Approximation of Invariant Measures for path-dependent

Regime-Switching Diffusions

Chenggui Yuan
Swansea University

Outline

- Introduction
- Invariant Measure of the exact solutions
- Invariant Measure of the Numerical Solutions

Numerical solutions of SDEs

Consider an SDE on $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle,|\cdot|\right)$

$$
\begin{equation*}
\mathrm{d} X(t)=b(X(t)) \mathrm{d} t+\sigma(X(t)) \mathrm{d} W(t), \quad t>0, \quad X_{0}=x \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Herein, $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \otimes \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, and $(W(t))_{t \geq 0}$ is an m dimensional Brownian motion defined on the probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Discrete time Euler-Maruyama (EM) scheme:

$$
\bar{Y}((k+1) \delta)=\bar{Y}(k \delta)+b(\bar{Y}(k \delta)) \delta+\sigma(\bar{Y}(k \delta)) \triangle W(k \delta), k \geq 0
$$

with $Y_{0}=X_{0}=x$, where $\triangle W(k \delta):=W((k+1) \delta)-W(k \delta)$.
Continuous time EM scheme:

$$
Y(t)=Y_{0}+\int_{0}^{t} b\left(\bar{Y}\left(\eta_{s}\right)\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(\bar{Y}\left(\eta_{s}\right)\right) \mathrm{d} W(s)
$$

where $\eta_{t}:=\lfloor t / \delta\rfloor \delta$.

Regular Coefficients

If

$$
|b(x)-b(y)|+\|\sigma(x)-\sigma(y)\|_{\mathrm{HS}} \leq K|x-y|, \quad x, y \in \mathbb{R}^{n}
$$

for some $K>0$, then

$$
\mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)-Y(t)|^{p}\right) \lesssim \delta^{p / 2}
$$

- The convergence above is called strong convergence;
- The convergence rate is $1 / 2$.

Regular Coefficients

If the coefficients satisfy linear growth condition and

$$
|b(x)-b(y)|+\|\sigma(x)-\sigma(y)\|_{\mathrm{HS}} \leq K_{R}|x-y|, \quad|x| \vee|y| \leq R
$$

for some $K_{R}>0$, then

$$
\lim _{\delta \rightarrow 0} \mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)-Y(t)|^{p}\right)=0
$$

- The convergence above is called strong convergence;
- The convergence rate is not known

We also have

Theorem
Let $L_{R}^{(1)}$ and $L_{R}^{(2)}$ be the local growth constants of drift and diffusion, respectively. If $L_{R}^{(1)} \leq a_{1} \log R,\left(L_{R}^{(2)}\right)^{2} \leq a_{2} \log R$ for some postive constants a_{1} and a_{2}, then the order of the convergence is half, that is

$$
E\left[\sup _{0 \leq t \leq T}|X(t)-Y(t)|^{2}\right] \lesssim \delta^{1 / 2}
$$

Convergence rate of EM scheme under various settings

- SDDEs with polynomial growth w.r.t. delay variables (B.-Yuan, 2013);
- SDEs with discontinuous coefficients (Ngo-Taguchi, arXiv:1604.01174v1);
- SDDEs under local Lipschitz and also under monotonicity condition (Gyöngy-Sabanis, 2013).

Irregular coefficients (Gyöngy, I., PA, 98)

Assume that
b satisfies a one-side Lipschitz condition in a domain D in \mathbb{R}^{n} and σ is Lipschitzian. Then,

$$
\sup _{t \leq T}|X(t)-Y(t)| \leq \xi \delta^{\gamma}, \quad \text { a.s., } \quad \gamma \in(0,1 / 4)
$$

where ξ is a finite random variable.

Irregular coefficients (Yan, L.-Q., AOP, 2002)

Assume that there exist $c>0,0 \leq \alpha \leq 1 / 2,0 \leq \beta_{1}, \beta_{2} \leq 1$ such that

$$
\begin{aligned}
& |b(t, x)-b(s, y)| \lesssim|x-y|+|t-s|^{\beta_{1}} \\
& |\sigma(t, x)-\sigma(s, y)| \lesssim|x-y|^{1 / 2+\alpha}+|t-s|^{\beta_{2}} .
\end{aligned}
$$

Then,

$$
\mathbb{E}\left|X(t)-Y_{\eta_{t}}\right| \lesssim \delta^{\gamma},
$$

where $\gamma:=\beta_{1} \wedge \alpha \wedge \frac{4 \alpha \beta_{2}}{1+2 \alpha}$.
Tools: Meyer-Tanaka formula \& estimates for local time.

Irregular coefficients (Gyöngy \& Rásonyi, SPA, 2011)

Let $b=f+g$, where g is monotone decreasing and assume further that there exist $\alpha \in[0,1 / 2]$ and $\gamma \in(0,1)$ such that

$$
\begin{aligned}
& |f(t, x)-f(t, y)| \lesssim|x-y|, \quad|g(t, x)-g(t, y)| \lesssim|x-y|^{\gamma} \\
& |\sigma(t, x)-\sigma(t, y)| \lesssim|x-y|^{1 / 2+\alpha}
\end{aligned}
$$

Then,

$$
\mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)-Y(t)|\right) \lesssim \begin{cases}\frac{1}{\left(\log \delta^{-1}\right)^{1 / 2}}, & \alpha=0 \\ \delta^{2 \alpha^{2}}+\delta^{\alpha \gamma}, & \alpha \in(0,1 / 2]\end{cases}
$$

Approach: Yamada-Watanabe approximation approach.

Irregular coefficients(Ngo \& Taguchi, Math. Comp., 2016)

Assume that

- $\langle x-y, b(t, x)-b(t, y)\rangle \lesssim|x-y|^{2} ;$
- $\left\langle\left(\sigma \sigma^{*}\right)(t, x) \xi, \xi\right\rangle \asymp|\xi|^{2} ;$
- $|\sigma(t, x)-\sigma(t, y)| \lesssim|x-y|^{1 / 2+\alpha}, \alpha \in[0,1 / 2]$;
- $|b(t, x)-b(s, x)|+|\sigma(t, x)-\sigma(s, x)| \lesssim|t-s|^{\beta}, \beta \geq 1 / 2$;
- $b^{(i)} \in \mathcal{A}$. Then,

$$
\mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)-Y(t)|\right) \lesssim\left\{\begin{array}{lr}
\frac{1}{\left(\log \delta^{-1}\right)^{1 / 2}}, & \alpha=0, \\
\delta^{2 \alpha^{2}}, & \alpha \in(0,1 / 2]
\end{array}\right.
$$

Key tools: Yamada-Watanabe approach and heat kernel estimate.

Irregular coeff. (Pamen \& Taguchi, arXiv1508.07513v1)

Consider an SDE $\mathrm{d} X(t)=b(t, X(t)) \mathrm{d} t+\mathrm{d} L_{t}, \quad t>0, \quad X_{0}=x \in \mathbb{R}^{n}$, where b is bounded and

$$
|b(t, x)-b(t, y)| \lesssim|x-y|^{\beta}, \beta \in(0,1), \quad|b(t, x)-b(s, x)| \lesssim|t-s|^{\eta}, \eta \in[1 / 2,1] .
$$

- Then, $\mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)-Y(t)|^{p}\right) \lesssim \delta^{\frac{p \beta}{2}}$ whenever $L=$ Wiener process.
- Moreover,

$$
\mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)-Y(t)|^{p}\right) \lesssim \begin{cases}\delta, & p \geq 2, p \beta \geq 2, \\ \delta^{\frac{p \beta}{2}}, & p \geq 2,1 \leq p \beta<2 \text { or } p \in[1,2)\end{cases}
$$

whenever $L=$ truncated symmetric α-stable process with $\alpha \in(1,2)$ and $\alpha+\beta>2$.

Long-term behavior

Applying the EM to the SDE

$$
d x(t)=\left(x(t)-x^{3}(t)\right) d t+2 x(t) d B(t)
$$

gives

$$
Y_{k+1}=Y_{k}\left(1+\delta-Y_{k}^{2} \delta+2 \delta B_{k}\right)
$$

Lemma

Given any initial value $Y_{0} \neq 0$ and any $\delta>0$,

$$
\mathbb{P}\left(\lim _{k \rightarrow \infty}\left|Y_{k}\right|=\infty\right)>0
$$

However, we have

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log |x(t)| \leq-1
$$

Actually, under some assumptions, we can show that Y_{k}^{δ} is a homogeneous Markov process, For any $x \in \mathbb{R}^{n}$ and Borel set A in \mathbb{R}^{n}, define

$$
P(x, A):=P\left(Y_{1} \in A \mid Y(0)=x\right) \text { and } P^{k}(x, A):=P\left(Y_{k} \in A \mid Y(0)=x\right) .
$$

(H1) Both f and g are globally Lipschitz continuous, i.e. there exists a constant $L>0$ such that

$$
|f(u)-f(v)|^{2} \vee|g(u)-g(v)|^{2} \leq L|u-v|^{2}, \forall u, v \in \mathbb{R}^{n} .
$$

(H2) There exists a constant $\ell_{1}>0$ such that

$$
|g(u)-g(v)|^{2}+2(u-v)^{T}(f(u)-f(v)) \leq-\ell_{1}|u-v|^{2}, \forall u, v \in \mathbb{R}^{n} .
$$

Under assumptions (H1) and (H2), we can show that $P_{k}(x, A) \rightarrow$ $\pi^{\delta}(A)$ as $k \rightarrow \infty$ and δ sufficient small.

Regime-switching diffusion process

- A regime-switching diffusion process (RSDP), is a diffusion process in random environments characterized by a Markov chain.
- The state vector of a RSDP is a pair $(X(t), \Lambda(t))$, where $\{X(t)\}_{t \geq 0}$ satisfies a stochastic differential equation (SDE)

$$
\begin{equation*}
\mathrm{d} X(t)=b(X(t), \Lambda(t)) \mathrm{d} t+\sigma(X(t), \Lambda(t)) \mathrm{d} W_{t}, \quad t>0 \tag{2}
\end{equation*}
$$

with the initial data $X_{0}=x \in \mathbb{R}^{n}, \Lambda_{0}=i \in \mathbb{S}$, and $\{\Lambda(t)\}_{t \geq 0}$ denotes a continuous-time Markov chain with the state space $\mathbb{S}:=$ $\{1,2 \cdots, N\}, 1 \leq N \leq \infty$, and the transition rules specified by

$$
\mathbb{P}(\Lambda(t+\triangle)=j \mid \Lambda(t)=i)= \begin{cases}q_{i j} \triangle+o(\triangle), & i \neq j, \tag{3}\\ 1+q_{i i} \triangle+o(\triangle), & i=j\end{cases}
$$

- RSDPs have considerable applications in e.g. control problems, storage modeling, neutral activity, biology and mathematical finance (see e.g. the monographs by Mao-Yuan (2006), and Yin-Zhu (2010)). The dynamical behavior of RSDPs may be markedly different from diffusion processes without regime switchings, see e.g. Pinsky -Scheutzow (1992), Mao-Yuan (2006).

国 Mao, X. and Yuan, C., Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006
It is interesting to have a look of the following two equations

$$
\begin{equation*}
d x(t)=x(t) d t+2 x(t) d W(t) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
d x(t)=2 x(t)+x(t) d W(t) \tag{5}
\end{equation*}
$$

switching from one to the other according to the movement of the Markov chain $\Lambda(t)$. We observe that Eq. (4) is almost surely exponentially stable since the Lyapunov exponent is $\lambda_{1}=-1$ while Eq. (5) is almost surely exponentially unstable since the Lyapunov exponent is $\lambda_{2}=1.5$.

Let $\Lambda(t)$ be a right-continuous Markov chain taking values in $S=\{1,2\}$ with the generator

$$
\Gamma=\left(\gamma_{i j}\right)_{2 \times 2}=\left(\begin{array}{cc}
-1 & 1 \\
\gamma & -\gamma
\end{array}\right)
$$

Of course $W(t)$ and $\Lambda(t)$ are assumed to be independent. Consider a onedimensional linear SDEwMS

$$
\begin{equation*}
d x(t)=a(\Lambda(t)) x(t) d t+b(\Lambda(t)) x(t) d W(t) \tag{6}
\end{equation*}
$$

on $t \geq 0$, where

$$
a(1)=1, \quad a(2)=2, \quad b(1)=2, \quad b(2)=1 .
$$

However, as the result of Markovian switching, the overall behaviour, i.e. Eq. (6) will be exponentially stable if $\gamma>1.5$ but exponentially unstable if $\gamma<1.5$ while the Lyapunov exponent of the solution is 0 when $\neq 1.5$.

Figure: The graph of numerical solution when $\gamma=2$.

Figure: The graph of numerical solution when $\gamma=1.5$.

Figure: The graph of numerical solution when $\gamma=0.5$.

- So far, the works on RSDPs have included ergodicity (Cloez-Hairer (2013), Shao (2014)) stability in distribution (Mao-Yuan (03), Xi-Yin (2010)), recurrence and transience (Pinsky-Scheutzow (1992), invariant densities (Bakhtin et al. (2014)) and so forth
- Since solving RSDPs is still a challenging task, numerical schemes and/or approximation techniques have become one of the viable alternatives (see e.g. Mao-Yuan (2006), Yin-Zhu (2010), Higham et al. (2007)).
- For more details on numerical analysis of diffusion processes without regime switching, please refer to the monograph by Kloeden and Platen (1992).
- Also, approximations of invariant measures for stochastic dynamical sysytems have attracted much attention, see e.g. Mattingly et al. (2010), Talay (1990), Bréhier (2014).
- For the counterpart associated with Euler-Maruyama (EM) algorithms, we refer to Yuan-Mao (2005), and Yin-Zhu (2010), where RSDPs therein enjoy finite state space.
- In this talk, we are concerned with the following questions: Consider $\mathrm{d} X(t)=b\left(X_{t}, \Lambda(t)\right) \mathrm{d} t+\sigma\left(X_{t}, \Lambda(t)\right) \mathrm{d} W(t), t>0, X_{0}=\xi \in \mathscr{C}, \Lambda(0)=i_{0} \in \mathbb{S}$
(i) Under what conditions, will the semigroup of the exact solution admit an invariant measure?
(ii) Under what conditions, will the discrete-time semigroup generated by EM scheme admit an invariant measure?
(iii) Will the numerical invariant measure, if it exists, converge in some metric to the underlying one?

We assume that $(\Lambda(t))$ is irreducible, which yields the positive recurrence together with the finiteness of \mathbf{S}. Let $\pi=\left(\pi_{1}, \cdots, \pi_{N}\right)$ denote its stationary distribution, which can be solved by $\pi Q=0$ subject to $\sum_{i \in \mathbb{S}} \pi_{i}=1$ with $\pi_{i} \geq 0$. Assume that $(\Lambda(t))$ is independent of $(W(t))$. Let $v(\cdot)$ be a probability measure on $[-\tau, 0]$ and $\|\cdot\|_{\text {HS }}$ means the Hilbert-Schmidt norm. Let $\mathbf{E}=\mathbb{R}^{n} \times \mathbb{S}$. For any $\mathbf{x}=(x, i) \in \mathbf{E}$ and $\mathbf{y}=(y, j) \in \mathbf{E}$, define the metric ρ between \mathbf{x} and \mathbf{y} by

$$
\rho(\mathbf{x}, \mathbf{y})=|x-y|+\mathbf{1}_{\{i \neq j\}},
$$

where, for a set $A, \mathbf{1}_{A}(x)=1$ with $x \in A$; otherwise, $\mathbf{1}_{A}(x)=0$. Let $\mathcal{P}=\mathcal{P}(\mathbf{E})$ be the space of all probability measures on \mathbf{E}. Define the Wasserstein distance W_{ρ} between two probability measures $\mu, \nu \in \mathcal{P}$ as follows:

$$
W_{\rho}(\mu, \nu)=\inf _{\pi \in \mathcal{C}(\mu, \nu)}\left\{\int_{\mathbf{E}} \int_{\mathbf{E}} \rho(\mathbf{x}, \mathbf{y}) \pi(\mathrm{d} \mathbf{x}, \mathrm{~d} \mathbf{y})\right\},
$$

where $\mathcal{C}(\mu, \nu)$ denotes the collection of all probability measures on $\mathbf{E} \times \mathbf{E}$ with marginals μ and ν, respectively. In this work, $c>0$ will stand for a generic constant which might change from occurrence to occurrence.

Invariant Measure: Additive Noises

We focus on a path-dependent random diffusion with additive noise

$$
\begin{equation*}
\mathrm{d} X(t)=b\left(X_{t}, \Lambda(t)\right) \mathrm{d} t+\sigma(\Lambda(t)) \mathrm{d} W(t), t>0, X_{0}=\xi \in \mathscr{C}, \Lambda(0)=i_{0} \in \mathbb{S}, \tag{8}
\end{equation*}
$$

where $b: \mathscr{C} \times \mathbb{S} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{S} \rightarrow \mathbb{R}^{n} \otimes \mathbb{R}^{m}$, and, for fixed $t \geq 0, X_{t}(\theta)=X(t+\theta)$, $\theta \in[-\tau, 0]$, used the standard notation.
We assume that, for each $i \in \mathbb{S}$ and arbitrary $\xi, \eta \in \mathscr{C}$,
(A) There exist $\alpha_{i} \in \mathbb{R}$ and $\beta_{i} \in \mathbb{R}_{+}$such that

$$
2\langle\xi(0)-\eta(0), b(\xi, i)-b(\eta, i)\rangle \leq \alpha_{i}|\xi(0)-\eta(0)|^{2}+\beta_{i}\|\xi-\eta\|_{\infty}^{2}
$$

Under (A), (8) admits a unique strong solution $\left(X\left(t ; \xi, i_{0}\right)\right)$ with the initial datum $X_{0}=\xi \in \mathscr{C}$ and $\Lambda(0)=i_{0} \in \mathbb{S}$. The segment process (i.e., functional solution) associated with the solution process $\left(X\left(t ; \xi, i_{0}\right)\right)$ is denoted by $\left(X_{t}\left(\xi, i_{0}\right)\right)$. The pair $\left(X_{t}\left(\xi, i_{0}\right), \Lambda(t)\right)$ is a homogeneous Markov process.

Set

$$
\begin{gather*}
\widehat{\alpha}:=\min _{i \in \mathbb{S}} \alpha_{i}, \quad \check{\alpha}:=\max _{i \in \mathbb{S}}\left|\alpha_{i}\right| \quad \text { and } \quad \check{\beta}:=\max _{i \in \mathbb{S}} \beta_{i} . \tag{9}\\
Q_{1}:=Q+\operatorname{diag}\left(\alpha_{1}+\mathrm{e}^{-\widehat{a} \tau} \beta_{1}, \cdots, \alpha_{N}+\mathrm{e}^{-\widehat{a} \tau} \beta_{N}\right), \\
\eta_{1}=-\max _{\gamma \in \operatorname{spec}\left(Q_{1}\right)} \operatorname{Re}(\gamma) . \tag{10}
\end{gather*}
$$

Let $\left(\Lambda^{i}(t), \Lambda^{j}(t)\right)$ be the independent coupling of the Q-process $(\Lambda(t))$ with starting point $\left(\Lambda^{i}(0), \Lambda^{j}(0)\right)=(i, j)$. Let $T=\inf \left\{t \geq 0: \Lambda^{i}(t)=\Lambda^{j}(t)\right\}$ be the coupling time of $\left(\Lambda^{i}(t), \Lambda^{j}(t)\right)$. Since the cardinality of \mathbb{S} is finite and $\left(q_{i j}\right)$ is irreducible, there exists a constant $\theta>0$ such that

$$
\begin{equation*}
\mathbb{P}(T>t) \leq \mathrm{e}^{-\theta t}, \quad t>0 . \tag{11}
\end{equation*}
$$

Let $P_{t}((\xi, i), \cdot)$ be the transition kernel of $\left(X_{t}(\xi, i), \Lambda^{i}(t)\right)$. For $\nu \in \mathcal{P}, \nu P_{t}$ denotes the law of $\left(X_{t}(\xi, i), \Lambda^{i}(t)\right)$ when $\left(X_{0}(\xi, i), \Lambda^{i}(0)\right)$ is distributed according to $\nu \in \mathcal{P}$.

Theorem 1 Suppose (A) holds and $\eta_{1}>0$. Then, it holds that

$$
\begin{equation*}
W_{\rho}\left(\nu_{1} P_{t}, \nu_{2} P_{t}\right) \leq c\left(1+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\xi\|_{\infty} \nu_{1}(\mathrm{~d} \xi, i)+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\xi\|_{\infty} \nu_{2}(\mathrm{~d} \xi, i)\right) \mathrm{e}^{-\frac{\theta \eta_{1}}{2\left(\theta+\eta_{1}\right)} t} \tag{12}
\end{equation*}
$$

for any $\nu_{1}, \nu_{2} \in \mathcal{P}$, where η_{1} is defined in (10) and $\theta>0$ is specified in (11). Furthermore, (12) implies that $\left(X_{t}(\xi, i), \Lambda^{i}(t)\right)$, admits a unique invariant probability measure $\mu \in \mathcal{P}$ such that

$$
\begin{equation*}
W_{\rho}\left(\delta_{(\xi, i)} P_{t}, \mu P_{t}\right) \leq c\left(1+\|\xi\|_{\infty}+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\eta\|_{\infty} \mu(\mathrm{d} \eta, i)\right) \mathrm{e}^{-\frac{\theta \eta_{1}}{2\left(\theta+\eta_{1}\right)} t}, \tag{13}
\end{equation*}
$$

where $\delta_{(\xi, i)}$ stands for the Dirac's measure at the point (ξ, i).

Remark: If the assumption $\eta_{1}>0$ is replaced by

$$
\sum_{i \in \mathbb{S}}\left(\alpha_{i}+\mathrm{e}^{-\widehat{\alpha} \tau} \beta_{i}\right) \pi_{i}<0
$$

and

$$
\min _{i \in \mathbb{S}, \alpha_{i}+\mathrm{e}^{-\widehat{\alpha} \tau} \beta_{i}>0}\left(-\frac{q_{i i}}{\alpha_{i}+\mathrm{e}^{-\widehat{\alpha} \tau \beta_{i}}}\right)>1,
$$

Theorem 1 still holds.

Invariant Measures: Multiplicative Noises

Consider the following equation

$$
\begin{equation*}
\mathrm{d} X(t)=b\left(X_{t}, \Lambda(t)\right) \mathrm{d} t+\sigma\left(X_{t}, \Lambda(t)\right) \mathrm{d} W(t), \quad t>0, \quad X_{0}=\xi, \quad \Lambda(0)=i_{0} \in \mathbb{S}, \tag{14}
\end{equation*}
$$

where $b: \mathscr{C} \times \mathbb{S} \rightarrow \mathbb{R}^{n}$ and $\sigma: \mathscr{C} \times \mathbb{S} \rightarrow \mathbb{R}^{n} \otimes \mathbb{R}^{m}$. Let $v(\cdot)$ be a probability measure on $[-\tau, 0]$ and suppose that, for any $\xi, \eta \in \mathscr{C}$ and each $i \in \mathbb{S}$,
(H1) There exist $\alpha_{i} \in \mathbb{R}$ and $\beta_{i} \in \mathbb{R}_{+}$such that

$$
\begin{aligned}
& 2\langle\xi(0)-\eta(0), b(\xi, i)-b(\eta, i)\rangle+\|\sigma(\xi, i)-\sigma(\eta, i)\|_{\mathrm{HS}}^{2} \\
& \quad \leq \alpha_{i}|\xi(0)-\eta(0)|^{2}+\beta_{i} \int_{-\tau}^{0}|\xi(\theta)-\eta(\theta)|^{2} v(\mathrm{~d} \theta) .
\end{aligned}
$$

(H2) There exists an $L>0$ such that

$$
\|\sigma(\xi, i)-\sigma(\eta, i)\|_{\mathrm{HS}}^{2} \leq L\left(|\xi(0)-\eta(0)|^{2}+\int_{-\tau}^{0}|\xi(\theta)-\eta(\theta)|^{2} v(\mathrm{~d} \theta)\right)
$$

Set

$$
\begin{gather*}
Q_{2}:=Q+\operatorname{diag}\left(\alpha_{1}+\beta_{1} \int_{-\tau}^{0} \mathrm{e}^{\widehat{\alpha} \theta} \mu(\mathrm{d} \theta), \cdots, \alpha_{N}+\beta_{N} \int_{-\tau}^{0} \mathrm{e}^{\widehat{\alpha} \theta} \mu(\mathrm{d} \theta)\right), \\
\eta_{2}=-\max _{\gamma \in \operatorname{spec}\left(Q_{2}\right)} \operatorname{Re}(\gamma) \tag{15}
\end{gather*}
$$

Theorem 2 Let (H1)-(H2) hold and assume further $\eta_{2}>0$. Then,

$$
\begin{equation*}
W_{\rho}\left(\nu_{1} P_{t}, \nu_{2} P_{t}\right) \leq c\left(1+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\xi\|_{\infty} \nu_{1}(\mathrm{~d} \xi, i)+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\eta\|_{\infty} \nu_{2}(\mathrm{~d} \eta, i)\right) \mathrm{e}^{-\frac{\theta \eta_{2}}{2\left(\theta+\eta_{2}\right)} t} \tag{16}
\end{equation*}
$$

for any $\nu_{1}, \nu_{2} \in \mathcal{P}$, where $\theta>0$ such that (11) holds and $\eta_{2}>0$ is defined in (15). Furthermore, (16) implies that $\left(X_{t}(\xi, i), \Lambda^{i}(t)\right)$ admits a unique invariant probability measure $\mu \in \mathcal{P}$ such that

$$
\begin{equation*}
W_{\rho}\left(\delta_{(\xi, i)} P_{t}, \mu P_{t}\right) \leq c\left(1+\|\xi\|_{\infty}+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\eta\|_{\infty} \mu(\mathrm{d} \eta, i)\right) \mathrm{e}^{-\frac{\theta \eta_{2}}{2\left(\theta+\eta_{2}\right)} t} . \tag{17}
\end{equation*}
$$

Example I Let $\{\Lambda(t)\}_{t \geq 0}$ be a right-continuous Markov chain taking values in $\mathbb{S}=\{1,2\}$ with the generator

$$
Q=\left(\begin{array}{cc}
-1 & 1 \tag{18}\\
\gamma & -\gamma
\end{array}\right)
$$

for some constant $\gamma>0$. Consider a scalar path-dependent OU process
$\mathrm{d} X(t)=\left\{a_{\Lambda(t)} X(t)+b_{\Lambda(t)} X(t-1)\right\} \mathrm{d} t+\sigma_{\Lambda_{t}} \mathrm{~d} W(t), t>0,\left(X_{0}, \Lambda(0)\right)=(\xi, 1) \in \mathscr{C} \times$
where $a_{1}, b_{1}, b_{2}>0, a_{2}<0$. Set $\alpha:=2 a_{1}+\left(1+\mathrm{e}^{-a_{2}}\right) b_{1}, \beta:=2 a_{2}+\left(1+\mathrm{e}^{-a_{2}}\right) b_{2}$.

$$
\left\{\begin{array}{l}
\alpha+\beta<1+\gamma \tag{20}\\
\beta-\frac{\beta}{\alpha}>\gamma .
\end{array}\right.
$$

then $\left(X_{t}(\xi, i), \Lambda^{i}(t)\right)$, determined by (19) and (18), has a unique invariant probability measure, and converges exponentially to the equilibrium.

Numerical Invariant Measure: Additive Noises

Let $\delta=\frac{\tau}{M} \in(0,1)$ for some integer $M>\tau$. Consider the following EM scheme

$$
\begin{equation*}
\mathrm{d} Y(t)=b\left(Y_{t_{\delta}}, \Lambda\left(t_{\delta}\right)\right) \mathrm{d} t+\sigma\left(\Lambda\left(t_{\delta}\right)\right) \mathrm{d} W(t), \quad t>0 \tag{21}
\end{equation*}
$$

with the initial condition $Y(\theta)=\xi(\theta)$ for $\theta \in[-\tau, 0]$ and $\Lambda(0)=i_{0} \in \mathbb{S}$, where, $t_{\delta}:=\lfloor t / \delta\rfloor \delta$ with $\lfloor t / \delta\rfloor$ being the integer part of t / δ, and $Y_{k \delta}=\left\{Y_{k \delta}(\theta):-\tau \leq\right.$ $\theta \leq 0\}$ is a \mathscr{C}-valued random variable defined as follows: for any $\theta \in[i \delta,(i+1) \delta]$, $i=-M,-(M-1), \cdots,-1$,

$$
\begin{equation*}
Y_{k \delta}(\theta)=Y((k+i) \delta)+\frac{\theta-i \delta}{\delta}\{Y((k+i+1) \delta)-Y((k+i) \delta)\} \tag{22}
\end{equation*}
$$

i.e., $Y_{k \delta}(\cdot)$ is the linear interpolation of $Y((k-M) \delta), Y((k-(M-1)) \delta), \cdots, Y((k-$ 1) $\delta), Y(k \delta)$.

We further assume that there exists an $L_{0}>0$ such that

$$
\begin{equation*}
|b(\xi, i)-b(\eta, i)| \leq L_{0}\|\xi-\eta\|_{\infty}, \quad \xi, \eta \in \mathscr{C}, \quad i \in \mathbb{S} \tag{23}
\end{equation*}
$$

Moreover, the pair $\left(Y_{t_{\delta}}(\xi, i), \Lambda\left(t_{\delta}\right)\right)$ enjoys the Markov property. Let $P_{k \delta}^{(\delta)}((\xi, i)$ stand for the transition kernel of $\left(Y_{k \delta}(\xi, i), \Lambda^{i}(k \delta)\right)$.

Theorem 3 Let the assumptions of Theorem 1 be satisfied and suppose further (23) holds. Then, there exist $\delta_{0} \in(0,1)$ and $\alpha>0$ such that for any $k \geq 0$ and $\delta \in\left(0, \delta_{0}\right)$,
$W_{\rho}\left(\nu_{1} P_{k \delta}^{(\delta)}, \nu_{2} P_{k \delta}^{(\delta)}\right) \leq c\left(1+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\xi\|_{\infty} \nu_{1}(\mathrm{~d} \xi, i)+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\eta\|_{\infty} \nu_{2}(\mathrm{~d} \eta, i)\right) \mathrm{e}^{-\alpha k \delta}$,
in which $\nu_{1}, \nu_{2} \in \mathcal{P}$. Furthermore, (24) implies that $\left(Y_{k \delta}(\xi, i), \Lambda^{i}(k \delta)\right)$ admits a unique invariant probability measure $\mu^{(\delta)} \in \mathcal{P}$ such that

$$
W_{\rho}\left(\delta_{(\xi, i)} P_{k \delta}^{(\delta)}, \mu^{(\delta)} P_{k \delta}^{(\delta)}\right) \leq c\left(1+\|\xi\|_{\infty}+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\eta\|_{\infty} \mu^{(\delta)}(\mathrm{d} \eta, i)\right) \mathrm{e}^{-\alpha k \delta}
$$

Numerical Invariant Measures: Multiplicative Noises

Assume that there exists an $L_{1}>0$ such that

$$
\begin{equation*}
|b(\xi, i)-b(\eta, i)|^{2} \leq L_{1}\left(|\xi(0)-\eta(0)|^{2}+\int_{-\tau}^{0}|\xi(\theta)-\eta(\theta)|^{2} v(\mathrm{~d} \theta)\right) \tag{25}
\end{equation*}
$$

for any $\xi, \eta \in \mathscr{C}$ and $i \in \mathbb{S}$. Consider the EM scheme corresponding to (14)

$$
\begin{equation*}
\mathrm{d} Y(t)=b\left(Y_{t_{\delta}}, \Lambda\left(t_{\delta}\right)\right) \mathrm{d} t+\sigma\left(Y_{t_{\delta}}, \Lambda\left(t_{\delta}\right)\right) \mathrm{d} W(t), \quad t>0 \tag{26}
\end{equation*}
$$

with the initial condition $Y(\theta)=\xi(\theta)$ for $\theta \in[-\tau, 0]$ and $\Lambda(0)=i_{0} \in \mathbb{S}$, where $Y_{t_{\delta}}$ is defined exactly as in (22). Set

$$
Q_{3}:=Q+\operatorname{diag}\left(\alpha_{1}+4 \mathrm{e}^{-\widehat{\alpha} \tau} \beta_{1}, \ldots, \alpha_{N}+4 \mathrm{e}^{-\widehat{\alpha} \tau} \beta_{N}\right)
$$

and

$$
\begin{equation*}
\eta_{3}:=-\max _{\gamma \in \operatorname{spec}\left(Q_{3}\right)} \operatorname{Re}(\gamma) . \tag{27}
\end{equation*}
$$

Theorem 4 Let ($\mathbf{H} \mathbf{1}),(\mathbf{H} \mathbf{2})$, and (25) hold and assume further $\eta_{3}>0$. Then, there exist $\delta_{0} \in(0,1)$ and $\alpha>0$ such that, for any $k \geq 0$ and $\delta \in\left(0, \delta_{0}\right)$, $W_{\rho}\left(\nu_{1} P_{k \delta}, \nu_{2} P_{k \delta}\right) \leq c\left(1+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\xi\|_{\infty} \nu_{1}(\mathrm{~d} \xi, i)+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\eta\|_{\infty} \nu_{2}(\mathrm{~d} \eta, i)\right) \mathrm{e}^{-\alpha k \delta}$,
where $\nu_{1}, \nu_{2} \in \mathcal{P}$. Furthermore, (28) implies that $\left(Y_{k \delta}(\xi, i), \Lambda^{i}(k \delta)\right)$ admits a unique invariant probability measure $\mu^{(\delta)} \in \mathcal{P}$ such that

$$
W_{\rho}\left(\delta_{(\xi, i)} P_{k \delta}, \mu^{(\delta)} P_{k \delta}\right) \leq c\left(1+\|\xi\|_{\infty}+\sum_{i \in \mathbb{S}} \int_{\mathscr{C}}\|\eta\|_{\infty} \mu^{(\delta)}(\mathrm{d} \eta, i)\right) \mathrm{e}^{-\alpha k \delta}
$$

Sketch of the Proof of Theorem 1

Let

$$
\Omega_{1}=\left\{\omega \mid \omega:[0, \infty) \rightarrow \mathbb{R}^{m} \text { is continuous with } \omega(0)=0\right\}
$$

which is endowed with the locally uniform convergence topology and the Wiener measure \mathbb{P}_{1} so that the coordinate process $W(t, \omega):=\omega(t), t \geq 0$, is a standard m-dimensional Brownian motion.

Set

$$
\Omega_{2}:=\{\omega \mid \omega:[0, \infty) \rightarrow \mathbf{S} \text { is right continuous with left limit }\}
$$

endowed with Skorokhod topology and a probability measure \mathbb{P}_{2} so that the coordinate process $\Lambda(t, \omega)=\omega(t), t \geq 0$, is a continuous time Markov chain with Q-matrix $\left(q_{i j}\right)$. Let

$$
(\Omega, \mathscr{F}, \mathbb{P})=\left(\Omega_{1} \times \Omega_{2}, \mathscr{B}\left(\Omega_{1}\right) \times \mathscr{B}\left(\Omega_{2}\right), \mathbb{P}_{1} \times \mathbb{P}_{2}\right)
$$

Lemma 1 Under the assumptions of Theorem 1,

$$
\begin{equation*}
\mathbb{E}\left\|X_{t}(\xi, i)-X_{t}(\eta, i)\right\|_{\infty}^{2} \leq c\|\xi-\eta\|_{\infty}^{2} \mathrm{e}^{-\eta_{1} t} \tag{29}
\end{equation*}
$$

for any $\xi, \eta \in \mathscr{C}$ and $i \in \mathbb{S}$, where $\eta_{1}>0$ is defined in (10).
Proof. For fixed $\omega_{2} \in \Omega_{2}$, consider the following SDE
$\mathrm{d} X^{\omega_{2}}(t)=b\left(X_{t}^{\omega_{2}}, \Lambda^{\omega_{2}}(t)\right) \mathrm{d} t+\sigma\left(\Lambda^{\omega_{2}}(t)\right) \mathrm{d} \omega_{1}(t), t>0, X_{0}^{\omega_{2}}=\xi \in \mathscr{C}, \Lambda^{\omega_{2}}(0)=i$
Since $\left(\Lambda^{\omega_{2}}(s)\right)_{s \in[0, t]}$ may own finite number of jumps, $t \mapsto \int_{0}^{t} \alpha_{\Lambda^{\omega_{2}(s)}} \mathrm{d} s$ need not to be differentiable. To overcome this drawback, let us introduce a smooth approximation of it. For any $\varepsilon \in(0,1)$, set

$$
\alpha_{\Lambda^{\omega_{2}}(t)}^{\varepsilon}:=\frac{1}{\varepsilon} \int_{t}^{t+\varepsilon} \alpha_{\Lambda^{\omega_{2}(s)}} \mathrm{d} s+\varepsilon t=\int_{0}^{1} \alpha_{\Lambda^{\omega_{2}}(\varepsilon s+t)} \mathrm{d} s+\varepsilon t .
$$

Plainly, $t \mapsto \alpha_{\Lambda^{\omega_{2}}(t)}^{\varepsilon}$ is continuous and $\alpha_{\Lambda^{\omega_{2}(t)}}^{\varepsilon} \rightarrow \alpha_{\Lambda^{\omega_{2}}(t)}$ as $\varepsilon \downarrow 0$ due to the right continuity of the path of $\Lambda^{\omega_{2}}(\cdot)$. As a consequence, $t \mapsto$ $\int_{0}^{t} \alpha_{\Lambda^{\omega_{2}(r)}}^{\varepsilon} \mathrm{d} r$ is differentiable by the first fundamental theorem of calculus and $\int_{0}^{t} \alpha_{\Lambda^{\omega_{2}(r)}}^{\varepsilon} \mathrm{d} r \rightarrow \int_{0}^{t} \alpha_{\Lambda^{\omega_{2}(r)}} \mathrm{d} r$ as $\varepsilon \downarrow 0$ according to Lebesgue's dominated convergence theorem. Let

$$
\begin{equation*}
\Gamma^{\omega_{2}}(t)=X^{\omega_{2}}(t ; \xi, i)-X^{\omega_{2}}(t ; \eta, i) \tag{30}
\end{equation*}
$$

Applying Itô's formula and taking (A) into account ensures that

$$
\begin{align*}
& \mathrm{e}^{-\int_{0}^{t} \alpha_{\Lambda}^{\varepsilon} \omega_{2}(s)^{\mathrm{d} s}}\left|\Gamma^{\omega_{2}}(t)\right|^{2} \\
& =\left|\Gamma^{\omega_{2}}(0)\right|^{2}+\int_{0}^{t} \mathrm{e}^{-\int_{0}^{s} \alpha_{\Lambda}^{\varepsilon} \omega_{2}(r) \mathrm{d}^{\mathrm{d} r}}\left\{-\alpha_{\Lambda}^{\varepsilon}{ }^{\omega_{2}(s)}\left|\Gamma^{\omega_{2}}(s)\right|^{2}\right. \\
& \left.\quad+2\left\langle\Gamma^{\omega_{2}}(s), b\left(X_{s}^{\omega_{2}}(\xi, i), \Lambda^{\omega_{2}}(s)\right)-b\left(X_{s}^{\omega_{2}}(\eta, i), \Lambda^{\omega_{2}}(s)\right)\right\rangle\right\} \mathrm{d} s \tag{31}\\
& \leq\left|\Gamma^{\omega_{2}}(0)\right|^{2}+\Gamma_{1}^{\omega_{2}, \varepsilon}(t)+\int_{0}^{t} \beta_{\Lambda^{\omega_{2}}(s)} \mathrm{e}^{-\int_{0}^{s} \alpha_{\Lambda}^{\varepsilon} \omega_{2}(r)} \mathrm{dr}\left\|\Gamma_{s}^{\omega_{2}}\right\|_{\infty}^{2} \mathrm{~d} s,
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma_{1}^{\omega_{2}, \varepsilon}(t):=\int_{0}^{t} \mathrm{e}^{-\int_{0}^{s} \alpha_{\Lambda}^{\varepsilon} \omega_{2}(r)} \mathrm{d} r\left|\alpha_{\Lambda \omega_{2}(s)}-\alpha_{\Lambda^{\omega_{2}}(s)}^{\varepsilon}\right| \cdot\left|\Gamma^{\omega_{2}}(s)\right|^{2} \mathrm{~d} s \tag{32}
\end{equation*}
$$

Since $\alpha_{\Lambda^{\omega_{2}}(s)}^{\varepsilon} \rightarrow \alpha_{\Lambda \omega^{\omega_{2}}(s)}$ so that $\Gamma_{1}^{\omega_{2}, \varepsilon}(t) \rightarrow 0$ as $\varepsilon \rightarrow 0$, by taking $\varepsilon \downarrow 0$ one has
$\mathrm{e}^{-\int_{0}^{t} \alpha_{\Lambda} \omega_{2}(s) \mathrm{d} s}\left\|\Gamma_{t}^{\omega_{2}}\right\|_{\infty}^{2} \leq \mathrm{e}^{-\widehat{\alpha} \tau}\left\{c\left\|\Gamma_{0}^{\omega_{2}}\right\|_{\infty}^{2}+\int_{0}^{t} \beta_{\Lambda^{\omega_{2}}(s)} \mathrm{e}^{-\int_{0}^{s} \alpha_{\Lambda} \omega_{2}(r)} \mathrm{d} r\left\|\Gamma_{s}^{\omega_{2}}\right\|_{\infty}^{2} \mathrm{~d} s\right\}$.
Thus, employing Gronwall's inequality followed by taking expectation w.r.t. \mathbb{P} yields that

$$
\mathbb{E}\left\|X_{t}\left(\xi, i_{0}\right)-X\left(\eta, i_{0}\right)\right\|_{\infty}^{2} \leq c\|\xi-\eta\|_{\infty}^{2} \mathbb{E} \mathrm{e}^{\int_{0}^{t}\left(\alpha_{\Lambda(s)}+\mathrm{e}^{-\widehat{a} \tau} \beta_{\Lambda(s)}\right) \mathrm{d} s}
$$

The result follows by the following result

For a map $K: \mathbb{S} \rightarrow \mathbb{R}$ and $p>0$, let $A_{p}=Q+p \operatorname{diag}\left(K_{1}, \cdots, K_{N}\right)$ and $\eta_{p}=-\max _{\gamma \in \operatorname{Spec}\left(A_{p}\right)} \operatorname{Re}(\gamma)$, where $\operatorname{Spec}\left(A_{p}\right)$ and $\operatorname{Re}(\gamma)$ denote the spectrum of Q_{p} (i.e., the multiset of its eigenvalues) and the real part of γ, respectively. Set $\kappa:=\sup \left\{p \geq 0: \eta_{p}>0\right\}$.

Lemma

For any $p>0$, there exist constants $C_{1}(p), C_{2}(p)>0$ such that

$$
C_{1}(p) \mathrm{e}^{-\eta_{p} t} \leq \mathbb{E} \exp \left(\int_{0}^{t} p K_{\Lambda_{s}} \mathrm{~d} s\right) \leq C_{2}(p) \mathrm{e}^{-\eta_{p} t}
$$

Moreover, if $\max _{i \in \mathbb{S}} K_{i} \leq 0$, then $\eta_{p}>0$ for any $p>0$; if $\max _{i \in \mathbb{S}} K_{i}>0$ and $\sum_{i \in \mathbb{S}} K_{i} \pi_{i}<0$, then $\eta_{p}>0$ for any $p \in(0, \kappa)$ and $\eta_{p}<0$ for any $p \in(\kappa, \infty)$.

For the numerical solution, we need the following lemma
We further need to introduce some additional notation. For $p>0$, let $K: \mathbb{S} \rightarrow \mathbb{R}$ and set

$$
A_{p}:=Q+p \operatorname{diag}\left(K_{1}, \cdots, K_{N}\right)
$$

Furthermore, define

$$
\eta_{p}=-\max _{\gamma \in \operatorname{spec}\left(A_{p}\right)} \operatorname{Re}(\gamma), \quad p>0
$$

and

$$
\kappa=\sup \left\{p \geq 0: \eta_{p}>0\right\}
$$

The lemma below, which is concerned with the estimate on the exponential functional of the discrete observation for the Markov chain involved and may be interested by itself, plays a crucial role in the analyzing the longtime behavior of the discretization for $\left(X_{t}\left(\xi, i_{0}\right), \Lambda(t)\right)$.

Lemma 2 Let $K: \mathbb{S} \rightarrow \mathbb{R}$, and $Q_{K}=Q+\operatorname{diag}\left(K_{1}, \cdots, K_{N}\right)$. Set

$$
\eta_{K}=-\max _{\gamma \in \operatorname{spec}\left(Q_{K}\right)} \operatorname{Re}(\gamma) .
$$

Then there exist $\delta_{0} \in(0,1)$ and $c>0$ such that, for $\forall \delta \in\left(0, \delta_{0}\right)$,

$$
\begin{equation*}
\mathbb{E} \mathrm{e}^{\int_{0}^{t} K_{\Lambda\left(s_{\delta}\right)} \mathrm{d} s} \leq c \mathrm{e}^{-\eta_{K} t / 2}, \quad \forall t>0 . \tag{33}
\end{equation*}
$$

Sketch of the Proof of Lemma 2

By Hölder's inequality, it follows that
$\mathbb{E} \mathrm{e}^{\int_{0}^{t} K_{\Lambda\left(s_{\delta}\right)} \mathrm{d} s}=\mathbb{E} \mathrm{e}^{\int_{0}^{t} K_{\Lambda(s)} \mathrm{d} s+\int_{0}^{t}\left(K_{\Lambda\left(s_{\delta}\right)}-K_{\Lambda(s)}\right) \mathrm{d} s}$

$$
\begin{equation*}
\leq\left(\mathbb{E} \mathrm{e}^{(1+\varepsilon) \int_{0}^{t} K_{\Lambda(s)} \mathrm{d} s}\right)^{\frac{1}{1+\varepsilon}}\left(\mathbb{E} \mathrm{e}^{\frac{1+\varepsilon}{\varepsilon} \int_{0}^{t}\left(K_{\Lambda\left(s_{\delta}\right)}-K_{\Lambda(s)}\right) \mathrm{d} s}\right)^{\frac{\varepsilon}{1+\varepsilon}}, \varepsilon>0 \tag{34}
\end{equation*}
$$

Observe that there exists $\delta_{1} \in(0,1)$ such that for any $\triangle \in\left(0, \delta_{1}\right)$,

$$
\begin{equation*}
\mathbb{P}(\Lambda(t+\delta)=i \mid \Lambda(t)=i)=1+q_{i i} \delta+o(\delta) \tag{35}
\end{equation*}
$$

and that

$$
\begin{equation*}
\mathbb{P}(\Lambda(t+\delta) \neq i \mid \Lambda(t)=i)=\sum_{j \neq i}\left(q_{i j} \delta+o(\delta)\right) \leq \max _{i \in \mathbb{S}}\left(-q_{i i}\right) \delta+o(\delta) \tag{36}
\end{equation*}
$$

Utilizing Jensen's inequality

$$
\begin{align*}
\mathbb{E} & \left(\left.\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon} \int_{i \delta}^{(i+1) \delta \wedge t}\left(K_{\Lambda(i \delta)}-K_{\Lambda(s)}\right) \mathrm{d} s} \right\rvert\, \Lambda(i \delta)\right) \\
\leq & \frac{1}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t} \mathbb{E}\left(\left.\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon}((i+1) \delta \wedge t-i \delta)\left(K_{\Lambda(i \delta)}-K_{\Lambda(s)}\right)} \right\rvert\, \Lambda(i \delta)\right) \mathrm{d} s \\
= & \frac{\sum_{j \in \mathbb{S}} \mathbf{1}_{\{\Lambda(i \delta)=j\}}}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t} \mathbb{E}\left(\left.\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon}((i+1) \delta \wedge t-i \delta)\left(K_{j}-K_{\Lambda(s)}\right)} \right\rvert\, \Lambda(i \delta)=j\right) \mathrm{d} s \\
= & \frac{\sum_{j \in \mathbb{S}} \mathbf{1}_{\{\Lambda(i \delta)=j\}}}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t} \mathbb{E}\left(\mathbf{1}_{\{\Lambda(s)=j\}} \mid \Lambda(i \delta)=j\right) \mathrm{d} s \\
& +\frac{\sum_{j \in \mathbb{S}} \mathbf{1}_{\{\Lambda(i \delta)=j\}}}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t} \mathbb{E}\left(\left.\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon}((i+1) \delta \wedge t-i \delta)\left(K_{j}-K_{\Lambda(s)}\right)} \mathbf{1}_{\{\Lambda(s) \neq j\}} \right\rvert\, \Lambda(i \delta)=j\right) \tag{37}
\end{align*}
$$

$$
\begin{aligned}
\leq & \frac{\sum_{j \in \mathbb{S}} \mathbf{1}_{\{\Lambda(i \delta)=j\}}}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t} \mathbb{E}\left(\mathbf{1}_{\{\Lambda(s)=j\}} \mid \Lambda(i \delta)=j\right) \mathrm{d} s \\
& +\mathrm{e}^{\frac{2(1+\varepsilon) \tilde{K} \delta}{\varepsilon}} \frac{\sum_{j \in \mathbb{S}} \mathbf{1}_{\{\Lambda(i \delta)=j\}}}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t} \mathbb{P}\left(\mathbf{1}_{\{\Lambda(s) \neq j\}} \mid \Lambda(i \delta)=j\right) \mathrm{d} s \\
\leq & \frac{\sum_{j \in \mathbb{S}} \mathbf{1}_{\{\Lambda(i \delta)=j\}}}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t}\left(1+q_{j j}(s-i \delta)+o(s-i \delta)\right) \mathrm{d} s \\
& +\mathrm{e}^{\frac{2(1+\varepsilon) \tilde{K} \delta}{\varepsilon}} \frac{\sum_{j \in \mathbb{S}} \mathbf{1}_{\{\Lambda(i \delta)=j\}}}{(i+1) \delta \wedge t-i \delta} \int_{i \delta}^{(i+1) \delta \wedge t}\left(\max _{i \in \mathbb{S}}\left(-q_{i i}\right)(s-i \delta)+o(s-i \delta)\right) \mathrm{d} s \\
\leq & 1+\frac{\max _{i \in \mathbb{S}}\left(-q_{i i}\right)}{2} \delta \mathrm{e}^{\frac{2(1+\varepsilon) \tilde{K} \delta}{\varepsilon}}+o(\delta)
\end{aligned}
$$

where $\check{K}:=\max _{i \in \mathbb{S}}\left|K_{i}\right|$.

By the property of conditional expectation, we deduce from (37) that

$$
\begin{align*}
& \mathbb{E} \mathrm{e}^{\frac{1+\varepsilon}{\varepsilon}} \int_{0}^{t}\left(K_{\Lambda\left(s_{\delta}\right)}-K_{\Lambda(s)}\right) \mathrm{d} s \\
& =\mathbb{E} \mathrm{e}^{\frac{1+\varepsilon}{\varepsilon} \sum_{i=0}^{\lfloor t / \delta\rfloor} \int_{i \delta}^{(i+1) \delta \wedge t}\left(K_{\Lambda(i \delta)}-K_{\Lambda(s)}\right) \mathrm{d} s} \\
& =\mathbb{E}\left(\mathbb{E}\left(\left.\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon} \sum_{i=0}^{\lfloor t / \delta\rfloor} \int_{i \delta}^{(i+1) \delta \wedge t}\left(K_{\Lambda(i \delta)}-K_{\Lambda(s)}\right) \mathrm{d} s} \right\rvert\, \Lambda\left(t_{\delta}\right)\right)\right) \\
& =\mathbb{E}\left(\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon} \sum_{i=0}^{\lfloor t / \delta\rfloor-1} \int_{i \delta}^{(i+1) \delta}\left(K_{\Lambda(i \delta)}-K_{\Lambda(s)}\right) \mathrm{d} s} \mathbb{E}\left(\left.\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon} \int_{t_{\delta}}^{\left(t_{\delta}+\delta\right) \wedge t}\left(K_{\Lambda\left(t_{\delta}\right)}-K_{\Lambda(s)}\right) \mathrm{d} s} \right\rvert\, \Lambda\left(t_{\delta}\right)\right)\right) \\
& \leq\left(1+\frac{\max _{i \in \mathbb{S}}\left(-q_{i i}\right)}{2} \delta \mathrm{e}^{\frac{2(1+\varepsilon) \tilde{K} \delta}{\varepsilon}}+o(\delta)\right) \mathbb{E}\left(\mathrm{e}^{\frac{1+\varepsilon}{\varepsilon} \sum_{i=0}^{\lfloor t / \delta\rfloor-1} \int_{i \delta}^{(i+1) \delta}\left(K_{\Lambda(i \delta)}-K_{\Lambda(s)}\right) \mathrm{d} s}\right) \\
& \leq\left(1+\frac{\max _{i \in \mathbb{S}}\left(-q_{i i}\right)}{2} \delta \mathrm{e}^{\frac{2(1+\varepsilon) \tilde{K} \delta}{\varepsilon}}+o(\delta)\right)^{\lfloor t / \delta\rfloor+1} \quad \delta \in\left(0, \delta_{1}\right) \tag{38}
\end{align*}
$$

Noting that

$$
\begin{align*}
& \left(1+\frac{\max _{i \in \mathbb{S}}\left(-q_{i i}\right)}{2} \delta \mathrm{e}^{\frac{2(1+\varepsilon) \tilde{K} \delta}{\varepsilon}}+o(\delta)\right)^{\frac{\varepsilon(\lfloor t / \delta\rfloor+1)}{1+\varepsilon}} \\
& =\exp \left(\frac{\varepsilon(\lfloor t / \delta\rfloor+1)}{1+\varepsilon} \ln \left(1+\frac{\max _{i \in \mathbb{S}}\left(-q_{i i}\right)}{2} \delta \mathrm{e}^{\frac{2(1+\varepsilon) \tilde{K} \delta}{\varepsilon}}+o(\delta)\right)\right) \tag{39}\\
& \leq \exp \left(\frac{\varepsilon(t+\delta)}{1+\varepsilon} \frac{1}{\delta} \ln \left(1+\frac{\max _{i \in \mathbb{S}}\left(-q_{i i}\right)}{2} \delta \mathrm{e}^{\frac{2(1+\varepsilon) \check{K} \delta}{\varepsilon}}+o(\delta)\right)\right) \\
& \leq \exp \left(\frac{\varepsilon}{1+\varepsilon} \max _{i \in \mathbb{S}}\left(-q_{i i}\right)\right) \exp \left(\frac{\varepsilon}{1+\varepsilon} \max _{i \in \mathbb{S}}\left(-q_{i i}\right) t\right)
\end{align*}
$$

and taking (38) into consideration, we deduce from (34) that
$\mathbb{E} \mathrm{e}^{\int_{0}^{t} K_{\Lambda\left(s_{\delta}\right)} \mathrm{d} s}$

$$
\leq \exp \left(\frac{\varepsilon}{1+\varepsilon} \max _{i \in \mathbb{S}}\left(-q_{i i}\right)\right)\left(\mathbb{E} \mathrm{e}^{(1+\varepsilon) \int_{0}^{t} K_{\Lambda(s)} \mathrm{d} s}\right)^{\frac{1}{1+\varepsilon}} \exp \left(\frac{\varepsilon}{1+\varepsilon} \max _{i \in \mathbb{S}}\left(-q_{i i}\right) t\right)
$$

References

- Bao, J., Shao, J., Yuan, C., Approximation of Invariant Measures for Regime-Switching Diffusions. arXiv.
- Bakhtin, Y., Hurth, T., Mattingly, J. C., Regularity of invariant densities for 1D-systems with random switching, arXiv:1406.5425.
- Chen, M.-F., Eigenvalues, inequalities, and Ergodicity Theory, Springer, London, 2005.
- Chen, M.-F., The Principal Eigenvalue for Jump process, Acta Math. Sinica, 16 (2000), 361-368.
- Cloez, B., Hairer, M, Exponential ergodicity for Markov processes with random switching, arXiv: 1303.6999, 2013.

References

- Mao, X., Yuan, C., Yin, G., Numerical method for stationary distribution of stochastic differential equations with Markovian switching, J. Comput. Appl. Math., 174 (2005), 1-27.
- Mao, X., Yuan, C., Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006.
- Mattingly, J. C., Stuart, A. M., Tretyakov, M. V., Convergence of numerical time-averaging and stationary measures via Poisson equations, SIAM J. Numer. Anal., 48 (2010), 552-577.
- Pinsky, M., Scheutzow, M., Some remarks and examples concerning the transience and recurrence of random diffusions, Ann. Inst. Henri. Poincaré, 28 (1992), 519-536.

References

- Shao, J., Criteria for transience and recurrence of regime-switching diffusions processes, arXiv:1403.3135.
- Shao, J., Ergodicity of regime-switching diffusions in Wasserstein distances, arXiv:1403.0291v1.
- Xi, F., Yin, G., Stability of Regime-Switching Jump Diffusions, SIAM J. Control Optim., 48 (2010), 525-4549.
- Yuan, C., Mao, X., Stationary distributions of Euler-Maruyama-type stochastic difference equations with Markovian switching and their convergence, J. Difference Equ. Appl., 11 (2005), 29-48.
- Yin, G., Zhu, C., Hybrid Switching Diffusions: Properties and Applications, Springer, 2010.

Thanks A Lot !

