Normal approximation for statistics of Gibbsian input in geometric probability

Aihua Xia

School of Mathematics and Statistics

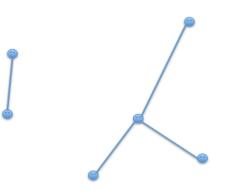
The University of Melbourne, VIC 3010

21 July, 2017

(joint work with J E Yukich)

Movitating examples

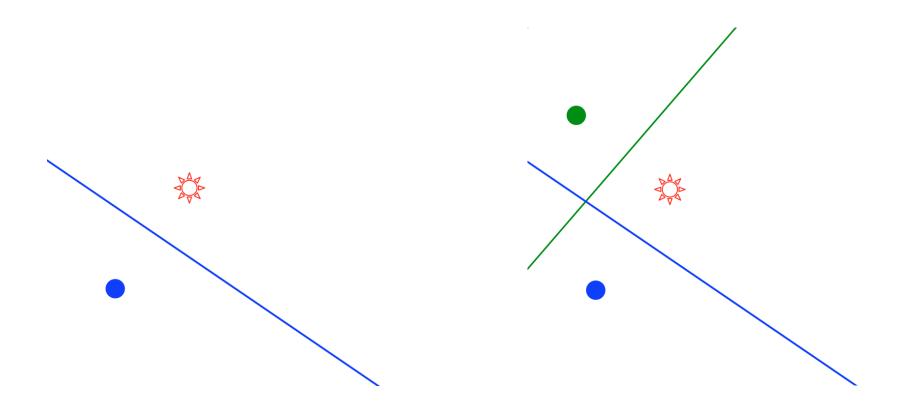
- 1. k-nearest neighbours graph.
 - \mathcal{X} is a point configuration on \mathbb{R}^d .
 - NG(X): the k-nearest neighbours (undirected) graph on the vertex set X, i.e., the graph obtained by including {x, y} as an edge whenever y is one of the k points nearest to x and/or x is one of the k points nearest to y.

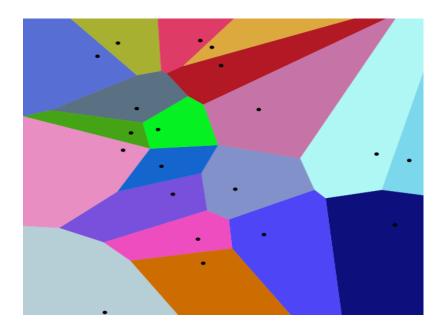


(a 1-nearest neighbours graph)

• The total edge length of k-nearest neighbours graph?

- 2. Gibbs-Voronoi tessellations.
 - Voronoi tessellation (Georgy Voronoy 1908)
 - For $x \in \mathcal{X}$, $C(x, \mathcal{X})$ is the set of points in \mathbb{R}^d closer to x than to any other point of \mathcal{X} .



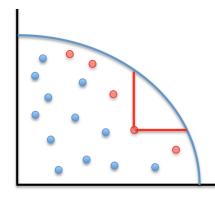


(Source: wiki)

- Each sub-divided region is a Voronoi cell.
- The Voronoi tessellation induced by \mathcal{X} is the collection of cells $C(x, \mathcal{X}), x \in \mathcal{X}$.
- The total edge length of Gibbs-Voronoi tessellations?

3. Maximal points

- Consider the region as shown below.
- $x \in \mathcal{X}$ is called *maximal* if no other points of \mathcal{X} in the top-right corner.
- The total number of maximal points?



(Red dots are maximal points)

- 4. Spatial birth-growth models
 - When a seed is born, it has initial radius zero and then forms a cell within \mathbb{R}^d by growing radially in all directions with a constant speed v > 0.
 - Whenever one growing cell touches another, it stops growing in that direction.
 - Seeds appear at locations $x_i \in \mathbb{R}^d$ at i.i.d. times $T_i, i = 1, 2, ...$
 - If a seed appears at x_i and if x_i belongs to any of the cells existing at the time T_i , then the seed is discarded.
 - The number of seeds accepted?

Poisson point process

- $Q_{\lambda} := [-\lambda^{1/d}/2, \lambda^{1/d}/2]^d \uparrow \mathbb{R}^d.$
- \mathcal{P} is a Poisson point process on Q_{λ} with unit intensity if
 - 1. for any Borel $B \subset Q_{\lambda}, \mathcal{P}(B) \sim \mathcal{P}(\operatorname{Vol}(B));$
 - 2. for every $k \ge 1$, $\mathcal{P}(B_1), \ldots, \mathcal{P}(B_k)$ are independent for disjoint Borel sets B_1, \ldots, B_k .
- $\mathbf{P}(\mathcal{P} \text{ has } n \text{ points resp. sitting in } (x_i, x_i + dx_i)) = \frac{e^{-\lambda}}{n!} dx_1 \dots dx_n =: j_n(x_1, \dots, x_n) dx_1 \dots dx_n j_n(x_1, \dots, x_n)$ is called the Janossy density

From Poisson to Gibbs

- The points of Poisson process don't interact
- Consider configurations of points $\mathbf{x}_n := \{x_1, \ldots, x_n\}$ with interactions between particles taken in pairs, triples, etc.
- An $\mathbb{R} \cup \{+\infty\}$ -valued measurable function Ψ is called an *energy function* if it satisfies
 - Ψ is non-degenerate: $\Psi(\emptyset) < +\infty$
 - Ψ is hereditary: for any **x** and $x \in \mathbf{x}$, then $\Psi(\mathbf{x}) < +\infty$ implies $\Psi(\mathbf{x} \setminus \{x\}) < +\infty$.
 - Ψ is stable: there exists a constant c (usu. < 0) such that for any $\mathbf{x}, \Psi(\mathbf{x}) \ge c \#(\mathbf{x})$.
- A Gibbs point process with energy function Ψ and inverse temperature $\beta \ge 0$ is a point process having Janossy density

$$j_n(\mathbf{x}_n) = C(\beta)e^{-\beta\Psi(\mathbf{x}_n)}.$$

Remarks

- $C(\beta)$ is a normalising constant.
- When $\beta = 0$, it reduces to Poisson point process.
- Stability ensures

$$\sum_{n\geq 0} \int_{Q_{\lambda}} e^{-\beta \Psi(\mathbf{x}_n)} d\mathbf{x}_n \leq \sum_{n\geq 0} e^{-\beta cn} \lambda^n = e^{e^{-\beta c_{\lambda}}} < +\infty,$$

hence $C(\beta) > 0$.

• Non-degeneracy gives

$$1 = C(\beta) \sum_{n \ge 0} \int_{Q_{\lambda}} e^{-\beta \Psi(\mathbf{x}_n)} d\mathbf{x}_n \ge C(\beta) e^{-\beta \Psi(\emptyset)}$$

so $C(\beta) \leq e^{\beta \Psi(\emptyset)} < \infty$.

The setup

- $\mathcal{P}^{\beta\Psi}$: a Gibbs point process on \mathbb{R}^d .
- $\mathcal{P}_{\lambda}^{\beta\Psi}$: the restriction of $\mathcal{P}^{\beta\Psi}$ to Q_{λ} .
- Our interest is on the asymptotic behaviour of the functionals

$$W_{\lambda} := \sum_{x \in \mathcal{P}_{\lambda}^{\beta \Psi}} \xi(x, \mathcal{P}_{\lambda}^{\beta \Psi} \setminus \{x\})$$

as $\lambda \to \infty$.

Examples (continued)

When \mathcal{X} is a realisation of $\mathcal{P}_{\lambda}^{\beta\Psi}$,

- 1. *k*-nearest neighbours graph: the asymptotic distribution of the total edge length? error estimates?
- 2. Gibbs-Voronoi tessellations: the asymptotic distribution of the total edge length? error estimates?
- 3. Maximal points: the asymptotic distribution of the total number of maximal points? error estimates?

- 4. Spatial birth-growth models:
 - Seeds appear at random locations $X_i \in \mathbb{R}^d$ at i.i.d. times $T_i, i = 1, 2, ...$ according to a marked Gibbs point process $\mathcal{P} := \{(X_i, T_i) \in \mathbb{R}^d \times [0, \infty)\}.$
 - If a seed appears at X_i and if X_i belongs to any of the cells existing at the time T_i , then the seed is discarded.
 - $X_i, i \ge 1$, are independent of $T_i, i \ge 1$.
 - The number of seeds accepted in Q_{λ} ? error estimates?

A quick review of normal approximation

- If ξ_1, \ldots, ξ_n are iid with mean 0, var 1 and finite 3rd moment, let $S_n = \sum_{i=1}^n \xi_i$, then $d_K(S_n, N(0, \operatorname{Var}(S_n))) = O(\operatorname{Var}(S_n)^{-1/2}).$ - ChFs
- Stein's method: the above claim is still true if ξ_1, \ldots, ξ_n have some short range dependence.
- Barbour and X. (2006): the above claim is also true if S_n is a result of an integral of a locally dependent process w.
 r. t. a locally dependent point process.

From Poisson to Gibbs by thinning

- We consider the energy functions which satisfy
 - nonnegative;
 - monotonic: $\Psi(\mathcal{X}) \leq \Psi(\mathcal{X}')$ if $\mathcal{X} \subset \mathcal{X}'$;
 - translation invariant: $\Psi(\mathcal{X} + y) = \Psi(\mathcal{X})$ for all $y \in \mathbb{R}^d$;
 - rotation invariant: $\Psi(\mathcal{X}) = \Psi(\mathcal{X}')$ if \mathcal{X}' is a rotation of Ξ .
- Schreiber and Yukich (2013): One can start with a Poisson point process with very dense points, construct an ancestor clan for each point, and thin away some points in the clan.
 - The ancestor clan of each point x has a diameter $D(x, \mathcal{P}^{\beta \Psi}_{\lambda})$ which is exponentially decaying.

Thm (X. and Yukich 2015) Recall $W_{\lambda} = \sum_{x \in \mathcal{P}_{\lambda}^{\beta \Psi}} \xi(x, \mathcal{P}_{\lambda}^{\beta \Psi} \setminus \{x\})$, under some mild conditions,

$$d_K\left(\frac{W_{\lambda} - \mathbb{E} W_{\lambda}}{\sqrt{\operatorname{Var} W_{\lambda}}}, N(0, 1)\right) = O((\ln \lambda)^{2d} \lambda (\operatorname{Var} W_{\lambda})^{-3/2}).$$

Why?

Since $W_{\lambda} = \sum_{x \in \mathcal{P}_{\lambda}^{\beta \Psi}} \xi(x, \mathcal{P}_{\lambda}^{\beta \Psi} \setminus \{x\})$, define

$$\hat{W}_{\lambda} = \sum_{x \in \mathcal{P}_{\lambda}^{\beta \Psi}} \xi(x, \mathcal{P}_{\lambda}^{\beta \Psi} \setminus \{x\}) \mathbf{1}(D(x, \mathcal{P}_{\lambda}^{\beta \Psi}) \le \rho)$$

*†*limits dependence range,

$$\tilde{W}_{\lambda} = \sum_{x \in \mathcal{P}_{\lambda}^{\beta \Psi}} \xi(x, \mathcal{P}^{\beta \Psi} \setminus \{x\})$$

↑removes boundary effects.

- \hat{W}_{λ} , \tilde{W}_{λ} and W_{λ} are very "close".
- Using Barbour and X. (2006), \hat{W}_{λ} can be approximated by a suitable normal with approximation error $O(\rho^{2d}\lambda(\operatorname{Var}\hat{W}_{\lambda})^{-3/2}).$

- If ξ is translation invariant, then we can write down Var \tilde{W}_{λ} explicitly and derive that Var $\tilde{W}_{\lambda} = \Omega(\lambda)$ so the normal approximation error is $O((\ln \lambda)^{2d} \lambda^{-1/2})$.
 - This includes all the motivating examples except maximal points
- For maximal points, ξ is not translation invariant, we can prove that $\operatorname{Var} \tilde{W}_{\lambda} \geq \Omega\left((\ln \lambda)^{-d} \lambda\right)$, giving the error estimate of $O((\ln \lambda)^{(7d-1)/2} \lambda^{-(d-1)/2d})$.

Remarks

- For inputs with marked Poisson and binomial point processes, Lachièze-Rey, Schultey and Yukichz (2017) can remove the log factor (by the Malliavin-Stein theory).
- For general Gibbsian input, it seems to be impossible to remove the log factor but its power may be reduced.

Thank you!