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Applications

JSQ with a large number of queues (nodes):

1. ATM switches where per flow queueing is supported
(number of queues can be easily in hundreds)

2. Internet server clusters (having a large number of
processors)

3. Local computer networks (connected by several 10’s
or even more machines)

4. Distributed/parallel networks (each of the nodes can
have hundreds of links)

See reference list for more information.
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Parallel queues without interaction
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Parallel queues with interaction

A network with mean field interaction: JSQ with large N.
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Balancing techniques

1. Changing the arrival and/or service rates

2. Joining different queues

• JSQ models
• Extra arrival sources may choose different

queues to join
• Dobrushin’s mean-field model

3. Jockeying

• Periodically redistributing customers in all
queues

• r difference jockeying
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Our Focus

• Focus: Stationary behaviour of a “typical queue” in JSQ with
large N;

• Tools: Using the stationary behavious of a “typical queue” in
JSQ with N =∞;

• Wanted:

(1) Limiting process (mean field limit) as N →∞
(2) Stationary behaviour of the mean field limit
(3) Justification of:

lim
t

lim
N

(JSQ with N) = lim
N

lim
t

(JSQ with N)



Outline Motivations Focus Main Result Convergence Theorem ( LLN ) Stationary Distribution Justification Conclutions

Stationary behaviour of the limiting “typical queue”
I

Theorem

(1) For JSQ mean field interaction network (=JSQ(∞)), if
λ0 + λ1 < µ, then the unique stationary distribution of the “typical
queue” of the interaction network is

πJSQ0 = 1− λ0+λ1
µ ,

πJSQk = λ0+λ1
µ

(
1− λ0

µ

)(
λ0
µ

)k−1
, k ≥ 1.
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Stationary behaviour of the limiting “typical queue”
II

Theorem

(2) If λ1 = 0 then

πJSQk =

(
1− λ0

µ

)(
λ0
µ

)k

, k ≥ 0.

(3) If λ0 = 0, then

πJSQ0 = 1− λ1
µ ,

πJSQ1 = λ1
µ ,

πJSQk = 0 for all k ≥ 2.
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Notation I

R: the set of all real numbers;
R+: the set of all nonnegative numbers;
E = {0, 1, 2, · · · }: equipped with discrete topology;
Cb(E ): the set of bounded continuous functions in E ;
DT (E ) (D∞(E )): the set of functions from [0,T ] ([0,∞)) to E ,
which are right-continuous with a left limit;
X (t, ω) = Xt(ω) = ω(t) = X (t): process with w ∈ D∞(E );
Ft : σ{X (s), 0 ≤ s ≤ t}; F : σ{X (s), s ≥ 0};
P(D∞(E ),F): the set of the probability measures on (D∞(E ),F)
with the usual weak topology;
〈ν, f 〉 =

∫
f (x)ν(dx);

P(E ) (Pp(E )): the set of probability measures on E (with a finite
pth moment), equipped with the Vasershtein metric (Lp-analogue).
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Interaction function I

Interaction is caused by JSQ. For the original model, the arrival
rate to a shortest queue is described by

q
(N)
x ,y = λ0 +

Nλ11min{x1,··· ,xN}(xk)

#{j : xj = min{x1, · · · , xN}, j = 1, · · · ,N}

= λ0 +
λ11min{x1,··· ,xN}(xk)

proportion of SQs in N
,

where y = (x1, · · · , xk−1, xk + 1, xk+1, · · · , xN), #A denotes the
cardinality of the set A, and 1x(·) is the indicator function on a
single point x .
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Interaction function II

Define an interaction function h : E × P(E )→ R+ as the
following (extra arrival rate to a SQ):

h(x , ν) =
λ1

ν({ms(ν)})
δms(ν)(x).

where ms(ν) = inf{x ≥ 0, ν({x}) > 0} is the minimum point of
the support of the probability measure ν.
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Master equation

For the above interaction function, define operator:

Ωh,u(t)f (i) = [λ0 + h(i , u(t))(f (i + 1)− f (i)] + µ[f (i − 1)− f (i)]

The nonlinear master equation has the following form

d〈u(t), f 〉
dt

= 〈u(t),Ωh,u(t)f 〉, f ∈ Cb(E ),

where u(·) is a measure-valued function from [0,+∞) to P(E ).
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Definition of q-solution

Definition

Let u ∈ P(E ), P ∈ P(D∞(E ),F) is called a solution of the master
equation with initial value u if its marginal distribution
ut(·) = P ◦ X−1t (·) satisfies the master equation and u0 = u.
Moreover, P is called a q−solution if, in addition, it is Markovian
in the sense of McKean(Funaki(1984)), i.e. for any j ∈ E ,

P(Xt+s = j |Ft) = p(t,Xt , t + s, j), P − a.s.

where transition function p(s, i , t, j) satisfies that

d

ds
p(t, i , t + s, j) =

∑
k∈E

p(t, i , t + s, k)Ωh,ut+s I{j}(k), t ≥ 0.
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Empirical probability measure

Let Xj(t) (notation abused here) be the queue length of queue j at
time t, define

UN(t) :=
1

N

N∑
j=1

δXj (t) (1)

which is the empirical distribution of queue length of the N queues
at time t.
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Convergence(LLN)

Theorem

Let UN(t) satisfies

sup
N

E (N)〈UN(0)(dx), x〉 <∞,

UN(0)
weakly−→ U(0), 〈U(0)(dx), x2〉 <∞.

Then the sequence {UN}∞N=1 converges in the sense of weakly
convergence of measure-valued stochastic processes to a q-solution
of the nonlinear master equation. Moreover, if λ0 + λ1 < µ and
U(0)({0}) > 0, then the solution of the master equation is unique.
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Stationary distribution

Definition

π ∈ Pp(E ) is called a stationary distribution of the q-solution of
the master equation if P ◦ X−10 = π implies that for all t ≥ 0,
P ◦ X−1t = π.
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Q-matrix of limiting ‘typical queue”

Theorem

(1) Under the conditions of the convergence theorem, let t →∞,
then the Q-matrix of a “typical queue” of the interaction queue is

QJSQ =


−(λ0 + λ1

π0
) λ0 + λ1

π0
0 · · ·

µ −(λ0 + µ) λ0 · · ·
0 µ −(λ0 + µ) · · ·
...

...
...

. . .


where π = (π0, π1, · · · ) is the unique stationary distribution.
(2) The unique stationary distribution is πJSQ0 = 1− λ0+λ1

µ ,

πJSQk =
λ0 + λ1

µ

(
1− λ0

µ

)(
λ0
µ

)k−1
, k ≥ 1
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Join infinity queues randomly (J∞Q) I

Theorem

(1) If the extra customer can join all queues randomly, then the
corresponding Q-matrix will be that

QJ∞Q =


−(λ0 + λ1) λ0 + λ1 0 · · ·

µ −(λ0 + λ1 + µ) λ0 + λ1 · · ·
0 µ −(λ0 + λ1 + µ) · · ·
...

...
...

. . .


which is equivalent to that of an M/M/1 queue with arrival and
service rate are λ0 + λ1 and µ respectively.
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Join infinity queues randomly (J∞Q) II

Theorem

(2) If we let λ0 + λ1 < µ, then this queue will be stable and the
stationary distribution satisfies that

πJ∞Q
k =

(
1− λ0 + λ1

µ

)(
λ0 + λ1

µ

)k

, k ≥ 0 (2)
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Comparison of stationary distributions between JSQ
and J∞Q I

(1) πJSQ0 = πJ∞Q
0 , which means that since the average arrival rate

and service rate are the same, the idle probability of the
servers are the same;

(2) The tail of πJ∞Q
. is something like const · (λ0+λ1µ )k , while that

of πJSQ. is something like const · (λ0µ )k ;

(3) The average queue length of JSQ is shorter than that of J∞Q:∑∞
k=0 kπ

JSQ
k = λ0+λ1

µ−λ0 < λ0+λ1
µ−(λ0+λ1) =

∑∞
k=0 kπ

J∞Q
k ;

(4) If λ1 = 0, then πJSQk = πJ∞Q
k , k ≥ 0. Because in this case,

they all are equivalent to M(λ0)/M(µ)/1 queue.
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Comparison of stationary distributions between JSQ
and J∞Q II

(5) As we know that the tail of πJSQ. is depending on λ0, if we let
λ0 = 0, then we have: πJSQ0 = 1− λ1

µ , πJSQ1 = λ1
µ and

πJSQk = 0 for all k ≥ 2.

(6) λ1 ↑ (µ− λ0) such that λ0 + λ1 ↑ µ, then the limit of the
stationary distribution of the JSQ is that πJSQ0 ↓ 0,
πk ↑ (1− λ0)(λ0µ )k−1, k ≥ 1, while the stationary distribution
of the J∞Q does not have a limit distribuyion.
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Join the m-th shortest queue: 1 ≤ m ≤ s I

If the extra customer can randomly join the queue whose length is

between the shortest and s-shortest, then convergence result

similar to Theorem 2 can also be established, in this case, as the

time t tends to infinity, then the Q-matrix will be

qJ1∼sQ
ij =



λ0 +
λ1

π1
0+···+π1

s−1
, j = i + 1, i = 0, · · · , s − 1

λ0, j = i + 1, i > s − 1
−λ0 − µ− λ1

π1
0+···+π1

s−1
, j = i , i = 0, · · · , s − 1

−λ0 − µ, j = i , i > s − 1
µ, j = i − 1, i ≥ 1
0, others
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Join the m-th shortest queue: 1 ≤ m ≤ s II

(1) For the case of s = 2, then the stationary distribution of the
limiting typical queue is that

π0 = 1−
λ0 + λ1

µ

π1 =
1

2

√(1− λ0

µ

)2 (
1−

λ0 + λ1

µ

)2

+ 4
λ0 + λ1

µ

(
1−

λ0

µ

)(
1−

λ0 + λ1

µ

)

−
(
1−

λ0

µ

)(
1−

λ0 + λ1

µ

))

πk =
1

2

(
1−

λ0

µ

)((
1−

λ0

µ

)(
1−

λ0 + λ1

µ

)
+ 2

λ0 + λ1

µ

−

√(
1−

λ0

µ

)2 (
1−

λ0 + λ1

µ

)2

+ 4
λ0 + λ1

µ

(
1−

λ0

µ

)(
1−

λ0 + λ1

µ

)(λ0

µ

)k−2

, k ≥ 2

Moreover, the average arrival rate is λ0 + λ1.
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Join the m-th shortest queue: 1 ≤ m ≤ s III

(2) If λ1 = 0, then

πk =

(
1− λ0

µ

)(
λ0

µ

)k

, k ≥ 0.

(3) If λ0 = 0, then

π0 = 1− λ1
µ

π1 = 1
2

(√(
1− λ1

µ

)2
+ 4λ1µ

(
1− λ1

µ

)
−
(

1− λ1
µ

))

π2 = 1
2

(
1 + λ1

µ −
√(

1− λ1
µ

)2
+ 4λ1µ

(
1− λ1

µ

))
πk = 0, k ≥ 3.
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Justification I

The stationary distribution of the limiting typical queue is the
behaviour of limt limN JSQ(N). However, our original interest is
limt JSQ(N) when N is large, or we would like to approximate π(N)

by the behaviour of limN limt JSQ(N). In order to do so, we need to
justify:

lim
N

lim
t

JSQ(N) = lim
t

lim
N

JSQ(N)

in some sense.
Let λ+ λs < µ. For N ≥ 1, denote by EN(·) the mathematical
expectation with respect to the stationary distribution π(N).



Outline Motivations Focus Main Result Convergence Theorem ( LLN ) Stationary Distribution Justification Conclutions

Justification II

Theorem

For any integer k ≥ 0,

lim
N→∞

EN〈UN(·), {k}〉 = πk ,

where the measure UN(·) is defined in formula (1) and {πk , k ≥ 0}
is the stationary distribution of the limiting typical queue given by
formula (1).
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Conclutions

• When N is large, the interaction queueing network can be
studied in terms of the limiting “typical” queue

• Load-balancing described as the mean-field interaction in this
talk does improve the system performance

• We expect that this method can be used to study other
balancing mechanisms
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Oseledets, V. I.; Khmelëv, D. V. (2000). Global stability of infinite
systems of nonlinear differential equations, and nonhomogeneous
countable Markov chains. Problemy Peredachi Informatsii 36(1):
60-76; translation in Probl. Inf. Transm., 36(1): 54-70.

Oseledets, V. I.; Khmelev, D. V. (2002). Stochastic transportion
networks and stability of dynamical systems. Theory of Probability
and Its Applications, 46(1): 154-161.

Roberts, G. E.; Kaufman, H. (1966). Table of Laplace transforms.
Saunders W. B. Company, Philadelphia and London



Outline Motivations Focus Main Result Convergence Theorem ( LLN ) Stationary Distribution Justification Conclutions

References VI

Vvedenskaya, N. D.; Doburshin R. L.; Karpelevich, F. I. (1996).
Queueing system with selection of the shortest of two queues: an
asymptotic approach. Problems of Information Transmission, 32(1):
15-27.

Vvedenskaya, N. D.; Suhov, Yu. M. (1997). Dobrushin’s mean-field
approximation for a queue with dynamic routing. Markov Processes
and Related Fields, 3(4): 493-526.

Vvedenskaya, N. D.; Suhov, Yu. M. (2002). Fast Jackson networks
with dynamic routing. Problems of Information Transmission, 38(2):
136-153.



Outline Motivations Focus Main Result Convergence Theorem ( LLN ) Stationary Distribution Justification Conclutions

Thanks You!
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