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Numerical solutions of SDEs

Consider an SDE on (R™, (-,-),|-|)
dX(t) =b(X()dt +o(X(t)dW(t), t>0, Xo=z€R". (1)

Herein, b : R® — R”, 0 : R®* @ R™ — R", and (W(t))i>0 is an m-
dimensional Brownian motion defined on the probability space (2, . #,P).

Discrete time Euler-Maruyama (EM) scheme:

Y ((k+1)8) = Y (k) + b(Y (k6))d + (¥ (k6)) AW (k8), k > 0,
with Yy = Xy = x, where AW (kd) := W((k + 1)0) — W (k0).
Continuous time EM scheme:

V() =Yo+ [ 0TG5+ [ o(V)aws)
where n; 1= [t/d]0.
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Regular Coefficients

b(x) = b(y)| + llo(z) = o(y)lus < K|z —yl, =y cR"

for some K > 0, then

E< sup | X (£) — Y(t)yp) < gP/2,
0<t<T

@ The convergence above is called strong convergence;

@ The convergence rate is 1/2.
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Regular Coefficients

If the coefficients satisfy linear growth condition and
b(x) = b(y)| + llo(z) — o(y)lus < Krlz —yl, |z[V]y| <R
for some K > 0, then

limE( sup |X(t) — Y(t)|p) = 0.
6—0 0<t<T

@ The convergence above is called strong convergence;

@ The convergence rate is not known
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We also have
Theorem

Let Lg) and Lg) be the local growth constants of drift and diffusion, re-

spectively. IfL%) < ajlogR, (Lg))2 < ag log R for some postive constants

a1 and ag, then the order of the convergence is half, that is

E| sup |X(t)-Y@®))?| <62
0<t<T

Nenggul Yuall (Swansea UniversitApproximation of Invariant Measures for path



Convergence rate of EM scheme under various settings

e SDDEs with polynomial growth w.r.t. delay variables (B.-Yuan, 2013);
e SDEs with discontinuous coefficients (Ngo-Taguchi, arXiv:1604.01174v1);

@ SDDEs under local Lipschitz and also under monotonicity condition

(Gydngy-Sabanis, 2013).
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Irregular coefficients (Gyongy, I., PA, 98)

Assume that

b satisfies a one-side Lipschitz condition in a domain D in R™ and o is

Lipschitzian. Then,

sup ’X(t) - Y(t)| < 667, as., 7YE€ (07 1/4)5
t<T

where £ is a finite random variable.
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Irregular coefficients (Yan, L.-Q., AOP, 2002)

Assume that there exist ¢ > 0,0 < a < 1/2, 0 < 1, f2 < 1 such that

|b(t7$) - b(S,y)’ S |.’E - y| + |t - S|ﬁ1’
lo(t, ) — (s, )| S o —yl' /2 + |t — 5%,

Then,
E[X(t) = Yy,| S 67,

~

4afs
1+2a”

where v := 1 Aa A

Tools: Meyer-Tanaka formula & estimates for local time.
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Irregular coefficients (Gyongy & Résonyi, SPA, 2011)

Let b = f 4 g, where g is monotone decreasing and assume further that

there exist o € [0,1/2] and ~y € (0,1) such that
|f(t,l‘) - f(tay)| S |l‘ - y|a |g(t,ZL‘) - g(tay)| 5 |£L‘ - y|77
lo(t, ) = o(t,y)| S o -yl />
Then,
1

Togs 177"
]E( sup |X(t> _ Y(t)|) 5 (1 g25 1)1 2
0<t<T 52 +6%, e (0,1/2].

a =0,

Approach: Yamada-Watanabe approximation approach.
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Irregular coefficients( Ngo & Taguchi, Math. Comp., 2016)

Assume that

o (x—y,b(t,x) —b(t,y)) < o —yl%
((oo™)(t,2)€,€) = |¢I
lo(t,z) — ot y)| < |z —y"**, a €[0,1/2];

[b(t, ) = b(s, )| + |o(t,2) —o(s,2)| S|t — s, > 1/2

b € A. Then,

1
(10g571)1/2 ’
2

52 a€(0,1/2].

a =0,
IE( sup | X (£) — Y (#)
0<t<T

P —
A

Key tools: Yamada-Watanabe approach and heat kernel estimate.
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Irregular coeff. ( Pamen & Taguchi, arXiv1508.07513v1)

Consider an SDE dX (t) = b(t, X (t))dt +dL¢, t >0, Xo=x € R" wherebd

is bounded and

|b(tax) _b(t7y)| /S ‘x_y|ﬁ7 ﬁ € (Ovl)a |b(t7x) —b(57$)‘ 5 |t_8|na ne [1/271]

@ Then, E(SUPogth | X (¢) — Y(t)|”) S 5% whenever L = Wiener process.

@ Moreover,

, p=2,pB>2,

IE( sup |X(t)—Y(t)|p) S jpg

0<t<T , p>21<pB<2orpe|l,2)

whenever L = truncated symmetric a-stable process with o € (1,2) and

a+p>2.
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Long-term behavior

Applying the EM to the SDE

dz(t) = (z(t) — 23(t))dt + 2x(t)dB(t).
gives
Yip1 = Yi(1 40 — Y20 + 26By).

Lemma
Given any initial value Yy # 0 and any § > 0,

IF’( lim |Y;| = oo> > 0.
k—o0

However, we have

1
lim glog|x(t)| <-L

t—o00
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Actually, under some assumptions, we can show that Yk‘S is a homogeneous

Markov process, For any x € R™ and Borel set A in R", define
P(z,A) := P(Y; € A|Y(0) = z) and P*(x, A) := P(Y; € A|Y(0) = z).

(H1) Both f and g are globally Lipschitz continuous, i.e. there

exists a constant L > 0 such that
[f(uw) = fF)PV g(u) = g(0)[* < Llu —]?, Yu,v € R".
(H2) There exists a constant ¢; > 0 such that
19(w)=g(0)P+2(u—v)" (f(u) = f(v)) < ~li]u—v]?, Yu,v € R"

Under assumptions (H1) and (H2), we can show that P;(z,A) —

m9(A) as k — oo and § sufficient small.
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Regime-switching diffusion process

@ A regime-switching diffusion process (RSDP), is a diffusion process in
random environments characterized by a Markov chain.
@ The state vector of a RSDP is a pair (X (), A(t)), where {X (¢)}+>0

satisfies a stochastic differential equation (SDE)

dX(t) = b(X(t),A(t))dt + o (X (t), A(t))dWy, ¢ >0, (2)
with the initial data Xo = 2z € R",Ag = ¢ € S, and {A(¢)}i>0
denotes a continuous-time Markov chain with the state space S :=
{1,2--- /N}, 1 < N < o0, and the transition rules specified by

ijA OA, 7 ',
P(A(t+ 2) = AR = 1) = { 190 T ) g

1+ QiiA + O(A), 7 = ]
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@ RSDPs have considerable applications in e.g. control problems, stor-
age modeling, neutral activity, biology and mathematical finance (see
e.g. the monographs by Mao-Yuan (2006), and Yin-Zhu (2010)). The
dynamical behavior of RSDPs may be markedly different from diffu-
sion processes without regime switchings, see e.g. Pinsky -Scheutzow

(1992), Mao-Yuan (2006).
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@ Mao, X. and Yuan, C., Stochastic Differential Equations with Markovian
Switching, Imperial College Press, 2006

It is interesting to have a look of the following two equations
dx(t) = x(t)dt + 2z(t)dW (t) (4)
and
dx(t) = 2x(t) + x(t)dW (1) (5)

switching from one to the other according to the movement of the Markov
chain A(t). We observe that Eq. (4) is almost surely exponentially stable
since the Lyapunov exponent is A\; = —1 while Eq. (5) is almost surely

exponentially unstable since the Lyapunov exponent is Ay = 1.5.
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Let A(t) be a right-continuous Markov chain taking values in S = {1,2}

with the generator

-1 1
I'= (vij)ox2 =
Y=Y
Of course W (t) and A(t) are assumed to be independent. Consider a one-

dimensional linear SDEwMS
dz(t) = a(A(t))x(t)dt + b(A(t))z(t)dW (t) (6)

ont >0, where

However, as the result of Markovian switching, the overall behaviour, i.e.
Eq. (6) will be exponentially stable if 4 > 1.5 but exponentially unstable if
~v < 1.5 while the Lyapunov exponent of the solution is 0 when v = 1.5.

Nenggul Yuall (Swansea UniversitApproximation of Invariant Measures for path



10000

8000 1

6000 1

X(t)

4000 1

2000 1

0 10 20 30 40 50

Figure: The graph of numerical solution when v = 2.
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Figure: The graph of numerical solution when v = 1.5.
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Figure: The graph of numerical solution when v = 0.5.
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@ So far, the works on RSDPs have included ergodicity (Cloez-Hairer
(2013), Shao (2014)) stability in distribution (Mao-Yuan (03), Xi-Yin
(2010)), recurrence and transience (Pinsky-Scheutzow (1992),invariant
densities (Bakhtin et al. (2014)) and so forth
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@ Since solving RSDPs is still a challenging task, numerical schemes
and/or approximation techniques have become one of the viable al-
ternatives (see e.g. Mao-Yuan (2006), Yin-Zhu (2010), Higham et al.
(2007)).

@ For more details on numerical analysis of diffusion processes without
regime switching, please refer to the monograph by Kloeden and Platen
(1992).

@ Also, approximations of invariant measures for stochastic dynamical
sysytems have attracted much attention, see e.g. Mattingly et al.

(2010), Talay (1990), Bréhier (2014).
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@ For the counterpart associated with Euler-Maruyama (EM) algorithm-
s, we refer to Yuan-Mao (2005), and Yin-Zhu (2010), where RSDPs
therein enjoy finite state space.
@ In this talk, we are concerned with the following questions: Consider
dX (t) = b(Xy, A(t))dt+o (X, A(t))dW (t),t > 0, X9 =& € €, A(0) = ig € S
(7)

(i) Under what conditions, will the semigroup of the exact solution admit
an invariant measure?

(i) Under what conditions, will the discrete-time semigroup generated by
EM scheme admit an invariant measure?

(iii) Will the numerical invariant measure, if it exists, converge in some

metric to the underlying one?
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We assume that (A(t)) is irreducible, which yields the positive recurrence together
with the finiteness of S. Let # = (m1,--- ,m) denote its stationary distribution,
which can be solved by 7Q) = 0 subject to >, . m; = 1 with 7; > 0. Assume that
(A(t)) is independent of (W (t)). Let v(-) be a probability measure on [—7,0] and
I - llzs means the Hilbert-Schmidt norm. Let E = R™ x S. For any x = (z,i) € E

and y = (y,J) € E, define the metric p between x and y by
p(x,y) = |z =yl + Lgizs,
where, for a set A, 14(z) = 1 with « € A; otherwise, 14(z) = 0. Let P = P(E)

be the space of all probability measures on E. Define the Wasserstein distance W,

between two probability measures u, v € P as follows:

WP(M’w:weicr(lﬁ,u){/E/EP(X’Y)W(dX’dY)}’

where C(u, ) denotes the collection of all probability measures on E x E with

marginals p and v, respectively. In this work, ¢ > 0 will stand for a generic

constant which might change from occurrence to occurrence:
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Invariant Measure: Additive Noises

We focus on a path-dependent random diffusion with additive noise
dX (t) = b(Xe, A(t))dt + o(A(t))dW (t),t > 0, X0 =€ € €,A(0) =ip €S, (8)

where b: € xS - R", 0:S — R*"®R™, and, for fixed t > 0, X;() = X(t+90),
0 € [—,0], used the standard notation.
We assume that, for each i € S and arbitrary £, € €,

(A) There exist a; € R and 3; € Ry such that
2(£(0) = n(0),b(&,9) — b(n, 7)) < @il€(0) —n(0)[* + Bill€ — nll3-

Under (A), (8) admits a unique strong solution (X (¢;&,140)) with the initial datum
Xo =& € € and A(0) = iy € S. The segment process (i.e., functional solution)
associated with the solution process (X (¢;&,40)) is denoted by (X:(,40)). The

pair (X(&,40),A(t)) is a homogeneous Markov process.
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Set

Q:=mincq;, & —max|ozl| and f:= max ;. (9)
=S i€S i€S

Q=0+ diag(ozl +e By, an + e_aTﬁN),

m =— max Re(7). (10)

y€Espec(Q1)
Let (A%(t), A7(t)) be the independent coupling of the Q-process (A(t)) with starting
point (A%(0),A7(0)) = (i,j). Let T =inf{t > 0: A*(t) = A/(t)} be the coupling
time of (A’(¢),A’(t)). Since the cardinality of S is finite and (g;;) is irreducible,

there exists a constant 6 > 0 such that
P(T>t)<e % t>0. (11)

Let P;((£,14),-) be the transition kernel of (X;(&,1), A%(t)). For v € P, vP; denotes
the law of (X;(&,4), A*(t)) when (Xo(&,4), A*(0)) is distributed according to v € P.
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Theorem 1 Suppose (A) holds and 7; > 0. Then, it holds that

__om
W, (11 Py, v ;) gc(1+z/ HgHooz/l(df,i)—&-Z/ [€llcvalde, i)~
ies Vv ies V'
(12)
for any v4,v2 € P, where n; is defined in (10) and 6 > 0 is specified in (11).
Furthermore, (12) implies that (X;(&,4), A*(t)), admits a unique invariant prob-
ability measure p € P such that

. __6m
W, (S0P 1P2) < (1 + [€lloo + 3 [g Inllocsa(dln, i))e~ 550", (13)
€S

where §(¢ ;) stands for the Dirac’s measure at the point (&,14).
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Remark: If the assumption 7; > 0 is replaced by

Z(O&i + e_aTﬂi)ﬂi <0

€S
and
min (f qiuA) > 1,
i€S,0;+e~a73;>0 o; +e 75,

Theorem 1 still holds.
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Invariant Measures: Multiplicative Noises

Consider the following equation

dX(t) = b( X, A@))dt + o(Xe, A(t))dW (2), t>0, Xo=¢&, A(0)=ip€S,

(14)

where b : xS - R"and 0 : € xS — R” @ R™. Let v(-) be a probability
measure on [—,0] and suppose that, for any &, € € and each i € S,

(H1) There exist a; € R and ; € Ry such that
2(¢(0) —1(0),b(&,4) — b(n, 1)) + llo(&,1) — o (n,1)lfs

0

< ail€(0) — (0)2 + 4 / €(6) — n(6)[20(d6).

(H2) There exists an L > 0 such that
0

lo(€.) = ot )s < L(1€©0) ~nO)F + [

—T

£(0) = n(6) 2v(a0) ).
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Set

0 0

Q2 :=Q + diag(a1 +ﬁ1/ eu(dh),- -, an +,6’N/ ea‘gu(de))7

—T —r

=— max Re 15
= _max Re(y) (15)

Theorem 2 Let (H1)-(H2) hold and assume further 1, > 0. Then,

P
WonPunaP) < (143 [ Nl i+ 3 [ Inllvalan,i)e 5"
ies /€ ics /C
(16)
for any v1,ve € P, where 6 > 0 such that (11) holds and 7y > 0 is defined in
(15). Furthermore, (16) implies that (X;(¢,), A'(t)) admits a unique invariant
probability measure p € P such that

. __Om2
Woldien PronPi) < o1+ 1€+ 3 [ Iallptan. )5t a7
€S
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Example | Let {A(¢)};>0 be a right-continuous Markov chain taking values in

S = {1, 2} with the generator

-1 1
Q= (18)
v
for some constant v > 0. Consider a scalar path-dependent OU process

dX(t) = {aA(t)X(t)—l—bA(t)X(t—1)}dt+0’AtdW(t), t>0, (Xo,A(0)) = (£,1) € €x
(19)
where a1,b1,by > 0,a9 < 0. Set o := 2a1 4+ (1+e7%)by, §:= 2as+ (1 +e72)bs.
a+p <1+
! (20)
B — g > 7.

then (X;(&,4), A(t)), determined by (19) and (18), has a unique invariant proba-

bility measure, and converges exponentially to the equilibrium.
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Numerical Invariant Measure: Additive Noises

Let 0 = {7 € (0,1) for some integer M > 7. Consider the following EM scheme
dY (t) = b(Yy,, Alts))dt + o (A(ts))dW (t), ¢>0 (21)

with the initial condition Y (0) = £(0) for 6 € [—7,0] and A(0) = ip € S, where,
ts := |t/d]6 with |[t/J] being the integer part of t/0, and Yis = {Yis(6) : —7 <
6 < 0} is a €-valued random variable defined as follows: for any 8 € [id, (i + 1)4],
i=—M,—(M—1),--, —1,

0 —

6i6{Y((k+i+ 1)6) = Y((k + 1))}, (22)

Yis(0) =Y ((k +1i)d) +

i.e., Ys(+) is the linear interpolation of Y ((k—M)J), Y ((k—(M—1))é),--- , Y ((k—
1)0), Y (ko).
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We further assume that there exists an Ly > 0 such that

Moreover, the pair (Y3, (§,7), A(ts)) enjoys the Markov property. Let P,Eg)((g, i)
stand for the transition kernel of (Yis(&,4), A'(kd)).
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Theorem 3 Let the assumptions of Theorem 1 be satisfied and suppose further
(23) holds. Then, there exist g € (0,1) and « > 0 such that for any k > 0 and
6 € (0, 50),

5 5 ‘ N\ o
WPl P ) < (14Y [ Iellanas )+ Y [ ilra(an,i)e,
ies '€ ies €
(24)
in which v1,v5 € P. Furthermore, (24) implies that (Yis(¢,7), A*(k6)) admits

a unique invariant probability measure ;(®) € P such that

s 5 N\ o
WO Pis PG < e (14 1€l + [g Illoct® (dn, ) )=,
€S
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Numerical Invariant Measures: Multiplicative Noises

Assume that there exists an L1 > 0 such that

0
b€, ) o) < La (€0) = nO)P + [

—T

£(0) = n(0)Pv(a8))  (25)
for any £, € ¥ and ¢ € S. Consider the EM scheme corresponding to (14)
dY (t) = b(Ys,, A(ts))dt + o(Ye,, Ats))dW (t), ¢t>0 (26)
with the initial condition Y (0) = £(8) for 6 € [—7,0] and A(0) =i € S,
where Y;; is defined exactly as in (22). Set
Q3 = Q + diag <a1 +4e7%By,..an + 4e_aT5N),

and

(= — max Re(v). 27
n3 Lcax (7) (27)
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Theorem 4 Let (H1), (H2), and (25) hold and assume further n3 > 0. Then,
there exist dyg € (0,1) and o > 0 such that, for any k£ > 0 and § € (0, ),

W, (01 Pis, v2 Pis) < 1+Z / SEACIEDY / Iloova(dn ) o=,

(28)
where vy,v5 € P. Furthermore, (28) implies that (Yis(€,4), A'(kd)) admits a

unique invariant probability measure u(®) € P such that

W, (Be.i Phos 1O Prs) < e (14 lellow + > / Illocss® () o2k,

€S
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Sketch of the Proof of Theorem 1

Let
Q= {w| w: [0,00) = R™ is continuous with w(0) = 0},

which is endowed with the locally uniform convergence topology and the Wiener
measure IP; so that the coordinate process W (t,w) := w(t), t > 0, is a standard
m-dimensional Brownian motion.

Set

Q= {w‘ w:[0,00) — S is right continuous with left Iimit}7

endowed with Skorokhod topology and a probability measure Py so that the co-
ordinate process A(t,w) = w(t), t > 0, is a continuous time Markov chain with

Q-matrix (g;;). Let

(Q,Q,P) = (Q]_ X Qg,%(ﬂl) X %(Qg),Pl X IPQ)
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Lemma 1 Under the assumptions of Theorem 1,
E||X¢(€,9) — Xe(n,1)l[3 < cll€ —nllZe™™ (29)

for any §,n € € and i € S, where 1 > 0 is defined in (10).
Proof. For fixed wy € €5, consider the following SDE

AX2 (1) = b(X22, A2 (£))dt+o (A2 (8))dwy (£), t >0, X&2 =€ €F, A“2(0) =

Since (A“2(s))sejo,y) May own finite number of jumps, ¢ fot apw(5)ds need
not to be differentiable. To overcome this drawback, let us introduce a smooth

approximation of it. For any € € (0,1), set

1 t+e 1
af\%(t) = z /t Qpws ()ds + et = /0 Qpwz (e544)dS + L.
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Plainly, t — af\%(t) is continuous and af\w2(t) — apwz(y) as € | 0 due
to the right continuity of the path of A“2(:). As a consequence, t
fot af\wz(r)dr is differentiable by the first fundamental theorem of calculus
and fg O (rydr — fg aper(rydr as € | 0 according to Lebesgue's domi-

nated convergence theorem. Let

[2(t) = X*2 (86, 1) — X*2 (5, 0). (30)
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Applying Itd's formula and taking (A) into account ensures that
o~ Iy aiw2(5)d5|l—w2 (t)|2
t s € d
= [1%2(0)|? +/ e Jo dhez r{ — O () T2 (5)]?
’ (31)
+ 2(T2 (), B(XE2 (€, ), A (5)) — B(X22 (n, ), A (5)) }ds
t .
< [P2(0)* +T5*7(1) +/ Baa (e o a2 0|12 |2 ds,
0

where

t
D) = [ oo g~ gy D ()P s (32)
0
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Since a4, (5 —> Qawa(s) SO that I7*°(t) — 0 as € — 0, by taking < | 0 one has

t
o et < et e TR+ [ Brenoe K oot R ds ).

Thus, employing Gronwall’s inequality followed by taking expectation w.r.t. P yields
that

E[|X:(€,d0) — X (m,i0) 1% < c|€ = nlSEelo(cncrterThaeds,

The result follows by the following result
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Foramap K : S — Rand p > 0, let A, = Q + pdiag(K1,---,Kn)

and 7, = —max (Ap)Re(fy), where Spec(A,) and Re() denote the

veSpec
spectrum of @, (i.e., the multiset of its eigenvalues) and the real part of ~,

respectively. Set k := sup{p > 0: 7, > 0}.

Lemma

For any p > 0, there exist constants C1(p), C2(p) > 0 such that

t
Cip)e ™ < Bexp ([ pEi,ds) < Calp)e ™
0

Moreover, if max;es K; < 0, then 1, > 0 for any p > 0; if max;es K; > 0
and ), Kjm; < 0, then 7, > 0 for any p € (0,x) and n, < 0 for any
p € (k,00).
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For the numerical solution, we need the following lemma
We further need to introduce some additional notation. For p > 0, let

K :S — R and set
Ap = Q +pdiag(K1, oo ,KN).
Furthermore, define

Mp = _max'ygspec(Ap) Re(FY)a p>0,

and

k =sup{p > 0:n, > 0}.
The lemma below, which is concerned with the estimate on the exponential
functional of the discrete observation for the Markov chain involved and
may be interested by itself, plays a crucial role in the analyzing the long-

time behavior of the discretization for (X¢(§,0), A(t)).
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Lemma 2 Let K : S — R, and Qg = @ + diag(Ky,--- , Ky). Set
=— max Re(v).
e y€Espec(Qk) ™

Then there exist dp € (0,1) and ¢ > 0 such that, for V§ € (0, dp),

Eelo Kropds < co=mxt/2 i 0. (33)
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Sketch of the Proof of Lemma 2

By Holder's inequality, it follows that

Eelo Kacpds — | oo Kadst[g (Kagss) —Kas)ds

e

S (Ee(l+6) f[f KA(S)dS> (Eel‘gf fOt(KA(sg)_KA(S))dS) l+x—:7 e 0.

(34)

Observe that there exists 6; € (0,1) such that for any A € (0, d1),
P(A(t+8) =i|A(t) = i) =14 g0 + 0o(9), (35)
and that

P(A(t+0) # A() = i) = D (a0 +0(8)) < max(~qii)é +0(3).  (36)
j#i
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Utilizing Jensen’s inequality

§
E( 1+s f(1+1) /\t KA(iS)_KA(s))dS

A(z’é))

1 i+1)0At e '
m/ E (eT((Z+1)5/\t—16)(KA(i5)—KA<S))‘A(ié))ds
i AT =10 Jis

. s (i+1)5At
N m / E (o5 (DN Ka) |7 i5) = ) ds
¢ —1
Yjes Laaa=yy [T
= N AT s E (1gp¢o—i |A(i6) = 7)d
(i+1)0Nt—1id Jis (Lea)=53 [A(0) = j)ds

Doy | g (e

JEra((i+1)6/\t7i6)(Kj7KA(s))1 4 ’A 5) — A
(i+1)0At—io ¢ {AGs)2} |A0) =7

<

(37)
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>jes Liaao=yy [UHDN

(t+1)0ANEt—1id Jis

2(14+2)K$ Zjes 1{A(i6):j}
(i+ 1) At—1id /s

(i+1)dAt

< E (1{a(s)=j1|A(i6) = j)ds

(i+1)5At
+e P (l{A(s)¢j}|A(i5) = j)ds
2 jes LiaGo)=1)
(t+1)0NEt—1id Jis
2(142)K$ Zjeg l{A(ié):j}

(i+ 1) At—1id /s

<14+ 7maxie§(_q“) 5o EE L o),

IN

(14 g;;(s—1id) 4+ o(s —id))ds

(i+1)8At

e (magx(—qii)(s —10) + o(s — ié))ds

S

where K := max;cs | K.
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By the property of conditional expectation, we deduce from (37) that

I[»EepgrE Jo (Ka(sg)—Kas))ds
— Fe = T ST (K gis) —Ka(e))ds

_ E(E ( 1+€ ZU/JJ f(l+1)6/\t(KA(L(S)_KA(S>)dS

)

_ (ts+3)Nt
( 1+a Zzti/(” 1f(z+1)5 KA(I(S)*KA( ))dSE( 1+s ft56 (KA(té)*KA(s))dS

)

MO ) 5 2L o(d) (o4 DI (K a1
2

maxieg(fqii) Se 2(1+;)R5
2

—_
+

+ o0

5 (S (0361)7

IN

A~ =
—
+

L£/6)+1
5))

(38)
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Noting that

l—a)  sioR ELZZIESS)
(1 T maXzGE(—qu) 56% + 0(5)> +
e(|t/d] +1) maXies(—¢ii)  20+eks
= exp 7111 14 ———————=fe = + 0(9)
t+ . maXies(—dii 204e)Ks
< —_— €
_eXp( 1+e¢ 61 ( 2 ge +0(5)>)

< exp (1= max(—ai) ) exp (1 (~qii)t)
ex i1 max i )
= &P 1+¢ 168 i 1+ ¢ ies 4

and taking (38) into consideration, we deduce from (34) that

t
Eelo Kacsds

1

g exp (1 _T_ . r?easx(_qzz)> (Ee(1+8) fot KA<5)ds> 1+4e exp (

g
1+e zeS( q”))

henggui
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