Switching Diffusions: Past-Dependent Switching Having A
Countable State Space

George Yin
(with Dang Nguyen)

Wayne State University



Outline

9 Introduction
@ Formulation
@ Examples

9 Existence, Uniqueness, and Markov-Feller Property

9 Recurrence and Ergodicity
@ Functional 1t formula
@ Recurrence and Ergodicity

Q stavility



Switching Diffusion: An lllustration

Discrete-event State 3

Discrete-event State 2

Discrete-event State 1
X((T)b a(0)=1




Switching Diffusion: An lllustration

0/7 Discrete-event State 3
A (11)

Discrete-event State 2

: Discrete-event State 1
X(;b a(0)=1




Switching Diffusion: An lllustration

M? Discrete-event State 3
. " (11)
X(12) : ,
: Discrete-event State 2

: Discrete-event State 1
X(;b a(0)=1




Switching Diffusion: An lllustration

Discrete-event State 3

Discrete-event State 2

X(13) X(0

Discrete-event State 1



Switching Diffusion: An lllustration

Discrete-event State 3

Discrete-event State 2

(’/_—@ Discrete-event State 1
X(13) x;b a(0)=1

Figure: A “Sample Path” of Switching Diffusion (X (t), a(t)).




Main Features
@ continuous dynamics & discrete events coexist

@ switching is used to model random environment or other random
factors that cannot be formulated by the usual differential
equations

@ problems naturally arise in applications such as distributed,
cooperative, and non-cooperative games, wireless
communication, target tracking, reconfigurable sensor
deployment, autonomous decision making, learning, etc.

@ traditional ODE or SDE models are no longer adequate

@ non-Gaussian distribution



An Example

Consider

X(t) = A(a(t))x(t) (1.1)

where a(t) has two states {1,2},

0 -1 -1 2 -1 1
R s YO R et PR A |
Associated with the hybrid system, there are two ODEs
x(t) =A(1)x(t), and (1.2)
x(t) =A(2)x(t) (1.3)

switching back and forth according to a(t).



Phase Portrait of the Components

Phase portraits of the ‘component’ with a center (in dashed line) and
the ‘component’ with a stable node (in solid line) with the same initial
condition xo = [1,1]



Phase Portrait of Hybrid System

The phase portrait is given below.
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Figure: Switching linear system: Phase portrait of (1.1) with xo = [1,1]’.



Seemingly Not Much Different from Diffusions without Switc hing?

Q: When we have a coupled system with .# = {1,2} and two stable
linear systems, do we always get a stable system?



Seemingly Not Much Different from Diffusions without Switc hing?

Q: When we have a coupled system with .# = {1,2} and two stable
linear systems, do we always get a stable system?

Consider x = A(a(t))x +B(a(t))u(t), and a state feedback
u(t) =K(a(t))x(t). Then one gets

x = [A(a(t)) —B(a(t)K (a(t))]x.
Suppose that a(t) € {1,2} such that
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A(l)—B(l)K(l)—[ 200 —100

| a9 2]
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The two feedback systems are stable individually. But if we choose a(t) so
that it switches at kn, where n = 0.01. Then the resulting system is unstable.



The hybrid system is unstable

30

L L L
1.4 16 1.8 2

L L L
0 0.2 0.4 0.6

0.8 1 12
Time (Second)

[L.Y. Wang, P.P. Khargonecker, and A. Beydoun, 1999, deterministic switching system]



Why is the system unstable?

SIAQ) - BWK M) +AR) - B@K (] - 5|

—-200 220
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220 -200

is an unstable matrix.

The averaging effect dominates the dynamics.



Example: Two-time Scale (a demonstration)
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Example: Schooling (Couzin et.al. Nature, 2005)




Example: High Way Traffic




Example: Honeybee Organization (Visscher, Nature, 2003)




What's new in this talk?

In our formulation
@ The state space of a(t) is countably infinite.
@ The switching rates of a(t) depends on X(s),s € [t —r,t].



Notation



Notation

@ Letr be a fixed positive number. Denote by ¢'([a,b],R") the set of
R"-valued continuous functions defined on [a,b]. We simply
denote it by ¢ := € ([—r,0],R").



Notation

@ Letr be a fixed positive number. Denote by ¢'([a,b],R") the set of
R"-valued continuous functions defined on [a,b]. We simply
denote it by ¢ := € ([—r,0],R").

® For ¢ € ¢, we use the norm ||| = sup{|@(t)| :t € [-r,0]}.



Notation

@ Letr be a fixed positive number. Denote by ¢'([a,b],R") the set of
R"-valued continuous functions defined on [a,b]. We simply
denote it by ¢ := € ([—r,0],R").

® For ¢ € ¢, we use the norm ||| = sup{|@(t)| :t € [-r,0]}.

@ Fory(:) € €([-r,»),R")and t > 0, we denote by y; the so-called
segment function (or memory segment function)
yi():=y(t+-)e?.



Notation

@ Letr be a fixed positive number. Denote by ¢'([a,b],R") the set of
R"-valued continuous functions defined on [a,b]. We simply
denote it by ¢ := € ([—r,0],R").

® For ¢ € ¢, we use the norm ||| = sup{|@(t)| :t € [-r,0]}.

® Fory(-) € €([-r,»),R") and t > 0, we denote by y; the so-called
segment function (or memory segment function)
yi():=y(t+-)e?.

@ Let W(t) be an .#-adapted and R%-valued Brownian motion.



Notation

@ Letr be a fixed positive number. Denote by ¢'([a,b],R") the set of
R"-valued continuous functions defined on [a,b]. We simply
denote it by ¢ := € ([—r,0],R").

® For ¢ € ¢, we use the norm ||| = sup{|@(t)| :t € [-r,0]}.

@ Fory(:) € €([-r,»),R")and t > 0, we denote by y; the so-called
segment function (or memory segment function)
yi() =y(t+-)e@.

@ Let W(t) be an .#-adapted and R%-valued Brownian motion.

@ Suppose b(-,-) :R"xZ, —R"and a(-,-) : R" x Z, — R"™9, where
Z+ =N\{0} ={1,2,...}, the set of positive integers.



@ Consider the two-component process (X (t),a(t)), where a(t) is a
pure jump process taking value in Z., and X(t) satisfies

dX (t) = b(X (1), a(t))dt + o(X (1), a(t)dW ().  (1.4)

@ Assume that if a(t—) :=limg_- a(s) =i, then it can switch to j at t
with rate g;j(X;) where g;(-) : € — R.

P{a(t+A)=jla(t) =iXs,a(s),s <t} =q;(X;)A+0(A) if i ]
P{a(t+A)=ila(t) =i,Xs,a(s),s <t} =1—qi(X{)A+0(A).
(1.5)
@ Assume the switching is conservative, i.e.,

gi(p) = Zqij(qo) for any(@,i) € € x Z.. (1.6)
J#
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Example 1

@ Consider the evolution of two interacting species. Onaiso: X,
which is described by a logistic differential equation pdred by a
white noise. The other isiacro: a, we assume that its number of
individuals follows a birth-death process.

@ The life cycle of a micro species is usually very short, se itdasonable
to assume that the evolution Xf(t) can be described by

dX (t) = X(t) [a(a(t)) —b(a(t))X(t)]dt + a(a(t))X (t)dW (t), (1.7)

wherea(i),b(i),o(i) are positive constants for eack Z..

@ Thereproduction process @f(t) is assumed to beon-instantaneous
depending on the period of time from egg formation to haighgayr.

a(p) ifj=i-1
dij(@) =1 Bi(p) ifj=i+1
0 if j£i,i+1,i—1




Existence and Uniqueness

@ First in contrast to the case of switching process staying in a finite
set, care needs to be exercised regarding uniformity with respect
to the switching set.

@ Second, the past dependence requires careful handling of the use
of Lipschitz continuity etc. and the uniformity with respect to the
element in the corresponding function spaces.

@ Depending on the preference, Assumptions 2.1 allows certain
bounds to be dependent of the switching state i, but uniform in the
variable in the function space, whereas Assumption 2.2 requires
uniformity in the bounds w.r.t. i, but requires the past dependent
part be localized.



Assumption 2.1
(i) Foreach € Z., there is a positive constahi such that
[o(x,i) = b(y,i)|+|o(x,i) —a(y,i)] < Lix —y[vx,y € R".
(ii) g;j(@) is measurable i € ¢ for all i andj € Z.. Moreover,

M= sup {Gi(@)} <.

PG i€,y
Assumption 2.2
(i) There is a positive constahtsuch that
Ib(x,i)—b(y,i)|+]|o(x,i)—a(y,i)| <Lx -y, ¥x,y e R"i € Z,.

(i) gij(¢@) is measurable i € ¢ for each(i,j) € Zi. Moreover, for any
H >0,

Ma=  sup  {ai(¢)} <.
@b, ||p||<H,ieZ,




Theorem 2.1

Under either Assumption 2.1 or Assumption 2.2, for each initial data
(&,i0), there exists a unique solution (X(t),a(t)) to (1.4) and (1.5).

Remark 1

To obtain the existence and uniqueness of solutions, Assumptions 2.1
and 2.2 can be relaxed by replacing the global Lipschitz conditions
with local Lipschitz conditions together with Lyapunov-type functions.



Markov property

Theorem 2.2

Suppose that either Assumption 2.1 or Assumption 2.2 is satisfied. Let
(X(t),a(t)) be a solution to (1.4) and (1.5). Then (X, a(t)) is a
homogeneous strong Markov process taking value in & x Z. with
transition probabilities

P(e.i,t,Ax {i}) =P{X* e Aa(t) =]},

where X 1(t) is the solution to (1.4) and (1.5) with initial data
((p,|) €€ x Z+.




Feller property

@ In addition to the sufficient conditions for the existence and
uniqueness of solution, we prove the Feller property of the
solution only with an additional condition that (@) is continuous
in@foranyi,je€Z,.

@ There are some difficulties because the process {X;} takes value
in an infinite dimensional Banach space and the switching {a(t)}
has an infinite state space. Moreover, although we suppose that
gij(¢@) is continuous, neither the uniform continuity in ¢ € € nor
equi-continuity ini,j € Z is assumed.



Auxiliary Process

Let y(t) be a Markov chain with generator Q= (py) for (i,j) € Z4 x Zy.,
where pj = —1and gy =27 ifj <iand g; =27 ifj > i, i.e,,

~1 1/2 1/4

. 1/2 -1 1/4
Q=1 1/2 174 -1

dZ (t) = b(Z (t), y(t))dt + o (Z (1), y(t))dW (t) ,t > 0



Similar to Girsanov’s theorem, which tells us how to convert an It6
process to a Brownian motion under a change of measure, we aim to
establish a change of measure allowing us to “convert” a hybrid
diffusion with past-dependent switching to a hybrid diffusion with
Markov switching.

Let ay, i be values of a(t), y(t) at 1, 6« ((the k-th jump moments of
a(t) and y(t)), respectively. Xy, Z k) be values of X;,Z; at 1y, 6
respectively.



Change of Measures

Proposition 2.3

Forany T >0, letf(,-): ¥ x Z+ — R be a bounded continuous
function. Forany | =0,1,..., any iy € Z, with iy # ix,; and
k=1,....,I+1,and any (@,i) € € x Z,

|
Egi |f (X 0(T) Lzt <n,) kﬂll{a(rk)=ik}}

—e"Ey, |f(Z1.i)1{a<T<a,1)

x |j (Liv0= .k}q'k':;:lik(j))ex|o{—/OT Qys)(Zs)ds } .
(21)




Lemma 2.1

Let (@,ip) € € x Z4 with ||@| <R and T > 0. For each A > 0, there
existm=m(A) € Z4, Nnm =Np(A) € Z4, and dy = dm(A) > 0 such that

Pojy ({Tmia > TH0{a(t) <N, ¥t € [0,T]}) 2 1A, Vl|o— @]l <,

where Ny = {1,... k}.




Lemma 2.1

Let (@,ip) € € x Z4 with ||@| <R and T > 0. For each A > 0, there
existm=m(A) € Z4, Nnm =Np(A) € Z4, and dy = dm(A) > 0 such that

Pojy ({Tmia > TH0{a(t) <N, ¥t € [0,T]}) 2 1A, Vl|o— @]l <,

where Ny = {1,... k}.

Under suitable conditions, sample paths of a diffusion [0,T] are Holder
continuous. Thus, it is easy to find a compact set in which sample
paths of a diffusion process lie with a large probability. Our arguments
rely on this fact. However, the initial data ¢ of our process X (t) does
not always satisfy the Holder continuity.




Theorem 2.4

Let either Assumption 2.1 or Assumption 2.2 be satisfied. Assume
further that g (-) is a continuous function for any i,j € Z... Then the
solution to (1.4) and (1.5) has the Feller property.



Recurrence and Ergodicity



Functional It6 formula

In a recent insightful work, Dupire (2009) proposed a method to extend
the 1t6 formula to a functional setting using a pathwise functional
derivative that quantifies the sensitivity of a functional variation in the

endpoint of a path.

This work encouraged subsequent development (for example, [5, 18]).
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Let D be the space of cadlag functions f : [-r,0] — R". For ¢ € D, we
define horizontal (time) and vertical (space) perturbations for h > 0 and
y e R" as
s+h)if se[-r,—h],
()~ [P s lr N
(p(O) if se [_h70]7
and
(py(s) _ §0(5) if se [—r,O),
®(0)+y,

respectively.
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LetV : D x Z, — R. The horizontal derivative at (¢,i) and vertical
partial derivative of V are defined as

Vi(.i) = Jim V(@) ZV (@) (3.1)
he, iy _
o (@.1) = lim V€TV (3.2)

if these limits exist. In (3.2), e, is the standard unit vector in R" whose
£-th component is 1 and other components are 0.
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Let F be the family of function V() : D x Z, — R satisfying that
@ V is continuous, that is, for any € > 0, (@,i) e D x Z,, there is a
0 >0suchthat |V(@,i)—V(¢,i)|<easlongas|¢—¢| <.
@ The functions Vi, Vx = (& V), and Vx = (0 V) exist and are
continuous.
@ V, Vi, Vx = (V) and Vyx = (dqV ) are bounded in each
Br:={(9,i):|lo|| <R,i<R},R>0.

LetV(-,-) € F, we define the operator

2V(0,1) =Vi(0.1) + Vi (@.)B(9(0),) + 5 tr (Vi (.D)A0(0).))
* i i (@) [V (9.]) = V(o,i]
j=1j#

NII—‘

V(@) + 3 Belg(0) V(@) +
=1

+ Y G(@[V(ed)-V(ed)],
=LA

kil ®(0),1)Vu(p,i)

(3.3)



for any bounded stopping time 1; < T, we have the functional 1td
formula:

EV (Xs,, a(T2)) :EV(XTl,a(Tl))JrE/TZ DV (Xs,a(s))ds  (3.4)

if the expectations involved exist.



Remark 3.1

Consider functions of the form
0
V(@) =(@(0).)+ [ a(t.i)ialot).i)t
wheref,(-,-) : R" x Z, — R is a continuous function and
f1(-,-) : R" x Z4 — R is a function that is twice continuously differentiable
the first variable and(-,-) : R, x Z, — R be a continuously differentiable

function in the first variable. Then &ip,i) € € x Z,. we have (see [18] for
the detailed computations)

Vi(@1) = 9(0.)0(00),1) ~ 9. ) o(~1).0) ~ [ ta(o(t).)da(t, i)

ofy : 0°f,

KV (9,i) =5~ e (9(0),i), gV (@,i)= oo (9(0),1).
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Irreducibility

We need either of the following assumptions.

H1 (a) Foranyi e Z,, A(x,i) is elliptic uniformly on each compact
set, where A(x,i) = a(x,i)a"(x,i)

(b) There is an i* satisfying that for any i € Z_, there exist
i1,...,ik €Zy and @, ..., @1 € € such that g;, (@) > 0,
Qi1 (@41) >0, =1,... k=1, and qg; ;- (p(k +1)) > 0.

H2 (a) There exists an i* € Z. such that A(x,i*) is elliptic uniformly on
each compact set.

(b) Forany (¢,i) € € x Z, there exist positive integers
i =ig,...,ik =i" such that g; ., (@) >0, =1,... k- 1.



Lemma 3.1 (Doeblin’s condition)

Assume that either (H1) or (H2) is satisfied. There is To > 0 and a
nontrivial measure v(-) on B(%’) such that v(D) > 0 if D is a nonempty
open subset of ¢ and that forany R >0, T > Ty, thereisadg 1 >0
satisfying

Pyi{Xr eDand a(T)=i*"} >dgr7;v(D),D € B(%) given that ||¢| <R.
(3.5)




Definition 3.1
The proces§(X:,a(t)) :t > 0} is said to be recurrent (resp., positive
recurrent) relative to a measurable Bet € x Z__ if

Pyi{(X¢,a(t)) € E forsomet >0} =1

(resp.Eqy; [inf{t > 0: (X, a(t)) € E}] < )
forany(@,i) € € x Z..




Theorem 3.1

Suppose that either (H1) or (H2) holds. Let D be a bounded open
subset of ¢ and N be a finite subset of Z.. If (Xt,a(t)) is recurrent
relative to D x N then (X, a(t)) is recurrent relative to D’ x N’ for any
open set D’ C ¢ and a finite set N’ C Z. containing i* with i* given in
either (H1) or (H2) according to which hypothesis is satisfied.




Theorem 3.2

Suppose that either (H1) or (H2) holds. Let V (-,-) € F satisfying
r!i_r}rgoinf{V((p,i) 1 |@(0)| Vi >n} = oo, (3.6)
Suppose further that there are C > 0 & H > 0 satisfying
2N (@,1) < Clyy(giy<hy- (3.7

Then (X, a(t)) is recurrent relative to D x N, where D is any open
bounded subset of ¢ and N C Z. contains i*.




Theorem 3.3
Suppose either (H1) or (H2) holds. Let V (-,-) € IF satisfying
r!minf{V(qo,i) :l@(0)| Vi >n} = co. (3.8)
Suppose further there are C1,C, >0 & H s.t.
LV (9,i) < —C1+Coliy(gi)=H)- (3.9)

Then, (X;,a(t)) is positive recurrent relative to any set of the form

D x N where D is a nonempty open set of ¥ and N > i* with i* given in
either (H1) and (H2). Moreover, there is a unique invariant probability
measure p*, and for any (@,i) € € x Z

lim [IP(t, (@:),-) = 4*[[rv = 0.
—00




Stability



@ Sufficient conditions for stability can be given via Lyapunov
functions.

@ We focus on some practical conditions.

@ To find sufficient conditions for stability, it is desirable to find some
common threads that are shared by many specific systems. Our
motivation is based on the following thoughts. First, although the
dynamics of X (t) depend on the residence of the state of a(t), the
structures of equations for different states of a(t) are not
drastically different but rather similar in certain sense. This
observation suggests finding a Lyapunov function that has similar
form in different states of a(t).



@ For instance, suppose there is a Lyapunov function V (x) such that
in each discrete state i, we have 4V (x) < ¢V (x), where .4 is the
generator of the diffusion in regime i

@ Itis well known that the sign of ¢; determines stability of the
diffusion in each state i.

@ For the switching diffusion, one can expect that the stability of the
system depends not only on {c;} but also on the generator
Q(-) = (9ij(-))z, xz. of the switching part.

A natural question is: under what relation between {c;} and Q(-),
the switching diffusion is stable?

@ Although the results hold for past-dependent cases, to elaborate
on the main idea, we restrict ourselves to the case Q depends
only on the current state of X(t) rather than a history of X(t).



Let a(t) be the Markov chain with generator Q(0).
We suppose that b(0,i) =0,0(0,i)=0,i € Z,.
If X(0) =0 then X(t)=0and a(t) =a(t).
Definition 4.1
The trivial solution X (t) = 0 is said to be
@ stable in probability, if for any h > 0,
lim inf Py {X(t) <hVt>0} =1.

Xx—0i€Zy

@ asymptotically stable in probability, if it is stable in probability and

lim inf Py {tlim X(t) = 0} =L
U ke

x—0i€Z




Definition 4.2
The Markov chain a(t) is said to be

@ ergodic, if it has an invariant probability measure v = (v, Vs, ...
and
tIim pij(t) =, for any i,j € Z, or equivalently,
—00
tlm_ Z Ipjj(t) —vj|=0foranyicZ,,
I€Z

@ strongly ergodic, if
lim sup{ > Ipi(t) - vj|} =0.

=eiez, | EZ,

@ strongly exponentially ergodic, if 4 C > 0 and A > 0 such that

S IBij(t)— 75| < Ce M foranyi € Z,t >0.
j€Zy




Theorem 4.3

Suppose that the Markov chain a(t) is strongly exponentially ergodic
with invariant probability measure v = (vp,v,,...) and that

sup ) |gi(x) —q;(0)] - 0 as x — 0. 4.2)

i€Z+j |

Let D be a neighborhood of 0 and V : D — R satisfying that V (x) =0
if and only if x = 0 and that V (x) is continuous on D, twice
continuously differentiable in D \ {0}. Suppose that there is a bounded
sequence of real numbers {c; :i € Z} such that

LV (X) <cV(x)¥x € D\ {0}. (4.3)

Then, if 3icz, civi <0, the trivial solution is asymptotic stable in
probability.




Since a(t) is strongly exponentially ergodic, the Fredholm alternative
works with Q(0).



Since a(t) is strongly exponentially ergodic, the Fredholm alternative
works with Q(0).

Lemma 4.1 (Fredholm alternative)

If a Markov chain is strongly exponentially ergodic with generator Q
and invariant probability measure v = (vq,Vs,...)", then if

b = (by,b,...)" is bounded satisfying v'b = 0, then, there exists a
bounded vector ¢ = (c1,¢C,,...)" such that Qc=bh.

Thus we can find () such that the function U(x,i) = yVP(x) for some
sufficiently small p satisfies

LU(X,i) < —AU(x,i), A >0




Some questions

@ Strongly exponential ergodicity is too strong. Can we relax it?
@ What if we have 4V (x) < cig(V(x)) in lieu of AV (x) <c;jV (x)

@ Can we estimate pathwise convergence rate?



Let I be a family of increasing and continuously differentiable functions
g:R; — R, suchthat g(y) =0 iff y = 0. The function

G(y) ;:—/yh% on [0,h] (4.4)

is non-positive and strictly decreasing and limy_,oG(y) = —. Its
inverse G~ : (—,0] ~ (0, h] satisfies

lim G~1(t)=0.

t——o0



Assumption 4.1

Let D be a neighborhood df andV : D — R satisfying thatv (x) = O if
and only ifx = 0 and thatV (x) is continuous oD, twice continuously
differentiable inD \ {0}. Suppose that there is a bounded sequence of re
numbers{c; : i € Z} and a functiorg(-) € ' such that

AV (x) < 6g(V (x))vx €D\ {0). (4.5)
~ Ve()a (i) _
Mo "0<|xsi‘hﬂez+{‘ o(V(x)) }< ’ &8

.4 is the generator of the diffusion process at state




Theorem 4.4

Let Assumption 4.1 is satisfied. Suppose that the Markov chain a(t) is
strongly ergodic with invariant probability measure v = (vy,Vv,,...) and

sup 3 1g;(x) —q;(0)| = 0 as x — 0. (4.7)
€24 | A

is satisfied.
Then, if 3icz, civ; <0, the trivial solution is asymptotically stable in
probability. Moreover, there is a A > 0 such that

m Y X()
P {JL"lm

gl}>1—eforany(x,i)685xZ+. (4.8)

~



Ideas of the proof

@ We present the ideas for the case g is the identity function:

@ For general g, we can prove similarly by using a change of
Lyapunov functions.

@ The idea is as follows:
When x is close to 0, then when T is sufficiently large, we have

ExilnV(X(T) < —=AT +InV(x). (4.9)

Make use of the log-Laplace transform to interchange the order of
In and E to obtain:

ExiVO(X(T)) <e 9Tv(x). (4.10)



In (V (X (th A1) =In(V (x))+ OT“M g“\(/s&/g ()S))ds
it [ V(X () o (X (5), (s))zd @1
- 2V2(X(s)) >
WAV (X(5))a(X(S),a(s))
+/O VXE) dW (s).
Thus
In (V (X (th At))) <INV (X)+H(t) (4.12)
where
HO = [ " o(a(s))ds + / VKX (S\)/)E’X(?S()S))’“(S))dw (s).

and 1, =inf{t > 0: [X;| > h}



Let
A= ZCiVi < 0.

Because of the uniform ergodicity of a(t), there exists a T > 0 such
that

T T A _
IEOJ/O c(a(s))ds :Ei/o c(a(s))ds < —STT VieZy. (4.13)

By the assumption

_supz |gij(x) —q;(0)] - 0 as x — 0. (4.14)
|€Z+J7£|

there exists an h; € (0,h) such that

ThAT A
EGH(T) =B [ cla(s)ds <-5T Vx| <hiieZs, (415)
0



Lemma 4.2
Let Y be a random variable, 8; > 0 a constant, and suppose
Eexp(6Y )+ Eexp(—6Y) <Kj.

Then the log-Laplace transform @(6) = InEexp(0Y ) is twice
differentiable on [O, 2) and

2

do d2p 6
= < — <
G5 @=EY, and0 OI92(9) Kp,0 € {o 2>

for some K, > 0. As a result of Taylor's expansion, we have

®(0) < BEY + 6%K,, for 6 € [0,0.56).




InE, ;e (M) <0E, H(T)+ 6%K
AT (4.16)

<_— 2
< 92+6K

for some K > 0 depending on T,C = sup{|c;|} and Mg. If choosing 8

such that

0K < ATT (4.17)

we have OAT
InExJeeH(T) < 4 forO< |x| <hy,i€Z;

or equivalently,
IEXJeQH(T) < exp {—Q)\TT} for 0 < |x| <hy,i € Z;. (4.18)
This and the fact that In (V (X (T, At))) < InV (x)+H(t) imply

EyiV(X(Th AT)) <V (X)Ey,; €T <V (x)exp {—GA—T}. (4.19)



Theorem 4.5

Suppose that the Markov chain a(t) is ergodic with invariant
probability measure v = (vq,v,,...) and Assumption 4.1 is satisfied
with additional conditions:

limsupc; <0, (4.20)

i—00

Then, if 3icz, Civi <O, the trivial solution is asymptotic stable in
probability. Moreover, there is a A > 0 such that

e VI(X() .
Py j {Jﬂlm <1p>1-—¢forany (x,i)eBsxZ;. (4.21)




Example 2

Consider a real-valued switching diffusion

dX (t) =b(a(t))X (t)[IX (t)]Y vi]dt+a(a(t))[|X(t)[>Vv1]dW t), 0 < y< O,
(4.22)
where aV b = max(a,b) for two real numbers a and b, and

Q(x) = (g (x))Z+XZ+ with

(—P1(x) ifi=j=1
B2.(x) ifi=1j=2
qj(x) = ¢ —pi(x) = pi(x) ifi=j>2
Bi(X) ifi>2j=i—1
[ 5i(%) ifi>2,]=i+1.




a(t) is ergodic with the invariant measure v given by

_ 1 1 p/ 1(0)

k>2.

Let V (x) = x2, we have
LV (x) = 2b(i)[x P2+ 2(1)[x|*()
Since y <1 and o(i) is bounded,
AV (x) <[2b(i) + €]|x|?+? = [2b(i) + e]VITY(X) in [-h,h] x Z,..

Suppose
Zb Vi <0, and limsupb; <0

i—00

Thus, for any € > 0, there exists a d > 0 such that if (x,i) € [0,0] x Z,
then, there exists a A > 0 such that

Py i {Iim supt/¥YX2(t) < A } >1-—¢.

t—oo



Thank you
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