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Movitating examples

1. k-nearest neighbours graph.

• X is a point configuration on Rd.

• NG(X ): the k-nearest neighbours (undirected) graph on

the vertex set X , i.e., the graph obtained by including

{x, y} as an edge whenever y is one of the k points nearest

to x and/or x is one of the k points nearest to y.

(a 1-nearest neighbours graph)

• The total edge length of k-nearest neighbours graph?

[Slide 2]



2. Gibbs-Voronoi tessellations.

• Voronoi tessellation (Georgy Voronoy 1908)

• For x ∈ X , C(x,X ) is the set of points in Rd closer to x

than to any other point of X .
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(Source: wiki)

– Each sub-divided region is a Voronoi cell.

• The Voronoi tessellation induced by X is the collection of

cells C(x,X ), x ∈ X .

• The total edge length of Gibbs-Voronoi tessellations?
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3. Maximal points

• Consider the region as shown below.

• x ∈ X is called maximal if no other points of X in the

top-right corner.

• The total number of maximal points?

(Red dots are maximal points)
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4. Spatial birth-growth models

• When a seed is born, it has initial radius zero and then

forms a cell within Rd by growing radially in all directions

with a constant speed v > 0.

• Whenever one growing cell touches another, it stops

growing in that direction.

• Seeds appear at locations xi ∈ Rd at i.i.d. times

Ti, i = 1, 2, ...

• If a seed appears at xi and if xi belongs to any of the cells

existing at the time Ti, then the seed is discarded.

• The number of seeds accepted?
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Poisson point process

• Qλ := [−λ1/d/2, λ1/d/2]d ↑ Rd.

• P is a Poisson point process on Qλ with unit intensity if

1. for any Borel B ⊂ Qλ, P(B) ∼ P(Vol(B));

2. for every k ≥ 1, P(B1), . . . ,P(Bk) are independent for

disjoint Borel sets B1, . . . , Bk.

• P(P has n points resp. sitting in (xi, xi + dxi)) =
e−λ

n! dx1 . . . dxn =: jn(x1, . . . , xn)dx1 . . . dxn

– jn(x1, . . . , xn) is called the Janossy density
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From Poisson to Gibbs

• The points of Poisson process don’t interact

• Consider configurations of points xn := {x1, . . . , xn} with

interactions between particles taken in pairs, triples, etc.

• An R ∪ {+∞}-valued measurable function Ψ is called an

energy function if it satisfies

– Ψ is non-degenerate: Ψ(∅) < +∞
– Ψ is hereditary: for any x and x ∈ x, then Ψ(x) < +∞

implies Ψ(x \ {x}) < +∞.

– Ψ is stable: there exists a constant c (usu. < 0) such that

for any x, Ψ(x) ≥ c#(x).

• A Gibbs point process with energy function Ψ and inverse

temperature β ≥ 0 is a point process having Janossy density

jn(xn) = C(β)e−βΨ(xn).
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Remarks

• C(β) is a normalising constant.

• When β = 0, it reduces to Poisson point process.

• Stability ensures∑
n≥0

∫
Qλ

e−βΨ(xn)dxn ≤
∑
n≥0

e−βcnλn = ee
−βcλ < +∞,

hence C(β) > 0.

• Non-degeneracy gives

1 = C(β)
∑
n≥0

∫
Qλ

e−βΨ(xn)dxn ≥ C(β)e−βΨ(∅)

so C(β) ≤ eβΨ(∅) <∞.
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The setup

• PβΨ: a Gibbs point process on Rd.

• PβΨ
λ : the restriction of PβΨ to Qλ.

• Our interest is on the asymptotic behaviour of the

functionals

Wλ :=
∑

x∈PβΨλ

ξ(x,PβΨ
λ \ {x})

as λ→∞.
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Examples (continued)

When X is a realisation of PβΨ
λ ,

1. k-nearest neighbours graph: the asymptotic

distribution of the total edge length? error estimates?

2. Gibbs-Voronoi tessellations: the asymptotic

distribution of the total edge length? error estimates?

3. Maximal points: the asymptotic distribution of the

total number of maximal points? error estimates?
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4. Spatial birth-growth models:

• Seeds appear at random locations Xi ∈ Rd at i.i.d. times

Ti, i = 1, 2, ... according to a marked Gibbs point process

P := {(Xi, Ti) ∈ Rd × [0,∞)}.

• If a seed appears at Xi and if Xi belongs to any of the

cells existing at the time Ti, then the seed is discarded.

• Xi, i ≥ 1, are independent of Ti, i ≥ 1.

• The number of seeds accepted in Qλ? error estimates?
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A quick review of normal approximation

• If ξ1, . . . , ξn are iid with mean 0, var 1 and finite 3rd

moment, let Sn =
∑n

i=1 ξi, then

dK (Sn, N(0,Var(Sn))) = O(Var(Sn)−1/2).

– ChFs

• Stein’s method: the above claim is still true if ξ1, . . . , ξn

have some short range dependence.

• Barbour and X. (2006): the above claim is also true if Sn

is a result of an integral of a locally dependent process w.

r. t. a locally dependent point process.

[Slide 13]



From Poisson to Gibbs by thinning

• We consider the energy functions which satisfy

– nonnegative;

– monotonic: Ψ(X ) ≤ Ψ(X ′) if X ⊂ X ′;
– translation invariant: Ψ(X + y) = Ψ(X ) for all y ∈ Rd;

– rotation invariant: Ψ(X ) = Ψ(X ′) if X ′ is a rotation

of Ξ.

• Schreiber and Yukich (2013): One can start with a

Poisson point process with very dense points, construct

an ancestor clan for each point, and thin away some

points in the clan.

– The ancestor clan of each point x has a diameter

D(x,PβΨ
λ ) which is exponentially decaying.
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Thm (X. and Yukich 2015)

Recall Wλ =
∑

x∈PβΨλ
ξ(x,PβΨ

λ \ {x}), under some mild

conditions,

dK

(
Wλ − EWλ√

VarWλ
, N(0, 1)

)
= O((lnλ)2dλ(VarWλ)−3/2).
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Why?

Since Wλ =
∑

x∈PβΨλ
ξ(x,PβΨ

λ \ {x}), define

Ŵλ =
∑

x∈PβΨλ

ξ(x,PβΨ
λ \ {x})1(D(x,PβΨ

λ ) ≤ ρ)

↑limits dependence range,

W̃λ =
∑

x∈PβΨλ

ξ(x,PβΨ \ {x})

↑removes boundary effects.

• Ŵλ, W̃λ and Wλ are very “close”.

• Using Barbour and X. (2006), Ŵλ can be approximated

by a suitable normal with approximation error

O(ρ2dλ(VarŴλ)−3/2).
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• If ξ is translation invariant, then we can write down

VarW̃λ explicitly and derive that VarW̃λ = Ω(λ) so the

normal approximation error is O((lnλ)2dλ−1/2).

– This includes all the motivating examples except maximal

points

• For maximal points, ξ is not translation invariant, we can

prove that VarW̃λ ≥ Ω
(
(lnλ)−dλ

)
, giving the error

estimate of O((lnλ)(7d−1)/2λ−(d−1)/2d).
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Remarks

• For inputs with marked Poisson and binomial point

processes, Lachièze-Rey, Schultey and Yukichz (2017) can

remove the log factor (by the Malliavin-Stein theory).

• For general Gibbsian input, it seems to be impossible to

remove the log factor but its power may be reduced.
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Thank you!
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