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Branching processes and the associated martingales

Xinxin Chen (T HT)

1. GW processes and Kesten-Stigum theorem

2. Branching random walk and Biggin's theorem

3. Multitype branching processes and Biggins-Kyprianou theorem
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Randomly biased walks on trees

Yueyun Hu (X =)

Random walk in random environment (RWRE), or more generally the subject of random media, has been a
subject of much interest and efforts in probability over the last three decades. We discuss here a specific
model of RWRE introduced by Lyons and Pemantle (1992), called randomly biased walks on trees, which is
a model of reversible random walks in an infinite dimensional space. The two characteristics (reversibility
and tree structure) make the model much richer than a simple extension of a one-dimensional RWRE. This
model is naturally related to the studies of two other important models: the so-called trap model (see e.g. Ben
Arous and Cerny (2007)) and the branching random walks. The link with trap models plays a crucial role in
various interesting properties such as scaling limits and aging phenomenon, see e.g. Ben Arous and
Hammond (2012). The branching random walks, whose studies were initialized by Hammersley, Kingman
and Biggins (1974--1976), have received many recent developments, see e.g. Shi (2015) Saint-Flour's course
for general references.

The main objective of this mini-course is the exploration of the link between a class of randomly biased
walks on trees and some tree-indexed processes (branching random walks, Mandelbrot's cascades, ...). The
outline is as follows:

1. Lyons and Pemantle's criterion on the recurrence/transience.
2. The sub-diffusive regime and Mandelbrot's cascades.
3. The slow regime and branching random walks in the boundary case.

4. Maximum of local times and a multi-type branching process.

Continuous state branching processes and related topics
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Li, Z.H. (2012) : Continuous-state branching processes. Arxiv 1202.3223.



Li, Z.H. (2011) : Measure-Valued Branching Markov Processes. Springer, Berlin.

Title: limit theorems for branching processes in random environments

Quansheng Liu (X14:42)

I will present recent results about the asymptotic properties of a single type branching process (Z_n) in a
random environment. In particular, | will present large deviation principles and expansionson logZ_ n, a
Berry-Esseen bound in a central limit theorem, asymptotic properties of the harmonic moments of Z_n and
of its normalized limit W, as well as those of the distribution P(Z_n=k).

DISTANCES BETWEEN RANDOM ORTHOGONAL MATRICES
AND INDEPENDENT NORMALS

EES

LetI'_nbe an n x n Haar-invariant orthogonal matrix. Let Z_n be the p >xq upper-left submatrix of I'n,
where p = pn and g = gn are two positive integers. Let Gn be a p ><q matrix whose pq entries are independent
standard normals. In this paper we consider the distance between \sqrt{n}Z_n and G_n in terms of the total
variation distance, the Kullback-Leibler distance, the Hellinger distance and the Euclidean distance. We
prove that each of the first three distances goes to zero as long as pg/n goes to zero, and not so if (p, g) sits on
the curve pq = on, where o is a constant. However, it is different for the Euclidean distance, which goes to
zero provided pg2/n goes to zero, and not so if (p,q) sits on the curve pg™2 = on. A previous work by Jiang
[17] shows that the total variation distance goes to zero if both p/ n and g/ n go to zero, and it is not true
provided p = ¢ n™{1/2} and q = d n*{1/2} with ¢ and d being constants. One of the above results confirms a
conjecture that the total variation distance goes to zero as long as pg/n — 0 and the distance does not go to

zero if pq = on for some constant G.
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Backward stochastic differential equations and stochastic partial

differential equations

Jie Xiong (fEH#)

We will first introduce a motivating example from mathematical finance where the backward stochastic differential
equation (BSDE) arises naturally. We will then introduce the basic results for BSDEs including its relationship with
a nonlinear partial differential equation (PDE). We will also introduce the basic results of stochastic PDE and its
relationship with a class of BSDE.
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CMJ branching processes coded by spectrally positive Levy processes

Xiaowen Zhou (JEIEE)

A homogeneous Crump—Mode—Jagers (CMJ) branching process is a general branching process with constant
branching rate and with general life time distribution. It is known that a binary homogeneous CMJ process is
associated to a local time of spectrally positive Levy process with sample paths of bounded variation; see Lambert
(2010). In the lectures, we first go over basic facts of spectrally one-sided Levy processes such as fluctuation
identities, Wiener-Hopf factorization, scale functions and solution to the exit problems. We then present the CMJ
branching process coded by a spectrally positive Levy excursion. Using the fluctuation results for Levy processes

we can carry out some computations on the binary homogeneous CMJ branching process.



