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What is Large Deviations ?

X a Polish space, M1(X ) the probability space. Assume µε weakly
converges to the Dirac measure δp(p ∈ X ) in M1(X ). Then

µε(A) −→ 0, as ε→ 0, if p /∈ Ā.

How to estimate the rate of convergence?
Large deviation principle tells us that

µε(A) = exp{− inf
x∈A

I (x)/λ(ε) + o(1/λ(ε))}

for infAo I = infĀ I , where

the rate function: I : X → [0,+∞] is inf-compact;

the speed function: λ(ε) > 0,limε→0 λ(ε) = 0
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Example 1. Cramér Theorem

(Xn)n≥1 i.i.d.r.v.’s (Ω,F ,P), in Rd , law µ. Law of large number:

P

(∣∣∣∣∣1n
n∑

k=1

Xk − EX

∣∣∣∣∣ > η

)
→ 0, as n→ 0.

How to estimate this probability? Central limit theorem, Law of
iterated logarithm, Bessry-Essen, · · ·
Cramér (1938): Assume E exp(λ|X |) <∞, ∀λ > 0. Then

P

(
1

n

n∑
k=1

Xk ∈ A

)
= exp{−n inf

A
I + o(n)}, if inf

Ao
I = inf

Ā
I ,

where I (x) = supy∈Rd{〈x , y〉 − Λ(y)}, Λ(y) = logE exp〈X , y〉.
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Example 2. Sanov’s theorem

Assume (Xn)n≥1 i.i.d.r.v.’s on (Ω,F ,P), valued in a Polish space
E , law µ. The empirical measures

Ln :=
1

n

n∑
k=1

δXk
∈M1(E ), n ≥ 1.

Theorem (Sanov (1957))

P(Ln ∈ ·) satisfies the LDP on M1(E ) equipped with the weak
convergence topology σ (M1(E ),Cb(E )), with speed n and with
the rate function given by the relative entropy

H(ν |µ) =

{∫
E

dν
dµ log dν

dµdµ, if ν � µ;

+∞, otherwise,
(1)
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Sanov’s theorem-Continued

Extend Sanov’s theorem to stronger topologies.

τ -topology: σ (M1(E ), bB(E )), Groeneboom et al. (1979)

Topology of uniform convergence over certain classes of linear
functions, Wu (1994), Dembo and Zajic (1997)

Wasserstein topoloty: W-Wang-Wu (2010) prove that Ln
satisfies the LDP in the Wasserstein metric Wp (p ∈ [1,+∞))
if and only if∫

E
eλd

p(x0,x)dµ(x) < +∞, ∀λ > 0, x0 ∈ E .
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Extend those two Theorems to the dependent case?
Such as Markov processes, Martingales, Stationary processes.

Donsker and Varadhan (1970’s-1980’s) gave the first answers.
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Donsker and Varadhan’s LDP for Markov processes

Conditions for Lower Bound: there exist a reference measure α,
p(1, x , y) > 0 a.s., s.t.:

(a1) p(1, x , dy) = p(1, x , y)α(dy).

(a2) p(1, x , ·): E −→ L1(α) is continuous.

Conditions for Upper Bound:

(b1) un(x) ≥ c > 0, ∀x , n.

(b2) ∀ compact set K ⊂ E , ∃ CK s.th. supx∈K supn un(x) ≤ CK .

(b3) −(Lunun
)(x) ≡ Vn(x) ≥ −C , ∀x , n.

(b4) limn→∞ Vn(x) = V (x).

(b5) {x : V (x) ≤ k} is compact, ∀k <∞.
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Large deviations of occupation measure for Markov
processes

There have been extensive and studies, e.g.,

Lower bound: de Acosta (1988), Jain (1990), Wu (1993) for
essentially irreducible Markov processes.

Upper bound: Gärtner (1977), Ellis (1985), Stroock (1984)
gave a necessary and sufficient condition for good upper
bound w.r.t. the weak convergence topology by means of
Cramer’s method;
Wu (2000,2004) characters the LDP by means of uniform
integrability, essential spectral radius.
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Relations between recurrence and LDP

For Markov chain, the following are equivalent (Meyn, Tweedie)

(Uniform ergodicity) supx ‖Pn(x , ·)− π‖ −→ 0.

(Uniform geometric ergodicity) ∃r > 0,C <∞ s.t.

sup
x
‖Pn(x , ·)− π‖ ≤ Ce−nr .

Aperiodic and ∃ petite set K , ∃λ > 0 s.t.

sup
x∈E

Ex [eλτK ] <∞.

Doeblin’s condition, Lyapunov’s condition, · · ·
Those conditions DOES NOT imply the Donsker-Varadhan’s LDP.
See Baxter, Jain, Varadhan (1991) or Bryc, Smolenski (1992).
However, Wu (2001) found a characterization of LDP by means of
the hyper-exponential recurrence.
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The hyper-exponential recurrence criterion

τK := inf{t ≥ 0 s.t. Xt ∈ K}, τ
(1)
K := inf{t ≥ 1 s.t. Xt ∈ K}.

Theorem (Wu, 2001)

Assume

Strong Feller: ∃0 < T ∈ T s.t. PTbB ⊂ Cb(E )

Topological irreducible: ∀ non empty open U, x ∈ E,
∃t ∈ T,Pt(x ,U) > 0

The following are equivalent:

Hyper-exponential recurrence: for some A ⊂M1(E ), any
λ > 0, ∃ compact set K ⊂ E, such that

sup
ν∈A

EνeλτK <∞, and sup
x∈K

Exeλτ
(1)
K <∞. (2)

LDP: Pν(Lt ∈ ·) satisfies the LDP on M1(E ) w.r.t. the
τ -topology uniformly for ν ∈ A.
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Some Comments about the rate function

Under the Feller assumption:

Pt(Cb(E )) ⊂ Cb(E ), ∀t ≥ 0,

we know that (c.f. Deuschel-Stroock, Wu)

J(ν) = sup

{
−
∫
Lu
u

dν; 1 ≤ u ∈ De(L)

}
, ν ∈M1(E ) (3)

where De(L) is the extended domain of the generator L of Pt in
Cb(E ).
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One dimensional diffusion process

Consider a R-valued stochastic differential equation

dXt = σ(Xt)dBt + b(Xt)dt,

where B is a standard B.M., σ, b are locally Lipchizian, σ > 0
If for any λ > 0, there are two constants c > 0 and L > 0 s.t.

Φ(x) := −csign(x)b(x)− 1

2
c2σ2(x) ≥ λ, ∀|x | ≥ L,

then Lt satisfies the LDP w.r.t. τ -topology uniformly over
compact sets. See Wu (2000).
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LDP for SPDE

By using the hyper-exponential recurrence criterion, the LDPs for
the occupation measures of SPDEs are studied by

Gourcy (2007a, 2007b) : Stochastic Navier-Stokes equation,
Stochastic Burgers equation

Jaks̆ić, Nersesyan, Pillet, Shirikyan (2015,2016) Dissipative
PDEs with Rough Noise,

By this criterion, we study the LDP for other PSDEs.
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LDP for nonlinear monotone SPDEs

Framework:

Gelfand triple
V ⊂ H ≡ H∗ ⊂ V ∗,

(H, 〈·, ·〉): separable Hilbert space;
V : reflexive Banach space;
V ⊂ H is dense, compact.

{Wt}t≥0 is a cylindrical Q-Wiener process with Q := I on
another separable Hilbert space (U, 〈·, ·〉U) w.r.t. a complete
filtered probability space (Ω,F ,Ft ,P).
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General framework of SPDE

dX (t) = A(X (t))dt + B(X (t))dWt , (4)

(H1) (Hemicontinuity) ∀v1, v2, v ∈ V ,
R 3 s 7→ V ∗〈A(v1 + sv2), v〉V is continuous.

(H2) (Weak monotonicity) ∃c0 ∈ R s.t. ∀v1, v2 ∈ V ,

2V ∗〈A(v1)−A(v2), v1−v2〉V +‖B(v1)−B(v2)‖2
L2(U,H) ≤ c0‖v1−v2‖2

H .

(H3) (Coercivity) ∃r > 0, c1, c3 ∈ R, c2 > 0 s.t. ∀v ∈ V ,

2V ∗〈A(v), v〉V + ‖B(v)‖2
L2(U,H) ≤ c1 − c2‖v‖r+1

V + c3‖v‖2
H .

(H4) (Boundedness) ∃c4 > 0, c5 > 0 s.t. ∀v ∈ V ,

‖A(v)‖V ∗ ≤ c4 + c5‖v‖rV .
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Solution

Definition

A continuous H-valued Ft-adapted process {Xt}t≥0 is called a
solution of (4), if

E
[∫ t

0

(
‖X (s)‖r+1

V + ‖X (s)‖2
H

)
ds

]
<∞, ∀t > 0, (5)

and P-a.s.

X (t) = X (0) +

∫ t

0
A(X (s))ds +

∫ t

0
B(X (s))dW (s), ∀t ≥ 0.

According to (Krylov-Rozovskii, Prévôt-Röckner), under Conditions
(H1)-(H4), for any X0 ∈ L2(Ω→ H;F0;P), (4) admits a unique
solution {Xt}t≥0.
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Examples

Equation (4) contains the following models

Stochastic p-Laplace equation (r > 1)

Stochastic generalized porous media equations (r > 1)

Stochastic fast-diffusion equations (r ∈ (0, 1])

Exponential Ergodicity, Strong Feller, Irreduciability are studied by
methods of coupling and Wang’s Harnark inequality, see F.Y.
Wang, W. Liu, S.Q. Zhang, · · ·
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Main Results

Recall the occupation measure Lt :

Lt(A) :=
1

t

∫ t

0
δXs (A)ds A ∈ B(H). (6)

Theorem (W-Xiong-Xu, 2016)

Assume that (H1)-(H4) hold with r > 1 and Pt is strong Feller and
irreducible in H. Then the family Pν(LT ∈ ·) as T → +∞ satisfies
the LDP on (M1(H), τ), with speed T and rate function J,
uniformly for any initial measure ν in M1(H).
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Main Results

Theorem (W-Xiong-Xu, 2016)

Assume that (H1)-(H4) hold with r ∈ (0, 1] and c3 < 0, Pt is
strong Feller and irreducible in H, and
CB := supu∈H ‖B(u)‖2

L2(U,H) <∞. Let λ0 ∈ (0,− c3
2CB

) and

Mλ0,L :=

{
ν ∈M1(H) :

∫
H
eλ0‖x‖2

Hν(dx) ≤ L

}
.

Then the family Pν(LT ∈ ·) as T → +∞ satisfies the LDP on
(M1(H), τ), with speed T and rate function J, uniformly for any
initial measure ν in Mλ0,L.
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Example: Stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x ∈ Rd . (7)

There exists λi > 0, p > 2 s.t.

2〈x − y , b(x)− b(y)〉+ ‖σ(x)− σ(y)‖2
2

≤ λ0|x − y |2(1 ∨ log |x − y |−1),

‖σ(x)‖2 ≤ λ1(1 + |x |),
supx∈Rd ‖σ−1(x)‖2 ≤ λ2,

2〈x , b(x)〉+ ‖σ(x)‖2
2 ≤ −λ3|x |p + λ4.

Strong Feller, Irreducible, [X.C. Zhang 2009].
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Example: Stochastic p-Laplace equation

dXt =
[
div(|∇Xt |p−2∇Xt)− γ|Xt |q−2Xt

]
dt + BdWt , (8)

where max{1, 2d/(d + 2)} < p ≤ 2 < q and γ > 0, B is a
Hilbert-Schmidt operator on L2(Λ).
Take

V := H1,p
0 (Λ) ∩ Lq(Λ),H := L2(Λ).

Conditions (H1)-(H4) with r > 1, [Prévôt-Röckner].

Strong Feller, Irreducibility, [W. Liu, 2009].
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Example: Stochastic generalized porous media equations

dX (t) = (LΨ(X (t)) + Φ(X (t))) dt + B(X (t))dW (t).

L := −(−∆)γ , γ > 0,Ψ(s) := s|s|r−1,

Φ(s) := cs, B(x)ej := bi (x)j−qej , j ≥ 1,{
|bi (u)− bi (v)| ≤ b|u − v |,
infu∈Hγ(D,µ) inf i≥1 bi (u) > 0.

r > 1: Stochastic generalized porous media equations

Lr+1(D, µ) ⊂ Hγ(D, µ) ⊂ (Lr+1(D, µ))∗,

Conditions (H1)-(H4) with r > 1, [Prévôt-Röckner]

Strong Feller [F.Y. Wang, 2015], [S.Q. Zhang, 2014]

Irreducibility [S.Q. Zhang, 2015].
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Example: Stochastic fast-diffusion equations

0 < r < 1: Stochastic fast-diffusion equations:
Take D = (0, 1) ⊂ R, 1/3 < r < 1, γ = 1, c < 0.

V := Lr+1(D, µ)
⋂

H1(D, µ),H := H1(D, µ).

(H1)-(H4) hold with 1/3 < r < 1 and c3 < 0, [Röckner, Ren,
Wang, 2007]

Strong Feller, Irreducibility, [S.Q, Zhang, 2015].
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Proof of Theorem (r > 1)

By Itô’s formula, for t > s ≥ 0,

E
[
‖Xt‖2

H

]
≤E

[
‖Xs‖2

H

]
+ c1(t − s)− c2

∫ t

s
E
[
‖Xu‖r+1

V

]
du

+ c3

∫ t

s
E
[
‖Xu‖2

H

]
du

≤E
[
‖Xs‖2

H

]
+ C1(t − s)− C2

∫ t

s
E
[
‖Xu‖r+1

H

]
du

=⇒ sup
t≥1

E
[
‖Xt‖2

H

]
≤ C

=⇒
∫ 2

1
E
[
‖Xu‖r+1

V

]
du ≤ C

=⇒ ∃t ∈ [1, 2] s.t. E
[
‖Xt‖r+1

V

]
≤ C ,

where C is independent of X0.
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By the Markov property of X , there exists a sequence of times
{tn; n ≥ 1} such that tn ∈ [2n − 1, 2n] and

E [‖Xtn‖V ] ≤ C . (9)

For any M > 0,

K := {x ∈ V : ‖x‖V ≤ M} is compact in H.

Based on (9), we have

sup
ν∈M1(H)

Eν [eλτK ] <∞.
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Proof of Theorem (r ∈ (0, 1], c3 < 0)]

Inspirited by [Gourcy, 07]

For any 0 < λ0 < −c3/(2CB), x ∈ H,

Ex

[
exp

(
λ0c2

2

∫ t

0
‖Xs‖rVds

)]
≤ eλ0c1t · eλ0‖x‖2

H .

K := {x ∈ V : ‖x‖V ≤ M} is compact in H.

Pν(τ
(1)
K > n) ≤ Pν

(
Ln(K c) ≥ 1− 1

n

)
≤Pν

(
Ln(‖x‖rV ) ≥ M r

(
1− 1

n

))
≤ exp

{
−nλ0c2M

r

2

(
1− 1

n

)}
Eν
[

exp

(
λ0c2

2

∫ n

0
‖Xs‖rVds

)]
≤ exp {−nλ0CM

r}Eν
[
eλ0‖x‖2

H

]
.
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Stochastic Ginzburg-Landau equation driven by α-stable
noises

{
dXt −∆Xtdt = (Xt − X 3

t )dt + dLt ,

X0 = x0,
(10)

where Lt =
∑

k∈Z∗
βk lk(t)ek is an α-stable process on H with

{lk(t)}k∈Z∗ being i.i.d. 1-dimensional symmetric α-stable process
sequence with α > 1.
Assume that there exist some C1,C2 > 0 so that

C1γ
−β
k ≤ |βk | ≤ C2γ

−β
k , β >

1

2
+

1

2α
.
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The equation

We say that a predictable H-valued stochastic process X = (X x
t ) is

a mild solution to Eq. (10) if, for any t ≥ 0, x ∈ H,

X x
t = e−Atx +

∫ t

0
e−A(t−s)(X x

s − (X x
s )3)ds +

∫ t

0
e−A(t−s)dLs .

Theorem (Xu (SPA 2013) , W-Xiong-Xu (Bernoulli 2017))

If α ∈ (3/2, 2) and 1
2 + 1

2α < β < 3
2 −

1
α , the followings hold

1 Eq. (10) admits a unique mild solution.

2 (X x
t )t≥0,x∈H is strong Feller and irreducible in H.

3 (X x
t )t≥0,x∈H is exponential ergodic.
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Theorem (W.-Xiong-Xu, 2016)

Assume that α ∈ (3/2, 2) and 1
2 + 1

2α < β < 3
2 −

1
α . Then

Pν(LT ∈ ·) as T → +∞ satisfies the LDP w.r.t. the τ -topology,
with speed T and rate function J, uniformly for any initial measure
ν in M1(H).

Difficulty: Due to the discontinuity and the lack of second
moment, Itô’s formula can’t be used directly like the Wiener case.
However, the strong coercive nonlinearity x − x3 paves way to
produce the hyper-exponential recurrence.

Lemma

For all T > 0, δ ∈ (0, 1/2), p ∈ (0, α/4),

Ex

[
‖XT‖pHδ

]
≤ CT ,δ,p,

where CT ,δ,p does not depend on X0 = x.
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SDPE driven by subordinate BM

Let St be α/2-stable process on R independent with the cylindrical
B.M. W , Qβ be a Hilbert-Schmit operator

dX −∆Xdt = (X − X 3)dt + QβdWSt , (11)

Theorem (W.-Xu, 2017)

For α ∈ (1, 2), the Markov process X is strong Feller and
irreducible in H, Pν(LT ∈ ·) as T → +∞ satisfies the LDP w.r.t.
the τ -topology, with speed T and rate function J, uniformly for
any initial measure ν in M1(H).

Difficulty: Non-independence of the components in the noise
brings some new challenges, especially in the proof of irreducibility.
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Critical lemma in the proof of irreducibility.

Lemma

For any T > 0, p > 0, the random variable ({WSt}0≤t≤T ,WST )
has a full support in Lp([0,T ];V)× V. More precisely, for any
φ ∈ Lp([0,T ];V), a ∈ V, ε > 0,

P
(∫ T

0
‖WSt − φt‖

p
Vdt + ‖WST − a‖V < ε

)
> 0. (12)
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