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A connected simple graph Γ = (X,R) with vertex set X, edge set R and
path-length distance ∂ is said to be distance-regular if the numbers

ph
i,j = |{z ∈ X | ∂(x, z) = i, ∂(z, y) = j}|

depend only on i, j and h = ∂(x, y), and do not depend on the choices of
vertices x and y. The Johnson graphs and the Hamming graphs are distance-
regular, and many distance-regular graphs are related to classical geometries. P -
polynomial association schemes, combinatorial frameworks to investigate codes
and/or designs, are naturally associated to them.

In this series of seminar talks, we introduce several results in the theory of
distance-regular graphs focusing on the structure theory and classification. In
each lecture, we present a key problem and problems related to it.

Schedule

Nov. 21, A.M. Overview:

Definitions, basic properties, examples [1, Chapter 3], [3, Chapters 4–7,
9].

Nov. 22, A.M. Antipodal Graphs:

Graphs with b1 = cD−1, ki = kD−i, and related problems [5, 10, 11].

Nov. 22, P.M. Graphs of Order (s, t):

Absolute bound conjecture, bounds of ℓ(c, a, b), (s, c, a, k) bounds, circuit
chasings, and strongly closed subgraphs [2, 6, 7, 8, 12, 13, 15].

Nov. 23, A.M. The Q-Polynomial Condition:

Properties derived from the Q-polynomial condition, homogeneities, char-
acterizations [4, 9, 16].

Nov. 23, P.M. Terwillliger Algebras and their Modules:

Thin irreducible modules, tight subsets, related topics and applications
[14, 17, 18].
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