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Schedule 1

July 13
Chairman: Yingchao XIE

08:15-09:00 Opening and take pictures

Chairman: Mu-Fa CHEN

09:00-09:30 Yun-Shyong Chow (Academia Sinica, Taibei)

On Nash bargaining games

09:30-10:00 Hanjun Zhang (Xiangtan University, Xiangtan)

Quasi-stationary distributions and their applications

Chairman: Zenghu LI

10:30-11:00 Kening Lu (Brigham Young University, USA)

Lyapunov exponents and chaotic behavior for random dynamical systems

in a Banach space

11:00-11:30 Xicheng Zhang (Wuhan University, Wuhan)

Stochastic Hamiltonian flows with singular coefficients

11:30-12:00 Xiaowen Zhou (Concordia University, Canada)

A continuous state branching process with population dependent branch-

ing rates

Chairman: Kening LU

14:30-15:00 Xiangdong Li (Chinese Academy of Sciences, Beijing)

On the stochastic approach to the Navier-Stokes equation

15:00-15:30 Yan-Xia Ren (Peking University, Beijing)

Williams decomposotion for superprocesses

15:30-16:00 Mei Zhang (Beijing Normal University, Beijing)

The Seneta-Heyde scaling for stable branching random walk



2 Schedule

Chairman: Xiangdong LI

16:30-17:00 Dong Han (Shanghai Jiao Tong University, Shanghai)

On the Nash equilibrium of an evolving random network

17:00-17:30 Dejun Luo (Chinese Academy of Sciences, Beijing)

The Itô SDEs and Fokker–Planck equations with Osgood and Sobolev

coefficients

17:30-18:00 Chao Zhu (University of Wisconsin-Milwaukee, USA)

On Feller and strong Feller properties of regime-switching jump-diffusion

processes with countable regimes

July 14
Chairman: Renming SONG

08:30-09:00 Jie Xiong (University of Macau, Macau)

Optimal control under partial information: a brief introduction

09:00-09:30 Ting-Li Chen (Academia Sinica, Taibei)

On the optimal transition rate matrix of Markov process

09:30-10:00 Yueyun Hu (Université Paris 13, France)

On the minimum of a branching random walk

Chairman: Jie XIONG

10:30-11:00 Renming Song (University of Illinois, USA)

Heat kernels of non-symmetric jump processes: beyond the stable case

11:00-11:30 Fubo Xi (Beijing Institute of Technology, Beijing)

On the martingale problem and Feller and Strong Feller properties for

weakly coupled Lévy type operators

11:30-12:00 Ze-Chun Hu (Sichuan University, Chengdu)

Hunt’s hypothesis (H) and Getoor’s conjuecture



Schedule 3

Chairman: Yun-Shyong CHOW

14:30-15:00 Yaozhong Hu (University of Kansas, USA)

Regularity and strict positivity of densities for stochastic fractional heat

equation

15:00-15:30 Shang-Yuan Shiu (National Central University, Taoyuan)

Dissipation in parabolic SPDEs

15:30-16:00 Guan-Yu Chen (National Chiao Tung University, Hsinchu)

The L2-cutoff for reversible Markov chains

Chairman: Yaozhong HU

16:30-17:00 Fuqing Gao (Wuhan University, Wuhan)

Moderate deviations of additive functionals for lattice gas models

17:00-17:20 Chunhua Ma (Nankai University, Tianjin)

Some limit theorems for CBI processes

17:20-17:40 Xin Chen (Shanghai Jiao Tong University, Shanghai)

Ultracontractivity of symmetric jump processes on unbounded open sets

17:40-18:00 Yong Jiao (Central South University, Changsha)

Classical and noncommutative martingale inequalities

July 15
Chairman: Fuqing GAO

08:30-09:00 Quansheng Liu (Université de Bretagne -Sud, France)

Cramé’s large deviation expansion for a supercritical branching process

in a random environment

09:00-09:30 Xian-Yuan Wu (Capital Normal University, Beijing)

On the waiting time for a non-Markovian M/M/1 queueing system
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09:30-10:00 Yuanyuan Liu (Central South University, Changsha)

Singular perturbation analysis for countable Markov chains

Chairman: Feng-Yu WANG

10:30-11:00 Tiefeng Jiang (University of Minnesota, USA)

Determinants of correlation matrices with applications

11:00-11:30 Shui Feng (McMaster University, Canada)

Large deviations for the Pitman-Yor process

11:30-12:00 Jianhai Bao (Central South University, Changsha)

Convergence of Euler-Maruyama scheme for SDEs with irregular coeffi-

cients

July 16
Chairman: Chii-Ruey HWANG

08:30-09:00 Aihua Xia (The University of Melbourne, Australia)

A dichotomy for CLT in total variation

09:00-09:30 Chenggui Yuan (Swansea University, UK)

Some properties of neutral stochastic functional differential equations

09:30-10:00 Hui Jiang (Nanjing University of Aeronautics and Astronautics, Nan-

jing)

Moderate deviations for the Grenander estimator near the boundaries of

the support

Chairman: Aihua XIA

10:30-11:00 Zhao Dong (Chinese Academy of Sciences, Beijing)

Stationary measures for stochastic Lotka-Volterra systems with spplica-

tion to turbulent convection



Schedule 5

11:00-11:20 Longjie Xie (Jiangsu Normal University, Xuzhou)

Singular stochastic differential equations driven by Markov processes

11:20-11:40 Lu-Jing Huang (Beijing Normal University, Beijing)

On some mixing times for non-reversible finite Markov chains

11:40-12:00 Wei Mao (Jiangsu Second Normal University, Nanjing)

On the asymptotic stability and numerical analysis of solutions to s-

tochastic differential equations with jumps

Chairman: Litan YAN

14:30-15:00 Geroge Yin (Wayne State University, USA)

Stochastic SIR models

15:00-15:30 Xianping Guo (Sun Yat-Sen University, Guangzhou))

The average value-at-risk criterion for finite horizon semi-Markov deci-

sion processes

15:30-16:00 Jinghai Shao (Beijing Normal University, Beijing)

Stabilization of regime-switching processes by feedback control based on

discrete time observations

Chairman: Geroge YIN

16:30-17:00 Lung-Chi Chen (National Chengchi University, Taibei)

Asymptotic behavior for a generalized Domany-Kinzel model

17:00-17:20 Bo Wu (Fudan University, Shanghai)

Pointwise characterizations of curvature and second fundamental form

on Riemannian manifolds

17:20-17:40 Xiaobin Sun (Jiangsu Normal University, Xuzhou)

Gaussian estimates of the density of systems of non-linear stochastic

heat equations

17:40-18:00 Xu Yang (Beifang University of Nationalities, Yinchuan)
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Maximum likelihood estimator for discretely observed CIR model with

small α-stable noises

July 17
Chairman: Xia CHEN

08:30-09:00 Shinichi Kotani (KwanseiGakuin University and Osaka University,

Japan)

Level statistics of eigenvalues for 1D random Schrödinger operators

09:00-09:30 Dayue Chen (Peking University, Beijing))

The contact process on the regular tree with random vertex weights

09:30-10:00 Junping Li(Central South University, Changsha)

Decay property of stopped Markovian bulk-arriving queues with c-servers

Chairman: Tiefeng JIANG

10:30-11:00 Xia Chen (University of Tennessee, USA)

Spatial asymptotics for the parabolic Anderson models with generalized

time-space Gaussian noise

11:00-11:30 Litan Yan (Donghua University, Shanghai)

Quadratic covariations for the solution to a stochastic heat equation

11:30-12:00 Jiang-Lun Wu (Swansea University, UK)

On stochastic scalar conservation laws with boundary conditions
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Convergence of Euler-Maruyama Scheme for SDEs with
Irregular Coefficients

Jianhai BAO School of Mathematics and Statistics, Central South University, China,
E-mail: jianhaibao13@gmail.com

Xing Huang School of Mathematical Sciences, Beijing Normal University, China
Chenggui Yuan Department of Mathematics, Swansea University, UK

Key words: Convergence rate, Euler-Maruyama scheme, irregular coefficient, Zvonkin
transformation

Mathematical Subject Classification: 60H35, 41A25, 60C30

Abstract: In this talk, we consider the Euler-Maruyama approximation for SDEs with irreg-
ular coefficients. This talk contains three parts. More precisely, the first part is concerned
with convergence of Euler-Maruyama scheme for SDEs with bounded Dini-Continuous drift, the
second part is devoted to convergence of Euler-Maruyama scheme for SDEs with unbounded
Dini-Continuous drift, and the last part focuses on the issue for SDEs in Hilbert space with
multiplicative noises and Dini continuous drifts.

References

[1] H.L. Ngo, D. Taguchi (2016). Strong rate of convergence for the Euler-Maruyama approx-
imation of stochastic differential equations with irregular coefficients, Math. Comp., 85,
1793–1819.

[2] F.Y. Wang (2016). Gradient estimates and applications for SDEs in Hilbert space with
multiplicative noise and Dini continuous drift, J. Differential Equations, 260, 2792–2829

[3] X.C. Zhang (2005). Strong solutions of SDEs with singular drift and Sobolev diffusion
coefficients, Stoch. Proc. Appl., 115, 1805–1818.

The Contact Process on the Regular Tree with Random Vertex
Weights

Dayue CHEN Peking University, China, E-mail: dayue@pku.edu.cn

Abstract: In this paper, we are concerned with contact process with random vertex weights on
regular trees, and study the asymptotic behavior of the critical infection rate as the degree of the
trees increasing to infinity. In this model, the infection propagates through the edge connecting
vertices x and y at rate λρ(x)ρ(y) for some λ > 0, where {ρ(x), x ∈ T d} are i.i.d. vertex weights.
We show that when d is large enough there is a phase transition at λc(d) ∈ (0,∞) such that
for λ < λc(d) the contact process dies out, and for λ > λc(d) the contact process survives with
a positive probability. Moreover, we also show that there is another phase transition at λe(d)
such that for λ < λe(d) the contact process dies out at an exponential rate. Finally, we show
that these two critical values have the same asymptotic behavior as d increases. This is a joint
work with Yu Pan and Xiaofeng Xue.
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The L2-Cutoff for Reversible Markov Chains

Guan-Yu CHEN National Chiao Tung University, Taiwan,
E-mail: gychen@math.nctu.edu.tw

Jui-Ming Hsu National Chiao Tung University, Taiwan
Yuan-Chung Sheu National Chiao Tung University, Taiwan

Key words: Reversible Markov chains, cutoff phenomenon

Mathematical Subject Classification: 60J10, 60J27

Abstract: In this talk, we consider reversible Markov chains of which L2-distance can be
expressed as a Laplace transform. The cutoff of Laplace transformations was first discussed by
Chen and Saloff-Coste in [2], while we introduce a different viewpoint here that reveals more
intrinsic structures of cutoffs. For an illustration of our method, we consider the product chains
and derive equivalent conditions of their cutoffs.

References

[1] G.-Y. Chen and L. Saloff-Coste (2008). The cutoff phenomenon for ergodic markov pro-
cesses, Electron. J. Probab., 13, 26–78.

[2] G.-Y. Chen and L. Saloff-Coste (2010). The L2-cutoff for reversible Markov processes, J.
Funct. Anal., 258(7), 2246–2315.

[3] G.-Y. Chen, J.-M. Hsu and Y.-C. Sheu (2016). The cutoff for reversible Markov chains,
preprint.

Asymptotic Behavior for a Generalized Domany-Kinzel Model

Lung-Chi CHEN Department of Mathematical Sciences, National Chengchi University,
Taiwan, E-mail: lcchen@nccu.edu.tw

Abstract: We consider a generalized Domany-Kinzel model such that vertical edges are directed
upward with probability p1 and p2 in alternate rows, and horizontal edges are directed rightward
with probabilities one. Let τ(M,N) be the probability that there is at least one connected-
directed path of occupied edges from (0, 0) to (M,N). In this talk I present that for each
p1 ∈ [0, 1], p2 ∈ [0, 1], but p1∨p2 > 0, p1∧p2 < 1 and aspect ratio α = M/N fixed for the square
lattice, there is an αc = (2 − p1 − p2)/(p1 + p2) such that as N → ∞, τ(M,N) is 1, 0 and 1/2
for α > αc, α < αc and α = αc, respectively. Moreover, I also present the rate of convergence
of τ(M,N) and the asymptotic behavior of τ(M−N , N) and τ(M+

N , N) where M−N/N ↑ αc and

M+
N/N ↓ αc as N ↑ ∞. This is a joint work with Shu-Chiuan Chang and Chien-Hao Huang.

On the Optimal Transition Rate Matrix of Markov Process

Ting-Li CHEN Institute of Statistical Science, Academia Sinica, Taiwan,
E-mail: tlchen@stat.sinica.edu.tw

Key words: Markov process, transition rate matrix, asymptotic variances

Mathematical Subject Classification: 60J27
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Abstract: Asymptotic variance has been a commonly used criterion to evaluate the perfor-
mance of Markov chain Monte Carlo (MCMC). Many researches are devoted to comparison
and improvement of MCMC algorithms with respect to asymptotic variance. The asymptotic
variance depends on the statistics to estimate. For the average-case analysis, Chen et al. (2012)
obtained the asymptotic variance and the structure of the optimal transition matrix for discrete-
time Markov chains. In this paper, we will present the result for continuous-time Markov chains.
The structure of the optimal transition rate matrix for the continuous case is not the same as
the optimal transition matrix for the discrete case. The asymptotic variance of the continuous
Markov chain is lower.

References

[1] T.-L. Chen, W.-K. Chen, C.-R. Hwang, and H.-M. Pai (2012). On the optimal transition
matrix for markov chain monte carlo sampling, SIAM Journal on Control and Optimiza-
tion, 50, 2743–2762.

Spatial Asymptotics for the Parabolic Anderson Models with
Generalized Time-Space Gaussian Noise

Xia CHEN University of Tennessee, USA/Jilin University, China,
E-mail: xchen@math.utk.edu

Key words: Generalized Gaussian field, white noise, fractional noise, Brownian motion,
parabolic Anderson model, Feynman-Kac representation

Mathematical Subject Classification: 60J65, 60K37,60K40, 60G55, 60F10

Abstract: Partially motivated by the work by Conus el, this work is concerned with the precise
spatial asymptotic behavior for the parabolic Anderson equation

∂u

∂t
(t, x) =

1

2
∆u(t, x) + V (t, x)u(t, x)

u(0, x) = u0(x)

where the homogeneous generalized Gaussian noise V (t, x) is, among other forms, white or
fractional white in time and space. Associated with the Cole-Hopf solution to the KPZ equation,
in particular, the precise asymptotic form

lim
R→∞

(logR)−2/3 log max
|x|≤R

u(t, x) =
3

4
3

√
2t

3
a.s.

is obtained for the parabolic Anderson model ∂tu = 1
2∂

2
xxu + Ẇu with the (1 + 1)-white noise

Ẇ (t, x).

References

[1] D. Conus, M. Joseph, and D. Khoshnevisan (2013). On the chaotic character of the
stochastic heat equation, before the onset of intermittency, Ann. Probab., 41, 2225–2260.
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[2] D. Conus, M. Joseph, D. Khoshnevisan and S.-Y. Shiu (2013). On the chaotic character
of the stochastic heat equation, II, Probab. Theor. Rel. Fields, 156, 483–533.

[3] R. C. Dalang (1999). Extending martingale measure stochastic integral with applications
to spatially homogeneous S.P.D.E’s, Electron. J. Probab., 4, 1–29.

[4] A. Dembo and O, Zeitouni (1998). Large Deviations Techniques and Applications (2nd
ed.), Springer, New York.

[5] M. Hairer (2013). Solving the KPZ equation, Ann. Math., 178, 559–664.

[6] Y. Z. Hu, D. Nualart and J. Song, J. (2011). Feynman-Kac formula for heat equation
driven by fractional white noise, Ann. Probab., 39, 291–326.

[7] M. Kardar, G. Parisi and Y. C. Zhang (1986). Dynamic scaling of growing interface, Phys.
Rev. Letters, 56, 889–892.

[8] M. Kardar and Y. C. Zhang (1987). Scaling of Directed Polymers in Random Media, Phys.
Rev. Letters, 58, 2087–2090.

[9] J. B. Walsh (1984). An Introduction to Stochastic Partial Differential Equations, in: Êcole
d’été de probabilités de Saint-Flour, XIV– 1984, 265-439, Lecture Notes in Math., 1180,
Springer, Berlin 1986.

Intrinsic Ultracontractivity of Symmetric Jump Processes on
Unbounded Open Sets

Xin CHEN Department of Mathematics, Shanghai Jiao Tong University, China,
E-mail: chenxin 217@hotmail.com

Panki Kim Department of Mathematics, Seoul National University, South Korea,
E-mail: pkim@snu.ac.kr

Jian Wang School of Mathematics and Computer Science, Fujian Normal University, China,
E-mail: jianwang@fjnu.edu.cn

Key words: Symmetric jump process, Dirichlet form, intrinsic ultracontractivity, intrinsic
super Poincaré inequality

Mathematical Subject Classification: 60G51, 60G52, 60J25, 60J75

Abstract: We will study some criterions of the intrinsic ultracontractivity for a large class of
symmetric jump process killed on exiting an unbounded open set, including the stable process
and truncated stable process killed on exiting a horn-shaped region. We will provide some
examples to show that our criterions are sharp in some sense, and for the horn-shape region, a
two-side estimate for the associated ground state will also be given. The talk is based on a joint
work with Panki Kim and Jian Wang.

On Nash Bargaining Games

Yunshyong CHOW Institute of Mathematics, Academia Sinica, Taiwan,
E-mail: chow@math.sinica.edu.tw

Key words: Bargaining games, 2-person cooperative games

Mathematical Subject Classification: 91A12
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Abstract: Besides his well-known result on non-cooperative games in Annals of Math. 54
(1951), Nash had done some works on cooperative games as well. The main purpose of this talk
is to introduce his bargaining models for 2 person cooperative games published in Econometrica
18 (1950).

References

[1] E.N. Barron (2013). Game Theory, 2nd ed., Wiley.

[2] A.J. Jones (2000). Game Theory: Mathematical Models of Conflict, Woodhead Publishing
Limited, Cambridge.

Stationary Measures for Stochastic Lotka-Volterra Systems with
Application to Turbulent Convection

Zhao DONG Institute of Applied Mathematics, Academy of Mathematics and
Systems Sciences, Chinese Academy of Sciences, China, E-mail: dzhao@amt.ac.cn

Abstract: In this talk I will give some ergodicity and nonergodicity for a class of stochastic
Lotka-Volterra systems as the noise intensity vanishes. The nonergodicity case can be illustrated
the turbulent characteristics. It is a phenomenon that the turbulence in a fluid layer heated
from below and rotating about a vertical axis is robust under stochastic disturbances. This is a
joint work with Lifeng Chen, Jifa Jiang, Lei Niu and Jianliang Zhai.

Large Deviations for the Pitman-Yor Process

Shui FENG McMaster University, Canada, E-mail: shuifeng@mcmaster.ca

Abstract: The Pitman-Yor process is a random measure depending on a gamma parameter and
a stable parameter. In the context of random energy models, the stable parameter is the ratio
between the subcritical temperature and the critical temperature. In this talk we will present
the large deviation principle for the Pitman-Yor process when the temperature approaches the
critical value from below. The rate function obtained describes the instantaneous cooling effect.
This is a joint work with Fuqing Gao and Youzhou Zhou.

References

[1] S. Feng, F.Q. Gao & Y.Z. Zhou (2016). Limit theorems associated with the Pitman-Yor
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Moderate Deviations of Additive Functionals for Lattice Gas
Models
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Abstract: We present moderate deviation principles of some additive functionals for lattice gas
models. Our method is based on local average technique which is developed in hydrodynamic
limits. As an intermediate result, we obtain a moderate deviation principle for the empirical
density. Then using the moderate deviation principle and an approximation method, we establish
moderate deviation principles for local functions.
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[1] P. Gonçalves & M. Jara (2013). Scaling limits of additive functionals of interacting particle
systems, Comm. Pure Appl. Math., 66, 649–677.

[2] C. Kipnis (1987). Fluctuations des temps d’occupation d’un site dans l’exclution simple
symétrique, Ann Inst. Henri Poincaré Probab. ét Statis., 23, 21–35.
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The Average Value-at-Risk Criterion for Finite Horizon
Semi-Markov Decision Processes
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Abstract: In this talk, we introduce the average value-at-risk (AVaR) criterion for finite horizon
semi-Markov decision processes (SMDPs). Via an alternative representation of AVaR, we reduce
the problem of minimizing the AVaR of the finite horizon cost to two sub-problems: one is to
minimize the expected-positive-deviation of the finite horizon costs from some level over policies,
which itself is a new and interesting problem in the finite horizon SMDP setting; the second is
an ordinary problem of minimizing a function of a single variable. For the first sub-problem,
we will show that the value function is a minimum solution to the optimality equation (OE),
and an optimal policy exists under suitable conditions. Furthermore, we will show that the
value function is the unique solution to the OE under additional conditions. Based on the
solution of the first sub-problem, the existence and computation of an AVaR optimal policy
are established by solving the second sub-problem. To facilitate practical implementation of our
results, we derive a value iteration algorithm and a policy improvement algorithm for computing
an AVaR optimal policy. We perform complexity analysis of the value iteration algorithm, and
discuss Monte Carlo simulation as a method of minimizing AVaR for a finite horizon SMDP. To
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demonstrate our results, two examples about a maintenance system and a cash-flow system are
provided.
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Regularity and Strict Positivity of Densities for Stochastic
Fractional Heat Equation

Le Chen University of Kansas, USA
Yaozhong HU University of Kansas, USA, E-mail: yhu@ku.edu
David Nualart University of Kansas, USA

Abstract: In this paper, by using Malliavin calculus, we prove that the solution to a semilinear
stochastic (fractional) heat equation with measure-valued initial data has a smooth joint density
at multiple points. This is achieved by proving that the solutions to a related stochastic partial
different equation have negative moments of all orders. We also prove that the density is strictly
positive in the interior of the support of the law, where we allow both measure-valued initial data
and unbounded diffusion coefficient. One aim of this study is to cover the parabolic Anderson
model.
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Abstract: Consider a branching random walk on the real line and denote by Mn its minimal
position in the n-th generation. It is known that in the boundary case,Mn− 3

2 log n is tight (see
Addario-Berry and Reed (2009), Bramson and Zeitouni (2009), Aı̈dékon (2013)). We study here
the almost sure limits ofMn and present here two laws of the iterated logarithm to describe the
upper and lower limits, in particular this gives a positive answer to a question in Aı̈dékon and
Shi (2014). We also study the problem of moderate deviations of Mn which is closely related
to the small deviations of a class of Mandelbrot’s cascades.

Hunt’s Hypothesis (H) and Getoor’s Conjuecture

Ze-Chun HU Sichuan University, China, E-mail: zchu@scu.edu.cn
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Abstract: This talk discusses Hunts hypothesis (H) for Lévy processes and contains five parts.
Firstly, I will talk about the background on Hunt’s hypothesis (H). Secondly, I will recall the
meaning of Hunts hypothesis (H) and its importance. Thirdly, I will introduce Getoors conjec-
ture and the existing results. Fourthly, I will present our results. Finally, I will mention some
problems. The talk is based on joints works with Wei Sun and Jing Zhang.
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On the Nash Equilibrium of an Evolving Random Network

Dong HAN School of Mathematical Sciences, Shanghai Jiao Tong University, China,
E-mail: donghan@sjtu.edu.cn

Abstract: It is known that somebody’s behavior (decision) in a social network may be influenced
by that of his (or her) friends. In this talk, we will discuss on two game models on evolving
random network, which can be defined respectively by two different utility functions. Some
sufficient conditions for the existence of Nash equilibrium (NE) in the two network game models
are obtained by analyzing the different effort relation between a player and his (or her) neighbors.

On Some Mixing Times for Non-reversible Finite Markov
Chains

Lu-Jing HUANG School of Mathematical Sciences, Beijing Normal University, China,
E-mail: lujing@yeah.net

Yong-Hua Mao School of Mathematical Sciences, Beijing Normal University, China

Abstract: By adding a vorticity matrix to the reversible transition probability matrix, we show
that the commute time and average hitting time are smaller than that of the original reversible
one. In particular, we give an affirmative answer to a conjecture of Aldous and Fill. Further
quantitive properties are also studied for the non-reversible finite Markov chains.

Moderate Deviations for the Grenander Estimator near the
Boundaries of the Support

Fuqing Gao Wuhan University, China
Hui JIANG Nanjing University of Aeronautics and Astronautics, China,

E-mail: huijiang@nuaa.edu.cn

Key words: Empirical process, Grenander estimator, large deviations, moderate deviations,
strong approximation

Mathematical Subject Classification: 60H10, 62G20, 62F12

Abstract: We investigate the asymptotic behavior of the nonparametric maximum likelihood
estimator f̂n for a decreasing density f near the boundaries of the support of f . Using strong
approximate and small ball estimates, a moderate deviation with explicit rate function for f̂n is
established.
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Determinants of Correlation Matrices with Applications

Tiefeng JIANG School of Statistics, University of Minnesota, USA,
E-mail: jiang040@umn.edu

Abstract: Let Mn be the sample correlation matrix associated with a random sample from
a p-dimensional normal distribution with correlation matrix Rn. Assume the sample size is n.
The sample correlation matrix is a popular object in statistics and has many connections with
mathematical and physical problems. We show that the logarithm of Mn satisfies the central
limit theorem if the smallest eigenvalue of Rn is larger than 1/2 and that n and p are comparable.
The result is applied to a problem in high-dimensional statistics. In addition, some new tools
will be introduced.

Classical and Noncommutative Martingale Inequalities

Yong JIAO Central South University, China, E-mail: jiaoyong@csu.edu.cn

Key words: Martingales, Burkholder-Gundy-Davis inequalities, Carleson measures,
noncommutative martingales

Abstract: In this talk, we discuss some classical martingale inequalities and the corresponding
noncommutative martingale inequalities. In particular, we present some new advances on the
Burkholder-Gundy inequalities in noncommutative symmetric operator spaces.
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Level Statistics of Eigenvalues for 1D Random Schrödinger
Operators
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Abstract: We consider the limit distributions of level statistics for eigenvalues of 1D Schrödinger
operators with random decaying potentials restricted on finite intervals when the intervals ex-
pand to the whole space. The results change according as the decaying order of the potentials
change.
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Decay Property of Stopped Markovian Bulk-Arriving Queues
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Abstract: This talk concentrates on investigating decay properties of Markovian bulk-arriving
queues with c-servers which stop immediately after hitting the state zero. The exact value of
the decay parameter λC for the case B′c(1) > 0 is firstly given. Then by using the generating
functions of the corresponding q-matrix, a test function Fλ(s) is constructed. The exact value of
the decay parameter λC for the case B′c(1) ≤ 0 is then obtained according to the sign of Fλ̄(s̄).
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On the Stochastic Approach to the Navier-Stokes Equation

Xiang-Dong LI Institute of Applied Mathematics, Academy of Mathematics and
Systems Sciences, Chinese Academy of Sciences, China, E-mail: xdli@amt.ac.cn

Abstract: In 1966, V. I. Arnold proved that the incompressible Euler equation is the geodesic
equation on the group of volume preserving diffeomorphisms. In this talk I will first review
some known results on the stochastic characterization of the incompressible Navier-Stokes equa-
tion. Then I will present a new stochastic approach to derive the incompressible Navier-Stokes
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equation via the stochastic dynamic program principle over the group of volume preserving
diffeomorphisms. Joint work with Songzi Li and Guoping Liu.

Cramé’s Large Deviation Expansion for a Supercritical
Branching Process in a Random Environment
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Eric Miqueu Université de Bretagne -Sud, France
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Abstract: Let (Zn) be a supercritical branching process in an independent and identically
distributed random environment. We show Cramér’s large deviation expansion for (logZn).
In the proof we establish a Berry-Esseen theorem on the rate of convergence in the central
limit theorem for (logZn), improve an earlier result about the harmonic moments of the limit
variable of the naturally normalized population size, and use in an adapted way Cramér’s change
of probability for the associated random walk. (The talk is based on the reference below.)
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Singular Perturbation Analysis for Countable Markov Chains
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Abstract: In this talk, I will present our recent results on singular perturbation analysis for
discrete-time or continuous-time Markov chains. We extend the drift condition method, well
known for regular perturbation, to develop a new framework for singular perturbation analysis.
Our results extend and improve the corresponding ones in Altman etal (2004) for singularly
perturbed Markov chains by allowing a general perturbation form, less restrictive conditions,
and more computable bounds. Our analysis covers the regular perturbation analysis, and hence
unifies singular and regular perturbation analysis. Furthermore, our results are illustrated by
two two-dimensional Markov chains, including a discrete-time queue and a continuous-time level
dependent quasi-birth-death process.
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Lyapunov Exponents and Chaotic Behavior for Random
Dynamical Systems in a Banach Space

Kening LU Brigham Young University, USA, E-mail: klu@math.byu.edu

Abstract: We study the Lyapunov exponents and their associated invariant subspaces for
infinite dimensional random dynamical systems in a Banach space, which are generated by, for
example, stochastic or random partial differential equations. We prove a multiplicative ergodic
theorem. We also prove that for an infinite dimensional random dynamical system with a random
invariant set such as random attractor, if its topological entropy is positive, then the dynamics
on the random invariant set is chaotic. This is based on joint works with Wen Huang and Zeng
Lian.
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The Itô SDEs and Fokker–Planck Equations with Osgood and
Sobolev Coefficients
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Abstract: We study the degenerated Itô SDE whose drift coefficient only fulfills a mixed
Osgood and Sobolev regularity. Under suitable assumptions on the gradient of the diffusion
coefficient and on the divergence of the drift coefficient, we prove the existence and uniqueness
of generalized stochastic flows associated to such equations. We also prove the uniqueness of
solutions to the corresponding Fokker–Planck equation by using the probabilistic method.
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Some Limit Theorems for CBI Processes

Clément Foucart Université Paris 13, France
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Linglong Yuan Johannes-Gutenberg-Universität Mainz, Germany

Abstract: We prove some limit theorems for continuous time and state branching processes with
immigration (CBI processes). The results in law are obtained by studying the Laplace exponent
and the almost-sure ones by exploiting a martingale. As an application, we also consider the
coupling for the CB processes.

On the Asymptotic Stability and Numerical Analysis of
Solutions to Stochastic Differential Equations with Jumps

Wei MAO Jiangsu Second Normal University, China, E-mail: mwzy365@126.com
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Abstract: This talk concerns the stability and numerical analysis of solution to highly nonlinear
stochastic differential equations with jumps (SDEwJs). The classical linear growth condition
is replaced by polynomial growth conditions, under which there exists a unique global solution
and the solution is asymptotic stable in the pth moment and almost sure exponential stable.
In addition, we study the Euler-Maruyama approximate solutions of SDEwJs. By applying
some useful lemmas, we establish a new criterion on the convergence in probability of the Euler-
Maruyama approximate solutions.

Williams Decomposotion for Superprocesses

Yan-Xia REN Peking University, China, E-mail: yxren@math.pku.edu.cn
Renming Song University of Illinois, USA
Rui Zhang Capital Normal University, China
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Abstract: We are interested in a spinal decomposition for superprocesses involving the ancestral
lineage of the last individual alive (Williams’ decomposition).

For superprocesses with homogeneous branching mechanism, the spatial motion is indepen-
dent of the genealogical structure. As a consequence, the law of the ancestral lineage of the last
individual alive does not distinguish from the original motion. Therefore, in this setting, the
description of X(h0) may be deduced from Abraham and Delmas (2009) where no spatial motion
is taken into account.

For nonhomogeneous branching mechanisms on the contrary, the law of the ancestral lineage
of the last individual alive should depend on the distance to the extinction time h0. Using
the Brownian snake, Delmas and Hénard (2013) provide a description of the genealogy for
superprocesses with the following non-homogeneous branching mechanism

ψ(x, z) = a(x)z + β(x)z2

with the functions a and β satisfying some conditions.

We would like to find conditions such that the Williams’ decomposition works for superpro-
cesses with general non-homogeneous branching mechanisms. The conditions should be easy to
check and satisfied by a lot of superpossess. The talk is based on a working paper with Renming
Song and Rui Zhang.
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Stabilization of Regime-Switching Processes by Feedback
Control Based on Discrete Time Observations

Jinghai SHAO School of Mathematical Sciences, Beijing Normal University, China,
E-mail: shaojh@bnu.edu.cn



Abstract 23

Abstract: This work aims to extend X.R. Mao’s work (Automatica 2013) on stabilization of
hybrid stochastic differential equations by discrete-time feedback control. In X.R. Mao’s work,
the feedback control depends on discrete-time observation of the state process but on continuous
time observation of the switching process. While, in this work, we study the feedback control
depending on discrete-time observations of the state process and the switching process. Our
criteria depend explicitly on the regular conditions of the coefficients of stochastic differential
equations and on the stationary distribution of the switching process. The sharpness of our
criteria is shown through studying the stability of linear systems, which also shows explicitly
that the stability of hybrid stochastic differential equations depends essentially on the long time
behavior of the switching process.

Dissipation in Parabolic SPDEs

Shang-Yuan SHIU National Central University, Taiwan, E-mail: shiu@math.ncu.edu.tw
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Abstract: We consider the following stochastic heat equation (SHE)

∂

∂t
u(t, x) = 4u(t, x) + λσ(u(t, x))

∂2

∂t∂x
ξ(t, x), x ∈ [−1, 1]

with the periodic boundary condition and the initial data is a constant. Kim and Khoshnevisan
[2] and Foondun and Joseph [1] proved that the second moment of the solution u(t, x) grows
like exp(λ4t) as λ goes to ∞. However, we [3] can show that supx∈[0,1] u(t, x) converges to 0 in

probability as λ goes to ∞. When λ is fixed, we show that supx∈[−1,1] u(t, x) converges to 0 a.s.
when t goes to ∞. All together really says the solution is really intermittent. This is joint work
with Kunwoo Kim, Davar Khoshnevisan and Carl Meuller.
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Abstract: Let J be the Lévy density of a symmetric Lévy process in Rd with its Lévy exponent
satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local
operator

Lκf(x) := lim
ε↓0

∫
{z∈Rd:|z|>ε}

(f(x+ z)− f(z))κ(x, z)J(z) dz ,

where κ(x, z) is a Borel measurable function on Rd × Rd satisfying 0 < κ0 ≤ κ(x, z) ≤ κ1,
κ(x, z) = κ(x,−z) and |κ(x, z)−κ(y, z)| ≤ κ2|x−y|β for some β ∈ (0, 1). We construct the heat
kernel pκ(t, x, y) of Lκ, establish its upper bound as well as its fractional derivative and gradient
estimates. Under an additional weak upper scaling condition at infinity, we also establish a
lower bound for the heat kernel pκ.

Gaussian Estimates of the Density of Systems of Non-Linear
Stochastic Heat Equations

Xiaobin SUN School of Mathematics and Statistics, Jiangsu Normal University, China,
E-mail: xbsun@jsnu.edu.cn

Abstract: In this talk, we consider a system of non-linear stochastic heat equations on Rd

driven by a Gaussian noise which is white in time and has a homogeneous spatial covariance.
This system has been proved that the solution has smooth joint density under some suitable
regularity and non degeneracy conditions by E. Nualart (2013). The purpose of this paper is to
study the lower and upper bounds of the density. The main tool is Malliavin calculus. This is
a joint work with Yinghui Shi.

Pointwise Characterizations of Curvature and Second
Fundamental Form on Riemannian Manifolds
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Abstract: Let M be a complete Riemannian manifold possibly with a boundary M . For
any C1-vector field Z, by using gradient/functional inequalities of the (reflecting) diffusion
process generated by L := ∆+Z, pointwise characterizations are presented for the Bakry-Emery
curvature of L and the second fundamental form of M if exists. These extend and strengthen
the recent results derived by A. Naber for the uniform norm ‖RicZ‖∞ on manifolds without
boundary. A key point of the present study is to apply the asymptotic formulas for these two
tensors found by the first named author, such that the proofs are significantly simplified. This
is a joint work with Professor Fengyu Wang.
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Abstract: In this talk we will review recent results for stochastic scalar conservation laws on
bounded domains. We start with the well-posedness theory for stochastic scalar conservation
laws with boundary conditions. We then discuss various type of solutions to the boundary value
problems. Finally, we will give a positive answer to an open problem posed by Bauzet, Vallet
and Wittbold in “The Dirichlet problem for a conservation law with a multiplicative stochastic
perturbation”, J. Funct. Anal. 266 (2014) 2503-2545. The talk is based on joint work with
Guangying Lv (Henan University, China).

References

[1] G. Lv, J.-L. Wu (2016). Renormalized entropy solutions of stochastic s-
calar conservation laws with boundary conditions, Journal of Functional Analysis,
http://dx.doi.org/10.1016/j.jfa.2016.06.012, in press.

[2] G. Lv, J.-L. Wu (2016). On a first order stochastic scalar conservation law with non-
homogeneous Dirichlet boundary condition, submitted.

[3] G. Lv, J.-L. Wu (2016). Uniqueness of stochastic entropy solutions for stochastic scalar
conservation law with non-homogeneous Dirichlet boundary conditions, submitted.

[4] G. Lv, J.-L. Wu (2016). On heterogeneous stochastic scalar conservation laws with non-
homogeneous Dirichlet boundary conditions, submitted.

On the Waiting Time for a Non-Markovian M/M/1 Queueing
System

Xian-Yuan WU Capital Normal University, China, E-mail: wuxy@cnu.edu.cn

Mathematical Subject Classification: Primary 60K25, 60F05; Secondary 93A30

Abstract: This paper focuses on the problem of modeling the correspondence pattern for
ordinary people. We consider a M/M/1 queueing system with the following service discipline:
for some constant T , a customer leaves the queue when his waiting time exceeds T , and the
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remains are served on the last in first out principle. Let Wn be the waiting time of the n-th
served customer. It is proved that Wn converges in distribution as n → ∞, furthermore, the
explicit expression of the limit distribution is obtained.
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Abstract: This work considers the martingale problem for a class of weakly coupled Lévy type
operators. It is shown that under some mild conditions, the martingale problem is well-posed
and therefore uniquely determines a strong Markov process (X,Λ). The process (X,Λ), called
a regime-switching jump diffusion with Lévy type jumps, is further shown to posses Feller and
strong Feller properties via the coupling method.
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Abstract: Let ηi, i ≥ 1, be a sequence of independent and identically distributed random
variables with finite third moment, and let ∆n be the total variation distance between the
distribution of Sn :=

∑n
i=1 ηi and the normal distribution with the same mean and variance.

We establish the dichotomy that either ∆n = 1 for all n or ∆n = O
(
n−1/2

)
.

Singular Stochastic Differential Equations Driven by Markov
Processes

Longjie XIE School of Mathematics and Statistics, Jiangsu Normal University, China,
E-mail: xlj.98@whu.edu.cn
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Abstract: We prove the pathwise uniqueness for strong solutions of singular stochastic dif-
ferential equation driven by a family of Markov process, whose generator is a non-local and
non-symmetric Lévy type operator of the form

Lϕ(x) =

∫
Rd

[
ϕ(x+ z)−ϕ(x)− 1{|z|≤1}z · ∇ϕ(x)

]
σ(x, z)ν(d z) + b(x) · ∇ϕ(x), ∀ϕ ∈ C∞0 (Rd).

Optimal Control under Partial Information: A Brief
Introduction

Jie XIONG University of Macau, China, E-mail: jiexiong@umac.mo
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Mathematical Subject Classification: 93E11

Abstract: In this talk, we will first present a couple of examples from mathematical finance
which call for the combined study of stochastic filtering and control. We will survey some
methods for the decoupling of the two problems and the solutions to each of them.
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Quadratic Covariations for the Solution to a Stochastic Heat
Equation
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Abstract: Let u(t, x) be the solution to a stochastic heat equation

∂

∂t
u = α

∂2

∂x2
u+

∂2

∂t∂x
X(t, x), t ≥ 0, x ∈ R

with initial condition u(0, x) ≡ 0, where X is a time-space white noise. In this paper, we study
the generalized quadratic variations of the solution u, and by using the generalized quadratic
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variations we give two asymptotic unbiased estimators of α and introduce their asymptotic
normality.

Maximum Likelihood Estimator for Discretely Observed CIR
Model with Small α-Stable Noises

Xu YANG School of Mathematics and Information Science, Beifang University of
Nationalities, China, E-mail: xuyang@mail.bnu.edu.cn

Abstract: The maximum likelihood estimation of the drift and volatility coefficient parameters
in the CIR type model driven by α-stable noises is studied when the dispersion parameter ε→ 0
and the discrete observations frequency n→∞ simultaneously. The joint density of the sample
is approximated by using the stable distributions.

Stochastic SIR Models

G. YIN Wayne State University, USA, E-mail: gyin@math.wayen.edu

Key words: SIR model, extinction, permanence, ergodicity

Mathematical Subject Classification: 34C12, 60H10, 92D25

Abstract: We present a joint work with Dieu, Nguyen, and Du on a stochastic SIR epidemic
model represented by a system of stochastic differential equations with a degenerate diffusion.
We focus on asymptotic behavior of the system, provide sufficient conditions that are very close
to necessary for the permanence, and develop ergodicity of the underlying system. It is proved
that the transition probabilities converge in total variation norm to the invariant measure. Rates
of convergence are also ascertained.
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Equations
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Abstract: In this talk, I will present some properties of neutral stochastic functional differential
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equations (NSFDEs), which include the existence and uniqueness, the EM-numerical solution,
convergence rate of numerical solutions, and large deviation of NSFDEs.
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Abstract: Let us begin with the talk by recalling the key three questions of quasi-stationary
distributions (QSDs); and then we shall talk about many new progresses on above the key three
questions of QSDs; and also talk about some open problems on QSDs. Finally we shall discuss
the applications of QSDs.
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The Seneta-Heyde Scaling for Stable Branching Random Walk
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Abstract: We consider a discrete-time branching random walk in the bound case, where the
associated one-dimensional random walk is stable. We prove the derivative martingale Dn

converges to a non trivial limit D∞ under certain moment conditions. Moreover, we study the

additive martingale Wn and prove that n
1
αWn converges in probability, but not almost surely,

to cD∞. This is a joint work with Hui He and Jingning Liu.
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Abstract: In this work we study the following stochastic Hamiltonian system in R2d (a second
order stochastic differential equation),

dẊt = b(Xt, Ẋt)dt+ σ(Xt, Ẋt)dWt, (X0, Ẋ0) = (x, v) ∈ R2d,

where b(x, v) : R2d → Rd and σ(x, v) : R2d → Rd ⊗ Rd are two Borel measurable functions.

We show that if σ is bounded and uniformly non-degenerate, and b ∈ H
2/3,0
p and ∇σ ∈ Lp

for some p > 2(2d + 1), where Hα,β
p is the Bessel potential space with differentiability indices

α in x and β in v, then the above stochastic equation admits a unique strong solution so that
(x, v) 7→ Zt(x, v) := (Xt, Ẋt)(x, v) forms a stochastic homeomorphism flow, and (x, v) 7→ Zt(x, v)

is weakly differentiable with ess.supx,v E
(

supt∈[0,T ] |∇Zt(x, v)|q
)
< ∞ for all q ≥ 1 and T ≥

0. Moreover, we also show the uniqueness of probability measure-valued solutions for kinetic
Fokker-Planck equations with rough coefficients by showing the well-posedness of the associated
martingale problem and using the superposition principle established by Figalli [3] and Trevisan
[5].
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equation with Hölder drift and degenerate noise, to appear in AIHP.

[2] Z.Q. Chen and X. Zhang. Lp-maximal hypoelliptic regularity of nonlocal kinetic Fokker-
Planck operators, in preparation.

[3] A. Figalli (2008). Existence and uniqueness of martingale solutions for SDEs with rough
or degenerate coefficients, J. Funct. Anal., 254, no. 1, 109–153.
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A Continuous State Branching Process with Population
Dependent Branching Rates
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Abstract: Consider the following stochastic differential equation

Xt = σ

∫ t

0

√
γ1(Xs−)dBs +

∫ t

0

∫ ∞
0

∫ γ2(Xs−)

0
xÑ(ds, dx, du),

where Ñ(ds, dz, du) is a compensated Poisson random measure on [0,∞)× (0,∞)× [0,∞) with
compensator dsπ(dz)du such that

∫∞
0 z ∧ z2π(dz) < ∞ and B is an independent Brownian

motion. Such a process X can be treated as a critical continues state branching process with
branching rates depending on the population size. We find conditions on functions γ1 and γ2

under which the process X hits 0 with probability one or stays positive with probability one,
respectively. It generalizes a result in [1].
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Abstract: This work focuses on a class of regime-switching jump-diffusion processes, in which
the switching component has infinitely and countably many states or regimes. The existence
and uniqueness of the underlying process are obtained by an interlacing procedure. Then we
use the coupling method and an appropriate Radon-Nikodym derivative to study the Feller and
strong Feller properties of such processes.



Participants 33

Participants: (in order of the family name)
Yongqiang Bai:

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou.
E-mail: baibm@jsnu.edu.cn

Jianhai Bao:
School of Mathematics and StatisticsCentral, South University, Changsha.
E-mail: jianhaibao13@gmail.com

Hangda Bi:
Beijing Normal University, Beijing.

Ning Chao:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou.
E-mail: 641453198@qq.com

Bin Chen:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou.
E-mail: bchen@jsnu.edu.cn

Dayue Chen:
Peking University, Beijing.
E-mail: dayue@pku.edu.cn

Guan-Yu Chen:
Department of Applied Mathematics, National Chiao Tung University, Hsinchu.
E-mail: gychen@math.nctu.edu.tw

Jinchun Chen:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou.
E-mail: 895865747@qq.com

Lei Chen:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou.
E-mail: chenlei@jsnu.edu.cn

Lung-Chi Chen:
Department of Mathematical Sciences, National Chengchi University, Taibei.
E-mail: lcchen@nccu.edu.tw

Man Chen:
Capital Normal University, Beijing.

Mu-Fa Chen:
School of Mathematical Sciences, Beijing Normal University, Beijing.
E-mail: mfchen@bnu.edu.cn

Peng Chen:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou.
E-mail: 973732852@qq.com

Shuaiyu Chen:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou.
E-mail: 894600616@qq.com



34 Participants

Ting-Li Chen:
Institute of Statistical Science, Academia Sinica, Taibei.
E-mail: tlchen@stat.sinica.edu.tw

Xia Chen:
University of Tennessee, USA/Jilin University, Changchun.

E-mail: xchen@math.utk.edu

Xin Chen:
Department of Mathematics, Shanghai Jiao Tong University, Shanghai.
E-mail: chenxin217@sjtu.edu.cn

Xinxin Chen:
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