Strong convergence of propagation of chaos for McKean-Vlasov SDEs with singular interactions

Xicheng Zhang

Beijing Institute of Technology

(This is a joint work with Zimo Hao and Michael Röckner.)

2022.11.26-27

Strong convergence of propagation of chaos

- Let *E* be a Polish space and $\mu \in \mathcal{P}(E)$ a probability measure on *E*.
- Let (μ^N)_{N∈ℕ} be a sequence of symmetric probability measures on the product space E^N, where symmetric means that for any permutation (x_{i1}, · · · , x_{iN}) of (x₁, · · · , x_N),

$$\mu^{N}(\mathrm{d} x_{i_{1}},\cdots,\mathrm{d} x_{i_{N}})=\mu^{N}(\mathrm{d} x_{1},\cdots,x_{N}).$$

• One says that $(\mu^N)_{N \in \mathbb{N}}$ is μ -chaotic if for any $k \in \mathbb{N}$,

 $\mu^{N,k}$ weakly converges to $\mu^{\otimes k}$ as $k \leq N \to \infty$, (1.1)

where $\mu^{N,k}(dx_1, \dots, dx_k) = \mu^N(dx_1, \dots, dx_k, E, \dots, E)$ is the *k*-fold marginal distribution of μ^N . Note that (1.1) holds if and only if (1.1) holds for only k = 2.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction: Kac's Chaos

Let ξ^N := (ξ^{N,1},..., ξ^{N,N}) be a family of *E*-valued random variables. If the law of ξ^N is symmetric and μ-chaotic, one says that ξ^N is μ-chaotic. It is also equivalent to a law of large numbers

 $\eta_{\boldsymbol{\xi}^N}(\mathrm{d}\boldsymbol{y}) := \frac{1}{N} \sum_{j=1}^N \delta_{\boldsymbol{\xi}^{N,j}}(\mathrm{d}\boldsymbol{y}) \in \mathcal{P}(\boldsymbol{E}) \text{ converges to } \mu \text{ in law.}$ (1.2)

More precisely, for any $\varphi \in C_b(E)$,

$$\eta_{\xi^N}(\varphi) := \frac{1}{N} \sum_{j=1}^N \varphi(\xi^{N,j}) \to \mu(\varphi) := \int_E \varphi(x) \mu(\mathrm{d} x), \quad \text{in law}.$$

- ξ^N can be regarded as N-random particles in state space E. Kac's chaos means that if one observes the distribution of any k-particles, then they become statistically independent as N goes to infinity.
 - Hauray M. and Mischler, S.: On Kac's chaos and related problems. JFA 266 (2014), no. 10, 6055-6157.
 - Sznitman A.S.: Topics in propagation of chaos. LNM, 1464, 1991.

Introduction: Propagation of chaos

- Let (ξ^N_{t≥0} := (ξ^{N,1}_t, · · · , ξ^{N,N}_{t≥0}) be a family of E^N-valued continuous stochastic processes, which can be thought of as the evolution of N-particles.
- Let (ξ_t)_{t≥0} be a limit *E*-valued continuous stochastic process defined on the same probability space.
- Let μ_t^N be the law of ξ_t^N in E^N and μ_t be the law of ξ_t in E.
- Suppose that μ₀^N is μ₀-chaotic at time 0. One says that propagation of chaos holds if for any time t > 0, μ_t^N is μ_t-chaotic.
- This is a basic assumption in the derivation of Bolzmann equations. Appears also in data science, mean-field games and the training of neural networks.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Introduction: Propagation of chaos

- As the evolution of particle distributions, the probability measures μ_t^N and μ_t satisfy Fokker-Planck-Kolmogorov equation in the weak sense. Therefore, it can be studied by purely PDE's method.
- As stochastic processes, one would like to ask the following stronger convergence in a probabilistic sense: for each t > 0,

$$\lim_{\mathbf{V}\to\infty}\mathbb{E}|\xi_t^{\mathbf{N},\mathbf{1}}-\xi_t|=\mathbf{0},$$

or in the functional path sense

$$\lim_{N \to \infty} \mathbb{E} \left(\sup_{s \in [0,t]} |\xi_s^{N,1} - \xi_s| \right) = 0.$$
 (1.3)

• (Rate of Convergence) For any T > 0 and some C_T and $\gamma > 0$,

$$\mathbb{E}\left(\sup_{\boldsymbol{s}\in[0,T]}|\xi_{\boldsymbol{s}}^{\boldsymbol{N},1}-\xi_{\boldsymbol{s}}|\right)\leqslant \boldsymbol{C}_{\boldsymbol{T}}\boldsymbol{N}^{-\gamma}.$$

Introduction: Interaction particle system

- Let $\phi : \mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^m$, $F : \mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$ and $\sigma : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ be Borel measurable functions.
- For a (sub)-probability measure μ over \mathbb{R}^d , we define

$$b(t, x, \mu) := F(t, x, (\phi_t \circledast \mu)(x)),$$

where $\phi_t(x, y) := \phi(t, x, y)$ and

$$(\phi_t \circledast \mu)(\boldsymbol{x}) := \int_{\mathbb{R}^d} \phi_t(\boldsymbol{x}, \boldsymbol{y}) \mu(\mathrm{d} \boldsymbol{y}).$$

• Let $\mathbf{X}_t^N := (X_t^{N,1}, \dots, X_t^{N,N})$ be the evolution of *N*-particles governed by stochastic system associated with above *b* and σ .

Introduction: Interaction particle system

• Consider the following interacting system of N-particles,

$$\mathrm{d}X_t^{N,i} = b\Big(t, X_t^{N,i}, \eta_{\mathbf{X}_t^N}\Big)\mathrm{d}t + \sigma\Big(t, X_t^{N,i}\Big)\mathrm{d}W_t^i, \quad i = 1, \cdots, N, \quad (1.4)$$

where $\eta_{\mathbf{X}_{t}^{N}}$ stands for the empirical distribution measure of \mathbf{X}_{t}^{N} , and $\{W^{i}, i \in N\}$ is a sequence of independent standard Brownian motions on some stochastic basis $(\Omega, \mathscr{F}, \mathbb{P}, (\mathscr{F}_{t})_{t \ge 0})$.

The infinitesimal generator of the above system is given by

$$\mathcal{L}_t^N \varphi(\mathbf{x}) = \operatorname{tr} \left(a(t, x^i) \cdot \nabla_{x^i}^2 \varphi(\mathbf{x}) \right) + \mathcal{F} \left(t, x^i, \frac{1}{N} \sum_{j=1}^N \phi_t(x^i, x^j) \right) \cdot \nabla_{x^i} \varphi(\mathbf{x}),$$

where $\mathbf{x} = (x^1, \dots, x^N) \in (\mathbb{R}^d)^N$ and $a = \frac{1}{2}\sigma\sigma^*$. Here and below we use Einstein's convention for summation.

Introduction: McKean-Vlasov equation

Formally, it is expected that η_{X^N_t} weakly converges to the distribution μ_{Xt} of the solution to the following distribution-dependent (or McKean-Vlasov) SDE (abbreviated as DDSDE) when N → ∞:

$$\mathrm{d}X_t = b(t, X_t, \mu_{X_t})\mathrm{d}t + \sigma(t, X_t)\mathrm{d}W_t^1. \tag{1.5}$$

 µ := (μ_{Xt})t≥0 solves the following nonlinear Fokker-Planck equation
 in distributional sense:

$$\partial_t \mu = \partial_i \partial_j (\mathbf{a}_{ij} \mu) + \operatorname{div}(\mathbf{b}(\mu) \mu).$$

 When *b* is Lipschitz continuous in *x* and μ, McKean(1986) and Sznitman(1991) showed the following result:

$$\mathbb{E}\left(\sup_{s\in[0,T]}|X_{s}^{N,1}-X_{s}|^{2}\right)\leqslant\frac{C(b,\sigma,T)}{N}.$$
(1.6)

• Consider the following interaction particle system:

$$\mathrm{d}X_t^{N,i} = \frac{1}{N} \sum_{j \neq i} K\Big(X_t^{N,i} - X_t^{N,j}\Big) \mathrm{d}t + \nu \mathrm{d}W_t^i,$$

where K(x) is the interaction kernel.

- Osada (1987) firstly showed the propagation of chaos for the point vortices associated with the 2d Navier-Stokes equation with large viscosity (singular interaction kernel like $K(x) = x^{\perp}/|x|^2$).
- Fournier, Hauray and Mischler (2014) dropped the assumption of large viscosity by the classical martingale method.

 Osada H.: Propagation of chaos for the two dimensional Navier-Stokes equation. Probabilistic Methods in Mathematical Physics (Katata Kyoto, 1985), 303-334, Academic Press, Boston, MA, 1987.

Fournier, N., Hauray, M. and Mischler, S.: Propagation of chaos for the 2D viscous vortex model. J. Eur. Math. Soc. 16 (2014), no. 7, 1423-1466.

Beyond Lipschitz

- Jabin and Wang (2018) obtained a first quantitative convergence rate about the relative entropy between the law of particle system and the tensorized limit law with kernels $K \in W^{-1,\infty}$ and K(x) = -K(-x).
- Serfaty (2020) showed the propagation of chaos for first order system with Coulomb potential or a super-Coulombic Riesz potential with |*K*(*x*)| ≤ *C*|*x*|^{-α}, where *d* − 2 < α < *d* and *d* ≥ 2.
- Bao and Huang (2021) obtained the rate of the propagation of chaos for Hölder K(x) by Zvonkin's transformation.
- Lacker D. (2021) showed the optimal rate of the propagation of chaos for bounded K(x) by BBGKY method.
- Bao J. and Huang X.: Approximations of Mckean-Vlasov Stochastic Differential Equations with irregular coefficients. J. Theoret. Probab. (2021): 1-29.
- Jabin P.-E. and Wang Z.: Quantitative estimates of propagation of chaos for stochastic systems with W^{-1,∞} kernels. Invent. Math. 214 (2018), no. 1, 523-591.
- Serfaty S.: Mean field limit for Coulomb-type flows. Duke Math. Journal, Vol. 169, No. 15, 2887-2935(2020).
- Lacker D.: Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions. Available in arXiv:2105.02983.

Beyond Lipschitz

- Röckner and Zhang (2021) showed the strong well-posedness for DDSDE with K ∈ L^p(ℝ^d) for some p > d.
- Tomašević (2020) uses the partial Girsanov transform to derive the propagation of chaos under $K \in L^p(\mathbb{R}^d)$ for some p > d and the extra assumption that the set of discontinuous points of the interaction kernel has Lebesgue measure zero.
- Hoeksema, Holding, Maurelli and Tse (2020) showed a large deviation result for a particle system with *L^p*-singular interaction kernels.
- Liu, Wu, Zhang(2021, CMP), Wang, Zhao, Zhu(2021)...
- Röckner M. and Zhang X.: Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli 27 (2021), no. 2, 1131-1158.
- Tomašević M.: Propagation of chaos for stochastic particle systems with singular mean-field interaction of L^q-L^p type. 2020. hal-03086253
- Hoeksema J., Holding T., Maurelli M., Tse O. : Large deviations for singularly interacting diffusions. Available at arXiv: 2002.01295.

Difficulties

• Consider the following SDE in \mathbb{R}^{3d} :

$$\begin{cases} \mathrm{d}X_t^1 = \left[\phi\left(X_t^1, X_t^2\right) + \phi\left(X_t^1, X_t^3\right)\right] \mathrm{d}t + \mathrm{d}W_t^1, \\ \mathrm{d}X_t^2 = \left[\phi\left(X_t^2, X_t^1\right) + \phi\left(X_t^2, X_t^3\right)\right] \mathrm{d}t + \mathrm{d}W_t^2, \\ \mathrm{d}X_t^3 = \left[\phi\left(X_t^3, X_t^1\right) + \phi\left(X_t^3, X_t^2\right)\right] \mathrm{d}t + \mathrm{d}W_t^3, \end{cases}$$
(1.7)

where $|\phi(x, y)| \leq h(x - y)$ and $h \in L^p$ with p > d. For i = 1, 2, 3, let $\phi_i(x_1, x_2, x_3) := \sum_{j \neq i} \phi(x_i, x_j)$.

• As a function of (x_1, x_2, x_3) in \mathbb{R}^{3d} , one only has

 $\phi_i \in L^{\infty}_{\mathbf{X}^*_i} L^p_{\mathbf{X}^*_i} \subset L^p_{\mathbf{X}} \text{ locally}, \quad i = 1, 2, 3, \tag{1.8}$

where x_i^* stands for the remaining variables except for x_i .

• It does not satisfy the conditions in Krylov-Röckner's work.

Main Results

Let *d* ∈ N. For a multi-index *p* = (*p*₁, · · · , *p_d*) ∈ (0, ∞]^{*d*} and any permutation *x* ∈ *X*, the mixed L^{*p*}_{*x*}-space is defined by

$$\|f\|_{\mathbb{L}^{p}_{\mathbf{x}}} := \left[\int_{\mathbb{R}}\left[\int_{\mathbb{R}}\cdots\left[\int_{\mathbb{R}}|f(x_{1},\cdots,x_{d})|^{p_{d}}\mathrm{d}x_{i_{d}}\right]^{\frac{p_{d-1}}{p_{d}}}\cdots\mathrm{d}x_{i_{2}}\right]^{\frac{p_{1}}{p_{2}}}\mathrm{d}x_{i_{1}}\right]^{\frac{1}{p_{1}}}$$

• When $\boldsymbol{p} = (\boldsymbol{p}, \cdots, \boldsymbol{p}) \in (0, \infty]^d$, the mixed $\mathbb{L}^{\boldsymbol{p}}_{\mathbf{x}}$ -space is the usual $L^{\boldsymbol{p}}(\mathbb{R}^d)$ -space. Note that for general $\mathbf{x} \neq \mathbf{x}'$ and $\boldsymbol{p} \neq \boldsymbol{p}'$,

$$\mathbb{L}_{\mathbf{X}}^{\mathbf{p}'} \neq \mathbb{L}_{\mathbf{X}}^{\mathbf{p}} \neq \mathbb{L}_{\mathbf{X}'}^{\mathbf{p}}.$$

• For multi-indices ${\pmb p}, {\pmb q} \in (0,\infty]^d,$ we denote

$$\frac{1}{\boldsymbol{\rho}} := \left(\frac{1}{\rho_1}, \cdots, \frac{1}{\rho_d}\right), \quad \left|\frac{1}{\boldsymbol{\rho}}\right| = \frac{1}{\rho_1} + \cdots + \frac{1}{\rho_d},$$

 $\boldsymbol{p} > \boldsymbol{q} \ (\text{resp. } \boldsymbol{p} \geqslant \boldsymbol{q}; \ \boldsymbol{p} = \boldsymbol{q}) \Longleftrightarrow \boldsymbol{p}_i > q_i \ (\text{resp. } \boldsymbol{p}_i \geqslant q_i; \ \boldsymbol{p}_i = q_i).$

• Let $\chi : \mathbb{R}^d \to [0, 1]$ be a smooth cutoff function with $\chi|_{B_1} = 1$ and $\chi|_{B_2^c} = 0$. For fixed r > 0, we set

$$\chi_z^r(\mathbf{x}) := \chi((\mathbf{x}-\mathbf{z})/r), \ \mathbf{x}, \mathbf{z} \in \mathbb{R}^d.$$

• For $\boldsymbol{p} \in [1,\infty]^d$, we introduce the following localized $L^{\boldsymbol{p}}$ -space:

$$\widetilde{\mathbb{L}}_{\mathbf{x}}^{\mathbf{p}} := \Big\{ f \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{d}), \|\|f\|\|_{\widetilde{\mathbb{L}}_{\mathbf{x}}^{\mathbf{p}}} := \sup_{z} \|\chi_{z}^{r}f\|_{\mathbb{L}_{\mathbf{x}}^{\mathbf{p}}} < \infty \Big\}.$$

• For a finite time interval $I \subset \mathbb{R}$ and $q \in [1, \infty]$,

$$\widetilde{\mathbb{L}}_{\mathrm{I}}^{q}(\widetilde{\mathbb{L}}_{\mathbf{x}}^{p}) := \Big\{ f \in L^{1}_{\mathrm{loc}}(\mathrm{I} \times \mathbb{R}^{d}), \|\|f\|_{\widetilde{\mathbb{L}}_{\mathrm{I}}^{q}(\widetilde{\mathbb{L}}_{\mathbf{x}}^{p})} := \sup_{z} \|\chi_{z}^{r}f\|_{\mathbb{L}_{\mathrm{I}}^{q}(\mathbb{L}_{\mathbf{x}}^{p})} < \infty \Big\},$$

where for a Banach space \mathbb{B} we set

$$\mathbb{L}^{q}_{\mathrm{I}}(\mathbb{B}) := L^{q}(\mathrm{I}; \mathbb{B}).$$

• We introduce the following index sets:

$$\mathscr{I}^o := \left\{ (q, \boldsymbol{p}) \in (2, \infty)^{1+d} : |\frac{1}{\boldsymbol{p}}| + \frac{2}{q} < 1 \right\}$$

and

 $\mathscr{X} := \{ \mathbf{x} = (x_{i_1}, \cdots, x_{i_d}) : \text{any permutation of } (x_1, \cdots, x_d) \}.$

There are $\kappa_0 \ge 1$, $\gamma_0 \in (0, 1]$ such that for all $t \ge 0$ and $x, x', \xi \in \mathbb{R}^d$,

 $\kappa_0^{-1}|\xi| \leqslant |\sigma(t, \mathbf{x})\xi| \leqslant \kappa_0 |\xi|, \|\sigma(t, \mathbf{x}) - \sigma(t, \mathbf{x}')\|_{HS} \leqslant \kappa_0 |\mathbf{x} - \mathbf{x}'|^{\gamma_0},$

where $\|\cdot\|_{HS}$ is the usual Hilbert-Schmidt norm of a matrix. Moreover, for some $(q_0, \mathbf{p}_0) \in \mathscr{I}^o$ and $\mathbf{x}_0 \in \mathscr{X}$ and any T > 0,

$$\|\nabla\sigma\|_{\mathbb{L}^{q_0}_T(\widetilde{\mathbb{L}}^{p_0}_{\mathbf{x}_0})} \leqslant \kappa_0.$$

Suppose that $\phi_t(x, x) = 0$ and for some measurable $h : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}_+$ and $\kappa_1 > 0$,

$$|F(t,x,r)| \leq h(t,x) + \kappa_1 |r|, |F(t,x,r) - F(t,x,r')| \leq \kappa_1 |r-r'|,$$

and for some $(q, p) \in \mathscr{I}^o$ and $\mathbf{x} \in \mathscr{X}$ and for any T > 0,

$$\|\|h\|\|_{\mathbb{L}^{q}_{T}(\widetilde{\mathbb{L}^{p}_{\mathbf{x}}})}^{q} + \int_{0}^{T} \sup_{\boldsymbol{y}\in\mathbb{R}^{d}} \left[\|\phi_{t}(\cdot,\boldsymbol{y})\|_{\widetilde{\mathbb{L}^{p}_{\mathbf{x}}}}^{q} + \|\phi_{t}(\boldsymbol{y},\cdot)\|_{\widetilde{\mathbb{L}^{p}_{\mathbf{x}}}}^{q} \right] \mathrm{d}t \leqslant \kappa_{1}.$$
 (2.1)

Example 1 Let $d \ge 2$ and $\phi_t(x, y) = c_t(x, y)/|x - y|^{\alpha}$, where $c_t(x, y)$ is bounded measurable and $\alpha \in (0, 1)$. It is easy to see that (2.1) holds for q close to ∞ and $p \in (d, \frac{d}{\alpha})$ with $\frac{d}{p} + \frac{2}{q} < 1$.

Example 2 Let $d \ge 1$ and $\phi_t(x, y) = c_t(x, y)/\prod_{i=1}^d |x_i - y_i|^{\alpha_i}$, where $\alpha_i \in (0, \frac{1}{2})$ satisfies $\alpha_1 + \cdots + \alpha_d < 1$ and $c_t(x, y)$ is bounded measurable. Note that one can choose q close to ∞ and $p_i > 2$ close to $1/\alpha_i$ so that $|\frac{1}{p}| + \frac{2}{q} < 1$ and (2.1) holds.

Theorem 1

Under (\mathbf{H}^{σ}) and (\mathbf{H}^{b}), for any initial values \mathbf{X}_{0}^{N} and X_{0} , there are unique strong solutions \mathbf{X}_{t}^{N} and X_{t} to particle system (1.4) and DDSDE (1.5), respectively. Moreover, letting μ_{0}^{N} be the law of \mathbf{X}_{0}^{N} in \mathbb{R}^{dN} and μ_{0} the law of X_{0} in \mathbb{R}^{d} , we have the following strong convergence results:

(Singular kernel) Suppose that μ_0^N is symmetric and μ_0 -chaotic,

$$\lim_{N\to\infty}\mathbb{E}|X_0^{N,1}-X_0|^2=0.$$

Then for any $\gamma \in (0, 1)$,

$$\lim_{N\to\infty} \mathbb{E}\left(\sup_{t\in[0,T]} |X_t^{N,1} - X_t|^{2\gamma}\right) = 0.$$
 (2.2)

Continue...

(Bounded kernel) If h and ϕ in (**H**^b) are bounded measurable and

$$\kappa_2 := \sup_{N} \mathcal{H}\left(\mu_0^N | \mu_0^{\otimes N}\right) < \infty, \tag{2.3}$$

where $\mu_0^{\otimes N} \in \mathcal{P}((\mathbb{R}^d)^N)$ is the *N*-tensor of μ_0 and \mathcal{H} stands for the relative entropy, then for any $\delta > 2$ and $\gamma \in (0, 1)$, there are constants $C_i = C_i(T, \gamma, \delta, \Theta) > 0$, i = 1, 2 independent of ϕ and κ_2 such that

$$\mathbb{E}\left(\sup_{t\in[0,T]}|X_t^{N,1}-X_t|^{2\gamma}\right)\leqslant C_1\mathrm{e}^{C_2\|\phi\|_{\infty}^{\delta}}\left(\mathbb{E}|X_0^{N,1}-X_0|^2+\frac{\kappa_2+1}{N}\right)^{\gamma}.$$

Example

• Let d = 1. Consider the following rank-based interaction:

$$b(t, x, \mu) = F(t, x, \mu(-\infty, x]).$$
(2.4)

- The interaction kernel is φ(x, y) = 1_{(-∞,x]}(y) = 1_{x-y≥0}, which is bounded and discontinuous.
- If we let $V(x) := \mu((-\infty, x])$, $\sigma(t, x) = \sqrt{2}$ and F(t, x, r) = g(r), then V solves the following Burgers type equation:

$$\partial_t V = \Delta V + \left(\int_0^V g(r) \mathrm{d}r\right)'.$$

• For g(r) = r, this is the classical Burgers equation.

< 回 > < 回 > < 回 >

Theorem 2

Suppose that (\mathbf{H}^{σ}) holds, and

$$|F(t,x,r)| \leqslant \kappa_1, \quad |F(t,x,r) - F(t,x,r')| \leqslant \kappa_1 |r-r'|, \qquad (2.5)$$

and for $\varepsilon_N \in (0, 1)$ with $\varepsilon_N \to 0$ as $N \to \infty$,

$$\phi_t(\mathbf{x},\mathbf{y}) = \phi_{\varepsilon_N}(\mathbf{x}-\mathbf{y}) = \varepsilon_N^{-d} \phi((\mathbf{x}-\mathbf{y})/\varepsilon_N),$$

where ϕ is a bounded probability density function in \mathbb{R}^d with support in the unit ball. Then for any initial value X_0 with bounded density ρ_0 , there is a unique strong solution X to density-dependent SDE

$$dX_t = F(t, X_t, \rho_{X_t}(X_t))dt + \sigma(t, X_t)dW_t,$$
(2.6)

such that for each t > 0, X_t admits a density ρ_t with

$$\|\rho_t\|_{\infty} \leqslant C(T,\Theta) \|\rho_0\|_{\infty}, \ t \in [0,T].$$
(2.7)

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cont.

Moreover, under (2.3), for any T > 0, $\beta \in (0, \gamma_0)$, $\gamma \in (0, 1)$ and $\delta > 2$, there are constants $C_i = C_i(T, \beta, \gamma, \delta, \Theta) > 0$, i = 1, 2, 3 such that for all $N \ge 2$,

$$\mathbb{E}\left(\sup_{t\in[0,T]}|X_t^{N,1}-X_t|^{2\gamma}\right)\leqslant C_1e^{C_2\varepsilon_N^{-\delta d}}\left(\mathbb{E}|X_0^{N,1}-X_0|^2+\frac{\kappa_2+1}{N}\right)^{\gamma}+C_3\varepsilon_N^{2\beta\gamma}.$$

A B b 4 B b

- Zvonkin's transformation and heat kernel estimates to show the strong well-posedness for particle system.
- Partial Girsanov's transformation to derive some uniform estimate for particle system.
- Martingale approach to show the weak convergence.
- Zvonkin's method to show the strong convergence.
- Open question: The rate of weak convergence!

Thank you for your attention!