Ergodicity of stochastic differential equations with jumps and singular coefficients

Longjie Xie

Jiangsu Normal University Joint work with Xicheng Zhang

July 18, 2017

Background

Main results

- Existence and uniqueness
- Long time behavior and idea of proof
- Examples

$$x'(t) = b(x(t)), \quad x(0) = x_0 \in \mathbb{R}^d.$$

$$x'(t) = b(x(t)), \quad x(0) = x_0 \in \mathbb{R}^d.$$

For d = 1, $b(x) = 2sign(x)\sqrt{|x|}$ and $x_0 = 0$, the above equation has infinitely many solutions:

$$X(t)\equiv 0, \quad X(t)=t^2, \quad X(t)=-t^2, \quad \cdots$$

$$x'(t) = b(x(t)), \quad x(0) = x_0 \in \mathbb{R}^d.$$

For d = 1, $b(x) = 2sign(x)\sqrt{|x|}$ and $x_0 = 0$, the above equation has infinitely many solutions:

$$X(t)\equiv 0, \quad X(t)=t^2, \quad X(t)=-t^2, \quad \cdots$$

Note that the function *b* is Hölder continuous.

$$x'(t) = b(x(t)), \quad x(0) = x_0 \in \mathbb{R}^d.$$

For d = 1, $b(x) = 2sign(x)\sqrt{|x|}$ and $x_0 = 0$, the above equation has infinitely many solutions:

$$X(t)\equiv 0, \quad X(t)=t^2, \quad X(t)=-t^2, \quad \cdots$$

Note that the function *b* is Hölder continuous.

It is interesting to find that noises may produce some regularization effects.

Consider the following stochastic differential equation (SDE):

$$\mathrm{d}X_t = \sigma(X_t)\mathrm{d}W_t + g(X_{t-})\mathrm{d}L_t + b(X_t)\mathrm{d}t, \qquad (1.1)$$

with $X_0 = x \in \mathbb{R}^d$.

 $(W_t)_{t \ge 0}$ is an *m*-dimensional standard Brownian motion.

 $(L_t)_{t \ge 0}$ is a k-dimensional pure jump Lévy process.

In the case $g \equiv 0$:

• N. V. Krylov and M. Röckner (2005, PTRF):

$$\mathrm{d}X_t = \mathrm{d}W_t + b(X_t)\mathrm{d}t, \quad X_0 = x.$$

<u>Condition</u>: $b \in L^p(\mathbb{R}^d)$ with p > d.

• X. Zhang (2005, SPA):

$$\mathrm{d}X_t = \sigma(X_t)\mathrm{d}W_t + b(X_t)\mathrm{d}t, \quad X_0 = x.$$

<u>Condition</u>: σ is bounded and uniformly elliptic and $\nabla \sigma \in L^{p}(\mathbb{R}^{d})$ with p > d.

There are also many works devoted to study the properties of the unique strong solution:

- E. Fedrizzi and F. Flandoli (2013, JFA): The map $x \to X_t(x)$ is Sobolev differentiable.
- T. Zhang, etc. (2013, Math. Annalen): The map $\omega \to X_t(\omega)$ is Malliavin differentiable.
- L. Xie and X. Zhang (2016, AOP): The strong solution X_t is strong Feller and irreducible.

Background

In the case $\sigma \equiv 0$:

$$\mathrm{d}X_t = \mathrm{d}L_t + b(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d,$$

where L_t is a symmetric α -stable process.

• Tanaka, Tsuchiya and Watanabe (1974, JMKU): When d = 1, $\alpha < 1$, b is bounded and β -Hölder continuous with $\alpha + \beta < 1$, SDE may not has pathwise uniqueness strong solutions.

Background

In the case $\sigma \equiv 0$:

$$\mathrm{d}X_t = \mathrm{d}L_t + b(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d,$$

where L_t is a symmetric α -stable process.

- Tanaka, Tsuchiya and Watanabe (1974, JMKU): When d = 1, $\alpha < 1$, b is bounded and β -Hölder continuous with $\alpha + \beta < 1$, SDE may not has pathwise uniqueness strong solutions.
- Priola (2012, OJM): <u>Condition</u>: $\alpha \ge 1$, *b* is bounded and β -Hölder continuous with $\beta > 1 - \alpha/2$.
- Zhang (2013, Poincare): <u>Condition</u>: $\alpha > 1$, $b \in L^{\infty}(\mathbb{R}^d) \cap W^{\beta,p}(\mathbb{R}^d)$ with $p > 2d/\alpha$ and $\beta \in (1 - \alpha/2, 1)$.

We shall consider two cases:

SDEs with multiplicative pure jump noise:

$$\mathrm{d}X_t = \sigma(X_{t-})\mathrm{d}L_t + b(X_t)\mathrm{d}t,$$

where L_t is a symmetric α -stable process.

SDEs with general Lévy noise:

$$\begin{split} \mathrm{d} X_t &= \sigma(X_t) \mathrm{d} W_t + \int_{|z| \leqslant 1} g(X_{t-}, z) \tilde{N}(\mathrm{d} t, \mathrm{d} z) \\ &+ \int_{|z| > 1} g(X_{t-}, z) N(\mathrm{d} t, \mathrm{d} z) + b(X_t) \mathrm{d} t, \end{split}$$

where N is a Poisson random measure.

Consider the following SDE in \mathbb{R}^d :

$$\mathrm{d}X_t = \sigma(X_{t-})\mathrm{d}L_t + b(X_t)\mathrm{d}t, \quad X_0 = x, \tag{2.2}$$

where L_t is a symmetric α -stable process with $\alpha \in (1, 2)$.

Consider the following SDE in \mathbb{R}^d :

$$dX_t = \sigma(X_{t-})dL_t + b(X_t)dt, \quad X_0 = x, \qquad (2.2)$$

where L_t is a symmetric α -stable process with $\alpha \in (1,2)$.

Conditions:

 $\diamond~\sigma$ is bounded, uniformly elliptic and

$$abla \sigma \in L^p(\mathbb{R}^d)$$
 with $p>2d/lpha.$

 $\diamond b \in W^{\beta,p}(\mathbb{R}^d)$ with $p > 2d/\alpha$ and $\beta \in (1 - \alpha/2, 1)$.

Theorem 1

SDE (2.2) has a unique strong solution $X_t(x)$ which is strong Feller and irreducible. Moreover, $X_t(x)$ has a density p(t, x, y) with the following estimates:

$$c_1t(t^{1/\alpha}+|x-y|)^{-d-\alpha}\leqslant p(t,x,y)\leqslant c_2t(t^{1/\alpha}+|x-y|)^{-d-\alpha}.$$

Theorem 1

SDE (2.2) has a unique strong solution $X_t(x)$ which is strong Feller and irreducible. Moreover, $X_t(x)$ has a density p(t, x, y) with the following estimates:

$$c_1t(t^{1/\alpha}+|x-y|)^{-d-\alpha}\leqslant p(t,x,y)\leqslant c_2t(t^{1/\alpha}+|x-y|)^{-d-\alpha}.$$

<u>Remark:</u> We drop the boundness condition on the drift *b*, which is new even in the additive noise case.

Main results - Existence and uniqueness

Consider the following SDE in \mathbb{R}^d :

$$dX_{t} = \sigma(X_{t})dW_{t} + \int_{|z| \leq 1} g(X_{t-}, z)\tilde{N}(dt, dz)$$
$$+ \int_{|z| > 1} g(X_{t-}, z)N(dt, dz) + b(X_{t})dt.$$
(2.3)

Main results - Existence and uniqueness

Consider the following SDE in \mathbb{R}^d :

$$dX_t = \sigma(X_t) dW_t + \int_{|z| \leq 1} g(X_{t-}, z) \tilde{N}(dt, dz) + \int_{|z| > 1} g(X_{t-}, z) N(dt, dz) + b(X_t) dt.$$
(2.3)

Conditions:

◦ σ is bounded, uniformly elliptic and $∇σ ∈ L^p(\mathbb{R}^d)$ with p > d. $◦ b ∈ L^p(\mathbb{R}^d)$ with p > d.

 \diamond For any 0 < arepsilon < 1 and some p > d/2,

$$\begin{split} \sup_{x \in \mathbb{R}^d} \left(\int_{|z| \leqslant 1} |g(x,z)|^2 \nu(\mathrm{d}z) + \int_{\varepsilon < |z| \leqslant 1} |g(x,z)| \nu(\mathrm{d}z) \right) < +\infty, \\ \int_{|z| \leqslant 1} |\nabla g(x,z)|^2 \nu(\mathrm{d}z) \in L^p(\mathbb{R}^d). \end{split}$$

Theorem 2

SDE (2.3) has a unique strong solution $X_t(x)$ which is strong Feller and irreducible. Moreover, for any bounded measurable φ ,

$$\left|\mathbb{E}arphi(X_t(x)) - \mathbb{E}arphi(X_t(y))\right| \leqslant rac{\mathcal{C}}{\sqrt{t}} \|arphi\|_\infty |x-y|.$$

Theorem 2

SDE (2.3) has a unique strong solution $X_t(x)$ which is strong Feller and irreducible. Moreover, for any bounded measurable φ ,

$$\left|\mathbb{E}\varphi(X_t(x)) - \mathbb{E}\varphi(X_t(y))\right| \leq rac{C}{\sqrt{t}} \|\varphi\|_{\infty} |x-y|.$$

<u>Remark:</u> Notice that we do not make any restrictions on the pure jump Lévy process. In particular, the large jump is allowed. Consider the following simplest SDE:

$$\mathrm{d}X_t = \mathrm{d}L_t + b(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d.$$

Classical results tell us that when b is locally Lipschitz continuous and dissipative in the sense that there exist $\kappa_1 > 0$ and $\kappa_2 \ge 0$ such that

$$\langle x, b(x) \rangle \leqslant -\kappa_1 |x|^{2+\ell} + \kappa_2, \quad \ell \geqslant 0,$$

then there exists a unique invariant measure μ for X_t .

Recall that we consider the following two SDEs:

SDEs with multiplicative pure jump noise:

$$\mathrm{d}X_t = \sigma(X_{t-})\mathrm{d}L_t + b(X_t)\mathrm{d}t. \tag{2.4}$$

O SDEs with general Lévy noise:

$$dX_t = \sigma(X_t) dW_t + \int_{|z| \leq 1} g(X_{t-}, z) \tilde{N}(dt, dz) + \int_{|z| > 1} g(X_{t-}, z) \tilde{N}(dt, dz) + b(X_t) dt.$$
(2.5)

For simplify, we shall focus on providing conditions in terms of the drift b.

Main results - Long time behavior

Assume that the drift coefficient *b* is divided into two parts:

 $b=b_1+b_2.$

Then, SDE (2.4) can be written as

 $\mathrm{d}X_t = \sigma(X_{t-})\mathrm{d}L_t + b_1(X_t)\mathrm{d}t + b_2(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d.$ (2.6)

Main results - Long time behavior

Assume that the drift coefficient b is divided into two parts:

 $b=b_1+b_2.$

Then, SDE (2.4) can be written as

$$\mathrm{d}X_t = \sigma(X_{t-})\mathrm{d}L_t + b_1(X_t)\mathrm{d}t + b_2(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d.$$
(2.6)

Conditions:

The first part b₁ is singular and satisfies

$$b_1 \in W^{\beta,p}(\mathbb{R}^d)$$
 with $p > 2d/lpha$ and $\beta \in (1 - lpha/2, 1)$.

♦ The second part $b_2 \in W^{\beta,p}_{loc}(\mathbb{R}^d)$ is dissipative in the sense that

$$\langle x, b_2(x)
angle \leqslant -\kappa_1 |x|^{2+\ell} + \kappa_2$$
 and $|b_2(x)| \leqslant \kappa_3 (1+|x|)^{1+\ell}$

Theorem 3

There exists a unique invariant measure μ for the unique strong solution X_t of SDE (2.6). Moreover,

- If $\ell = 0$, then μ is V-uniformly exponential ergodic.
- If $\ell > 0$, then μ is uniformly exponential ergodic.

<u>Remark:</u> 1. We do not make any continuous assumptions on the drift b. 2. The whole drift b = b₁ + b₂ may not be dissipative, since b₁ can be unbounded.

For SDE

$$\mathrm{d}X_t = \sigma(X_{t-})\mathrm{d}L_t + b(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d,$$

we have the following result:

Corollary 1

Suppose that

$$b \in W^{\beta,p}_{loc}(\mathbb{R}^d)$$
 with $p > 2d/lpha$ and $\beta \in (1 - lpha/2, 1)$,

and there exists a $R_0 > 0$ such that for $|x| \ge R_0$,

$$\langle x, b(x)
angle \leqslant -\kappa_1 |x|^{2+\ell} + \kappa_2$$
 and $|b(x)| \leqslant \kappa_3 (1+|x|)^{1+\ell}.$

Then, the conclusions in Theorem 3 still hold.

Main results - Long time behavior

Still, we first assume that the drift

$$b=b_1+b_2.$$

Then, SDE (2.5) can be written as

$$dX_t = \sigma(X_t) dW_t + \int_{|z| \leq 1} g(X_{t-}, z) \tilde{N}(dt, dz) + \int_{|z| > 1} g(X_{t-}, z) N(dt, dz) + b_1(X_t) dt + b_2(X_t) dt.$$
(2.7)

Main results - Long time behavior

Still, we first assume that the drift

$$b=b_1+b_2.$$

Then, SDE (2.5) can be written as

$$dX_t = \sigma(X_t) dW_t + \int_{|z| \leq 1} g(X_{t-}, z) \tilde{N}(dt, dz) + \int_{|z| > 1} g(X_{t-}, z) N(dt, dz) + b_1(X_t) dt + b_2(X_t) dt.$$
(2.7)

Conditions:

 \diamond The first part b_1 is singular and satisfies

$$b_1\in L^p(\mathbb{R}^d)$$
 with $p>d.$

 \diamond The second part b_2 is dissipative in the sense that

$$\langle x, b_2(x)
angle \leqslant -\kappa_1 |x|^{2+\ell} + \kappa_2$$
 and $|b_2(x)| \leqslant \kappa_3 (1+|x|)^{1+\ell}.$

Theorem 4

There exists a unique invariant measure μ for the unique strong solution X_t of SDE (2.7). Moreover,

- If $\ell = 0$, then μ is V-uniformly exponential ergodic.
- If $\ell > 0$, then μ is uniformly exponential ergodic.

Main results - Long time behavior

For SDE

$$\begin{split} \mathrm{d} X_t &= \sigma(X_t) \mathrm{d} W_t + \int_{|z| \leqslant 1} g(X_{t-}, z) \tilde{N}(\mathrm{d} t, \mathrm{d} z) \\ &+ \int_{|z| > 1} g(X_{t-}, z) N(\mathrm{d} t, \mathrm{d} z) + b(X_t) \mathrm{d} t, \end{split}$$

we have the following result:

Corollary 2

Suppose that there exists a $R_0 > 0$ such that

$$b \in L^p(B_{R_0})$$
 with $p > d$,

and for $|x| \ge R_0$,

$$\langle x, b(x)
angle \leqslant -\kappa_1 |x|^{2+\ell} + \kappa_2 \quad ext{and} \quad |b(x)| \leqslant \kappa_3 (1+|x|)^{1+\ell}$$

Then, the conclusions in Theorem 4 still hold.

Important idea: use partial Zvonkin's transformation to kill only the first part b₁ of the drift coefficient. Important idea: use partial Zvonkin's transformation to kill only the first part b_1 of the drift coefficient.

Difficulties:

1. The non-explosion and Krylov estimate of the unique strong solution.

Important idea: use partial Zvonkin's transformation to kill only the first part b_1 of the drift coefficient.

Difficulties:

- 1. The non-explosion and Krylov estimate of the unique strong solution.
- 2. The drift b_2 will be involved together with the transformation function.

Important idea: use partial Zvonkin's transformation to kill only the first part b_1 of the drift coefficient.

Difficulties:

- 1. The non-explosion and Krylov estimate of the unique strong solution.
- 2. The drift b_2 will be involved together with the transformation function.
- 3. Verify that the dissipative property of the new system.

Example 1

Consider the following SDE of OU type:

$$\mathrm{d}X_t = -X_t\mathrm{d}t + b(X_t)\mathrm{d}t + \mathrm{d}L_t, \quad X_0 = x \in \mathbb{R}^d.$$

- L_t Brownian motion: we assume $b \in L^p(\mathbb{R}^d)$, p > d;
- L_t α-stable process with α ∈ (1, 2): we assume
 b ∈ W^{θ,p}(ℝ^d), θ > 1 α/2 and p > 2d/α.

Then, the above SDE admits a unique strong solution and there exists a unique invariant measure.

<u>Remark:</u> In both cases, the classical Lyapunov condition can not be verified, our result is new even in the existence of invariant measures.

Example 2

Consider the following mixing SDE with jumps:

 $\mathrm{d} X_t = \mathrm{d} W_t + \lambda |X_{t-}|^\beta \mathrm{d} L_t - X_t |X_t|^{\gamma-1} \mathrm{d} t, \ X_0 = x \in \mathbb{R}^d,$

where $\lambda \in \mathbb{R}$, $\beta \in (0, 1)$ and $\gamma \in (0, \infty)$, L_t is a *d*-dimensional pure jump Lévy process.

Then, the above SDE admits a unique strong solution and there exists a unique invariant measure which is V-ergodicity in the case $\gamma \in (0, 1]$ and exponential ergodicity in the case $\gamma > 1$.

<u>Remark</u>: The main features of this SDE are that the jump coefficient $x \mapsto |x|^{\beta}$ is Hölder continuous and the drift term can be polynomial growth.

< □ > < □ > < □ > < □ > < □ > < □ >

- Krylov N. V. and Röckner M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields.
- O. Menoukeu-Pamen, T. Meyer-Brandis, T. Nilssen, F. Proske, T. Zhang: A variational approach to the construction and Malliavin differentiability of strong solutions of SDEs. Math. Ann..
- Xie L. and Zhang X.: Sobolev differentiable flows of SDEs with local Sobolev and super-linear growth coefficients. Ann. Prob..
- Zhang X.: Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients. Stoch. Proc. Appl..

Thank You !

Longjie Xie (Jiangsu Normal University) Ergodicity of singular SDEs with jumps

<u>∎ ▶ ৰ ≣ ▶ ≣</u> ∽ ৭.৫ July 18, 2017 25 / 25

• • • • • • • • • •