{1}|\cdots| a_{n}\right]\right)=\sum_{i=0}^{n}\left[a_{1}|\cdots| a_{i}\right] \otimes\left[a_{i+1}|\cdots| a_{n}\right]
$$

- Bar construction on $A$ :

Let $\left(A, \partial_{A}\right)$ be an augmented DGA and let $I$ denote the augmentation ideal $\operatorname{ker}(A \rightarrow k)$. The bar construction on $A$ is the coaugmented DGC $B A$ defined as follows:
$\diamond$ As a coaugmented graded coalgebra $B A$ is the tensor coalgebra $T(I)$ on $I$.
$\diamond$ The differential in $B A$ is the sum $d=d_{0}+d_{1}$ of the coderivations given by

$$
d_{0}\left(\left[a_{1}|\cdots| a_{m}\right]\right)=-\sum_{i=1}^{m}(-1)^{n_{i}}\left[a_{1}|\cdots| \partial_{A}\left(a_{i}\right)|\cdots| a_{m}\right]
$$

and

$$
\begin{gathered}
d_{1}([a])=0 \\
d_{1}\left(\left[a_{1}|\cdots| a_{m}\right]\right)=\sum_{i=2}^{m}(-1)^{n_{i}}\left[a_{1}|\cdots| a_{i-1} a_{i}|\cdots| a_{m}\right] .
\end{gathered}
$$

Here $n_{i}=\sum_{j<i}\left(-1+\operatorname{deg} a_{j}\right)$.

- Bar construction on $M$ :

If $\left(M, \partial_{M}\right)$ is a left DG $A$-module, then the bar construction on $A$ with coefficients in $M$ is the complex $B(A, M)=B A \otimes M$ with differential $d=d_{0}+d_{1}$ where

$$
\begin{aligned}
d_{0}\left(\left[a_{1}|\cdots| a_{w}\right] m\right)= & -\sum_{i=1}^{w}(-1)^{n_{i}}\left[a_{1}|\cdots| \partial_{A}\left(a_{i}\right)|\cdots| a_{w}\right] m \\
& -\sum(-1)^{n_{w+1}}\left[a_{1}|\cdots| a_{w}\right] \partial_{M}(m)
\end{aligned}
$$

and

$$
\begin{aligned}
d_{1}\left(\left[a_{1}|\cdots| a_{w}\right] m\right)= & \sum_{i=2}^{w}(-1)^{n_{i}}\left[a_{1}|\cdots| a_{i-1} a_{i}|\cdots| a_{w}\right] m \\
& +(-1)^{n_{w+1}}\left[a_{1}|\cdots| a_{w-1}\right] a_{w} m
\end{aligned}
$$

Of course $d_{0} m=-\partial_{M}(m), d_{1} m=0$ and $d_{1}([a] m)=(-1)^{\operatorname{deg} a-1} a m$. This is graded just as $B A$ is, and for each $M, B(A, M)$ is a left DG $B A$-comodule.

### 3.3.2. Cobar constructions for DGCs

- Cobar construction on $C$ :
- Bar construction on $Y$ :

Proposition: Suppose $C$ is a coaugmented DGC such that $C^{\otimes n}$ is locally finite for all $n$. Let $M$ be a DG $C$-comodule such that $C^{\otimes n} \otimes M$ is locally finite for all $n$. Let $A=C^{\#}$.
(a) $A$ is an augmented DGA such that $A^{\otimes n}$ is locally finite.
(b) $\Omega C$ and $B A$ are locally finite with respect to the bigrading.
(c) $\Omega^{\#} C \cong B A$ and $B^{\#} A \cong \Omega C$. (will be used in the subsection 4.1.3)
(d) $M^{\#}$ is a left DG $A$-module.
(e) $B\left(A, M^{\#}\right) \cong \Omega^{\#}(C, M)$ as DG $B A$-comodules.

### 3.3.3. BAR CONSTRUCTIONS FOR $A_{\infty}$-ALGEBRAS

Let $A$ be an $A_{\infty}$-algebra. Write $A=k \oplus I$ where $I=\operatorname{ker} f$.
Given a $k$-linear map $m_{n}: I^{\otimes n} \rightarrow I$ for some $n \in \mathbb{N}$. Determine uniquely a coderivation $b_{n}$ on $T(I)$ via the map $T(I) \rightarrow I^{\otimes n} \rightarrow I$. The explicit formula for $b_{n}$ is the following:

$$
b_{n}\left(\left[a_{1}|\cdots| a_{m}\right]\right)=\sum(-1)^{w}\left[a_{1}|\cdots| a_{j}\left|\bar{m}_{n}\left(a_{j+1}, \cdots, a_{j+n}\right)\right| a_{j+n+1}|\cdots| a_{m}\right]
$$

where $\bar{m}_{n}=(-1)^{n} m_{n}$ and

$$
w=\sum_{1 \leq s \leq j}\left(\left|a_{s}\right|+1\right)+\sum_{1 \leq t \leq n}(n-t)\left(\left|a_{j+t}\right|+1\right) .
$$

There is a bijection between the $A_{\infty}$-structures on $A$ and the coalgebra differentials on $T(I)$. Given an $A_{\infty}$-algebra, the corresponding coaugmented DGC $T(I)$ is denoted by $B A$, and called the bar construction of $A$. The bar construction of a DGA is just a special case.

The following are equivalent.
(a) The $k$-linear maps $m_{n}: I^{\otimes n} \rightarrow I$ yield an $A_{\infty}$-structure on $I$ (without unit).
(b) The coderivation $b: T(I) \rightarrow T(I)$ satisfies $b^{2}=0$.

## 4 Ext-algebras

## 4.1 $\quad A_{\infty}$-structures on Ext-algebras

The classical Ext-algebra $\operatorname{Ext}_{A}^{*}\left(k_{A}, k_{A}\right)$ is the cohomology ring of $\operatorname{End}{ }_{A}\left(P_{A}\right)$, where $P_{A}$ is any free resolution of $k_{A}$. Since $E=\operatorname{End}_{A}\left(P_{A}\right)$ is a DGA, by Kadeishvlli's result, $\operatorname{Ext}_{A}^{*}\left(k_{A}, k_{A}\right)=H E$
has a natural $A_{\infty}$-structure, which is called an $A_{\infty}$-Ext-algebra of $A$. By abuse of notation we use $\operatorname{Ext}_{A}^{*}\left(k_{A}, k_{A}\right)$ to denote an $A_{\infty}$-Ext-algebra.

We would like to describe the $A_{\infty}$-structure on $\operatorname{Ext}_{A}^{*}\left(k_{A}, k_{A}\right)$ by using Merkulov's construction.
4.1.1. $\operatorname{Ext}_{A}^{1}\left(k_{A}, k_{A}\right)$ AND $\operatorname{Ext}_{A}^{2}\left(k_{A}, k_{A}\right)$
4.1.2. Merkulov's construction

### 4.1.3. Basic Lemma

Basic Lemma (Keller's higher-multiplication theorem in the connected graded case): Let $A$ be a graded algebra, finitely generated in degree 1, and let $E$ be the $A_{\infty}$-algebra $\operatorname{Ext}_{A}^{*}\left(k_{A}, k_{A}\right)$. Let $R=\bigoplus_{n \geq 2} R_{n}$ be the minimal graded space of relations of $A$ such that $R_{n} \subset A_{1} \otimes A_{n-1} \subset A_{1}^{\otimes n}$. Let $i: R_{n} \rightarrow A_{1}^{\otimes n}$ be the inclusion map and let $i^{\#}$ be its $k$-linear dual. Then the multiplication $m_{n}$ of $E$ restricted to $\left(E^{1}\right)^{\otimes n}$ is equal to the map

$$
i^{\#}:\left(E^{1}\right)^{\otimes n}=\left(A_{1}^{\#}\right)^{\otimes n} \longrightarrow R_{n}^{\#} \subset E^{2} .
$$

### 4.2 An example of recovering an algebra from its Ext-algebra

An example shows that the associative algebra $\operatorname{Ext}_{A}^{*}\left(k_{A}, k_{A}\right)$ does not contain enough information to recover the original algebra $A$; on the other hand, the information from the $A_{\infty}$-algebra $\operatorname{Ext}_{A}^{*}\left(k_{A}, k_{A}\right)$ is sufficient to recover $A$.

### 4.3 Koszul duality

In this short subsection, we state in brief that how Ext-algebras work on higher Koszul algebras, which related to a class of $A_{\infty}$-algebra of $\operatorname{Ext}_{A}^{*}(k, k)$ in the sense of only one non-zero higher multiplication.

## 5 Application (a brief introduction to AS regular algebras)

As an application in noncommutative algebras, we explain roughly in this section that $A_{\infty^{-}}$ algebras can be used to solve some questions which have not been solved by classical methods. We try to convince the readers of that $A_{\infty}$-algebra method is an extremely powerful tool for the question.

### 5.1 Artin-Schelter regular algebras

### 5.1.1. Definition and properties

 three conditions hold.
(AS1) $A$ has finite global dimension $d$,
(AS2) $A$ is Gorenstein, i.e., for some integer $l$,

$$
\operatorname{Ext}_{A}^{i}(k, A)= \begin{cases}k(l) & \text { if } i=d \\ 0 & \text { if } i \neq d\end{cases}
$$

where $k$ is the trivial module $A / I$, and
(AS3) $A$ has finite Gelfand-Kirillov dimension; that is, there is a positive number $c$ such that $\operatorname{dim} A_{n}<c n^{c}$ for all $n \in \mathbb{N}$.

The notation ( $l$ ) in (AS2) is the degree $l$ shift operation on graded modules.

## Three Types

Let $A$ be a graded $A S$ regular algebra of global dimension 4 that is generated in degree 1. Suppose that $A$ is a domain. Then $A$ is minimally generated by either 2, 3, or 4 elements.
(a) If $A$ is generated by 2 elements, then there are two relations whose degrees are 3 and 4. The minimal resolution of the trivial module is of the form

$$
0 \rightarrow A(-7) \rightarrow A(-6)^{\oplus 2} \rightarrow A(-4) \oplus A(-3) \rightarrow A(-1)^{\oplus 2} \rightarrow A \rightarrow k \rightarrow 0
$$

(b) If $A$ is generated by 3 elements, then there are two relations in degree 2 and two relations in degree 3. The minimal resolution of the trivial module is of the form

$$
0 \rightarrow A(-5) \rightarrow A(-4)^{\oplus 3} \rightarrow A(-3)^{\oplus 2} \oplus A(-2)^{\oplus 2} \rightarrow A(-1)^{\oplus 3} \rightarrow A \rightarrow k \rightarrow 0
$$

(c) If $A$ is generated by 4 elements, then there are six quadratic relations. The minimal resolution of the trivial module is of the form

$$
0 \rightarrow A(-4) \rightarrow A(-3)^{\oplus 4} \rightarrow A(-2)^{\oplus 6} \rightarrow A(-1)^{\oplus 4} \rightarrow A \rightarrow k \rightarrow 0
$$

In each of these cases, the GK-dimension of $A$ is 4 .

## $5.2 A_{\infty}$-structures on Ext-AS-regular algebras

Proposition: Let $A$ be an algebra as above and let $E$ be the Ext-algebra of $A$.
(a) (type (12221)) If $A$ is minimally generated by 2 elements, then $E$ is isomorphic to

$$
k \bigoplus E_{-1}^{1} \bigoplus\left(E_{-3}^{2} \oplus E_{-4}^{2}\right) \bigoplus E_{-6}^{3} \bigoplus E_{-7}^{4}
$$

As an $A_{\infty}$-algebra, $m_{n}=0$ for all $n \geq 5$; that is, $E=\left(E, m_{2}, m_{3}, m_{4}\right)$.
(b) (type (13431)) If $A$ is minimally generated by 3 elements, then $E$ is isomorphic to

$$
k \bigoplus E_{-1}^{1} \oplus\left(E_{-2}^{2} \oplus E_{-3}^{2}\right) \bigoplus E_{-4}^{3} \oplus E_{-5}^{4}
$$

As an $A_{\infty}$-algebra, $m_{n}=0$ for all $n \geq 4$; that is, $E=\left(E, m_{2}, m_{3}\right)$.
(c) (type (14641)) If $A$ is minimally generated by 4 elements, then $E$ is isomorphic to

$$
k \bigoplus E_{-1}^{1} \bigoplus E_{-2}^{2} \bigoplus E_{-3}^{3} \bigoplus E_{-4}^{4}
$$

The algebras $A$ and $E$ are Koszul and $m_{n}$ of $E$ is zero for all $n \neq 2$.

### 5.3 Non-Koszul AS regular algebras

We concentrate on algebras of type (12221) in this subsection. We describe formulas for the possible multiplication maps $m_{n}$ on their $A_{\infty}$-Ext-algebras. In this type, the Ext-algebras are

$$
E=k \bigoplus E_{-1}^{1} \bigoplus\left(E_{-3}^{2} \oplus E_{-4}^{2}\right) \bigoplus E_{-6}^{3} \bigoplus E_{-7}^{4}
$$

We construct $A_{\infty}$-structures on $E$ step by step.

## Non-Koszul AS regular algebras:

The following algebras are Artin-Schelter regular of global dimension four.
(a) $A(p):=k\langle x, y\rangle /\left(x y^{2}-p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in k$.
(b) $B(p):=k\langle x, y\rangle /\left(x y^{2}+i p^{2} y^{2} x, x^{3} y+p x^{2} y x+p^{2} x y x^{2}+p^{3} y x^{3}\right)$, where $0 \neq p \in k$ and $i^{2}=-1$.
(c) $C(p):=k\langle x, y\rangle /\left(x y^{2}+p y x y+p^{2} y^{2} x, x^{3} y+j p^{3} y x^{3}\right)$, where $0 \neq p \in k$ and $j^{2}-j+1=0$.
(d) $D(v, p):=k\langle x, y\rangle /\left(x y^{2}+v y x y+p^{2} y^{2} x, x^{3} y+(v+p) x^{2} y x+\left(p^{2}+p v\right) x y x^{2}+p^{3} y x^{3}\right)$, where $v, p \in k$ and $p \neq 0$.

If $k$ is algebraically closed, then this list (after deleting some special algebras in each family) is, up to isomorphism, a complete list of $\left(m_{2}, m_{3}\right)$-generic Artin-Schelter regular algebras of global dimension four that are generated by two elements.

