Large deviation principle of occupation measures for non-linear monotone SPDEs

Ran Wang (Wuhan University)

Joint with Jie Xiong, Lihu Xu, University of Macau

13th Workshop on Markov Processes and Related Topics Beijing Normal University, Wuhan University July 17-21, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

2 LDP for SPDEs driven by BM

3 LDP for SPDEs driven by α -stable noises

What is Large Deviations ?

 \mathcal{X} a Polish space, $\mathcal{M}_1(\mathcal{X})$ the probability space. Assume μ_{ε} weakly converges to the Dirac measure $\delta_p(p \in \mathcal{X})$ in $\mathcal{M}_1(\mathcal{X})$. Then

$$\mu_arepsilon({\sf A}) \longrightarrow 0, \;\; {\sf as} \; arepsilon o 0, {\sf if} \; {\sf p}
otin ar{{\sf A}}.$$

How to estimate the rate of convergence? Large deviation principle tells us that

$$\mu_{\varepsilon}(A) = \exp\{-\inf_{x \in A} I(x)/\lambda(\varepsilon) + o(1/\lambda(\varepsilon))\}$$

for $\inf_{A^o} I = \inf_{\bar{A}} I$, where

- the rate function: $I : \mathcal{X} \to [0, +\infty]$ is inf-compact;
- the speed function: $\lambda(\varepsilon) > 0$, $\lim_{\varepsilon \to 0} \lambda(\varepsilon) = 0$

Example 1. Cramér Theorem

 $(X_n)_{n\geq 1}$ i.i.d.r.v.'s $(\Omega, \mathcal{F}, \mathbb{P})$, in \mathbb{R}^d , law μ . Law of large number:

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{k=1}^{n}X_{k}-\mathbb{E}X\right|>\eta
ight)
ightarrow0, \text{ as } n
ightarrow0.$$

How to estimate this probability? Central limit theorem, Law of iterated logarithm, Bessry-Essen, \cdots Cramér (1938): Assume $\mathbb{E} \exp(\lambda |X|) < \infty$, $\forall \lambda > 0$. Then

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}\in A\right)=\exp\{-n\inf_{A}I+o(n)\}, \text{ if } \inf_{A^{\circ}}I=\inf_{\bar{A}}I,$$

where $I(x) = \sup_{y \in \mathbb{R}^d} \{ \langle x, y \rangle - \Lambda(y) \}, \Lambda(y) = \log \mathbb{E} \exp \langle X, y \rangle.$

Example 2. Sanov's theorem

Assume $(X_n)_{n\geq 1}$ i.i.d.r.v.'s on $(\Omega, \mathcal{F}, \mathbb{P})$, valued in a Polish space E, law μ . The empirical measures

$$\mathcal{L}_n := \frac{1}{n} \sum_{k=1}^n \delta_{X_k} \in \mathcal{M}_1(E), \quad n \ge 1.$$

Theorem (Sanov (1957))

 $\mathbb{P}(\mathcal{L}_n \in \cdot)$ satisfies the LDP on $\mathcal{M}_1(E)$ equipped with the weak convergence topology $\sigma(\mathcal{M}_1(E), C_b(E))$, with speed n and with the rate function given by the relative entropy

$$H(\nu \mid \mu) = \begin{cases} \int_{E} \frac{d\nu}{d\mu} \log \frac{d\nu}{d\mu} d\mu, & \text{if } \nu \ll \mu; \\ +\infty, & \text{otherwise,} \end{cases}$$
(1)

Sanov's theorem-Continued

Extend Sanov's theorem to stronger topologies.

- τ -topology: $\sigma(\mathcal{M}_1(E), b\mathcal{B}(E))$, Groeneboom et al. (1979)
- Topology of uniform convergence over certain classes of linear functions, Wu (1994), Dembo and Zajic (1997)
- Wasserstein topoloty: W-Wang-Wu (2010) prove that \mathcal{L}_n satisfies the LDP in the Wasserstein metric W_p $(p \in [1, +\infty))$ if and only if

$$\int_{E} e^{\lambda d^{p}(x_{0},x)} d\mu(x) < +\infty, \forall \lambda > 0, x_{0} \in E.$$

Extend those two Theorems to the dependent case? Such as Markov processes, Martingales, Stationary processes.

Donsker and Varadhan (1970's-1980's) gave the first answers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Donsker and Varadhan's LDP for Markov processes

Conditions for Lower Bound: there exist a reference measure α , p(1, x, y) > 0 a.s., s.t.:

(a1)
$$p(1, x, dy) = p(1, x, y)\alpha(dy)$$
.
(a2) $p(1, x, \cdot)$: $E \longrightarrow L^{1}(\alpha)$ is continuous.

Conditions for Upper Bound:

(b1)
$$u_n(x) \ge c > 0, \forall x, n.$$

(b2) \forall compact set $K \subset E, \exists C_K$ s.th. $\sup_{x \in K} \sup_n u_n(x) \le C_K.$
(b3) $-(\frac{\mathcal{L}u_n}{u_n})(x) \equiv V_n(x) \ge -C, \forall x, n.$
(b4) $\lim_{n\to\infty} V_n(x) = V(x).$
(b5) $\{x : V(x) \le k\}$ is compact, $\forall k < \infty.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Large deviations of occupation measure for Markov processes

There have been extensive and studies, e.g.,

- Lower bound: de Acosta (1988), Jain (1990), Wu (1993) for essentially irreducible Markov processes.
- Upper bound: Gärtner (1977), Ellis (1985), Stroock (1984) gave a necessary and sufficient condition for good upper bound w.r.t. the weak convergence topology by means of Cramer's method;

Wu (2000,2004) characters the LDP by means of uniform integrability, essential spectral radius.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relations between recurrence and LDP

For Markov chain, the following are equivalent (Meyn, Tweedie)

- (Uniform ergodicity) $\sup_{x} \|P^{n}(x, \cdot) \pi\| \longrightarrow 0.$
- (Uniform geometric ergodicity) $\exists r > 0, C < \infty$ s.t.

$$\sup_{x} \|P^n(x,\cdot) - \pi\| \leq Ce^{-nr}.$$

• Aperiodic and \exists *petite* set $K, \exists \lambda > 0$ s.t.

$$\sup_{x\in E}\mathbb{E}_{x}[e^{\lambda\tau_{K}}]<\infty.$$

• Doeblin's condition, Lyapunov's condition, · · ·

Those conditions DOES NOT imply the Donsker-Varadhan's LDP. See Baxter, Jain, Varadhan (1991) or Bryc, Smolenski (1992). However, Wu (2001) found a characterization of LDP by means of the *hyper-exponential recurrence*.

The hyper-exponential recurrence criterion

 $\tau_{\mathcal{K}} := \inf\{t \geq 0 \ \text{ s.t. } X_t \in \mathcal{K}\}, \quad \tau_{\mathcal{K}}^{(1)} := \inf\{t \geq 1 \ \text{ s.t. } X_t \in \mathcal{K}\}.$

Theorem (Wu, 2001)

Assume

- Strong Feller: $\exists 0 < T \in \mathbb{T}$ s.t. $P_T b\mathcal{B} \subset C_b(E)$
- Topological irreducible: \forall non empty open $U, x \in E$, $\exists t \in \mathbb{T}, P_t(x, U) > 0$

The following are equivalent:

 Hyper-exponential recurrence: for some A ⊂ M₁(E), any λ > 0, ∃ compact set K ⊂ E, such that

$$\sup_{\nu \in \mathcal{A}} \mathbb{E}^{\nu} e^{\lambda \tau_{\mathcal{K}}} < \infty, \quad \text{and} \quad \sup_{x \in \mathcal{K}} \mathbb{E}^{x} e^{\lambda \tau_{\mathcal{K}}^{(1)}} < \infty.$$
(2)

• LDP: $\mathbb{P}_{\nu}(\mathcal{L}_t \in \cdot)$ satisfies the LDP on $\mathcal{M}_1(E)$ w.r.t. the τ -topology uniformly for $\nu \in \mathcal{A}$.

Some Comments about the rate function

Under the Feller assumption:

$$P_t(C_b(E)) \subset C_b(E), \quad \forall t \geq 0,$$

we know that (c.f. Deuschel-Stroock, Wu)

$$J(\nu) = \sup\left\{-\int \frac{\mathcal{L}u}{u} d\nu; 1 \le u \in \mathbb{D}_{e}(\mathcal{L})\right\}, \quad \nu \in \mathcal{M}_{1}(E) \quad (3)$$

(日) (日) (日) (日) (日) (日) (日) (日)

where $\mathbb{D}_{e}(\mathcal{L})$ is the extended domain of the generator \mathcal{L} of P_{t} in $C_{b}(E)$.

One dimensional diffusion process

Consider a \mathbb{R} -valued stochastic differential equation

$$dX_t = \sigma(X_t) dB_t + b(X_t) dt,$$

where *B* is a standard B.M., σ , *b* are locally Lipchizian, $\sigma > 0$ If for any $\lambda > 0$, there are two constants c > 0 and L > 0 s.t.

$$\Phi(x) := -c \operatorname{sign}(x) b(x) - \frac{1}{2} c^2 \sigma^2(x) \ge \lambda, \quad \forall |x| \ge L,$$

then \mathcal{L}_t satisfies the LDP w.r.t. τ -topology uniformly over compact sets. See Wu (2000).

LDP for SPDE

By using the hyper-exponential recurrence criterion, the LDPs for the occupation measures of SPDEs are studied by

- Gourcy (2007a, 2007b) : Stochastic Navier-Stokes equation, Stochastic Burgers equation
- Jakšić, Nersesyan, Pillet, Shirikyan (2015,2016) Dissipative PDEs with Rough Noise,

By this criterion, we study the LDP for other PSDEs.

LDP for nonlinear monotone SPDEs

Framework:

• Gelfand triple

$$V \subset H \equiv H^* \subset V^*,$$

 $(H, \langle \cdot, \cdot \rangle)$: separable Hilbert space; V : reflexive Banach space; $V \subset H$ is dense, compact.

 {W_t}_{t≥0} is a cylindrical Q-Wiener process with Q := I on another separable Hilbert space (U, ⟨·, ·⟩_U) w.r.t. a complete filtered probability space (Ω, F, F_t, ℙ).

General framework of SPDE

$$dX(t) = A(X(t))dt + B(X(t))dW_t,$$
(4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{array}{ll} \text{(H1)} & (\text{Hemicontinuity}) \ \forall v_1, v_2, v \in V, \\ \mathbb{R} \ni s \mapsto_{V^*} \langle A(v_1 + sv_2), v \rangle_V \text{ is continuous.} \\ \text{(H2)} & (\text{Weak monotonicity}) \ \exists c_0 \in \mathbb{R} \text{ s.t. } \forall v_1, v_2 \in V, \\ & 2_{V^*} \langle A(v_1) - A(v_2), v_1 - v_2 \rangle_V + \|B(v_1) - B(v_2)\|_{\mathcal{L}_2(U,H)}^2 \leq c_0 \|v_1 - v_2\|_H^2. \\ \text{(H3)} & (\text{Coercivity}) \ \exists r > 0, \ c_1, c_3 \in \mathbb{R}, c_2 > 0 \text{ s.t. } \forall v \in V, \\ & 2_{V^*} \langle A(v), v \rangle_V + \|B(v)\|_{\mathcal{L}_2(U,H)}^2 \leq c_1 - c_2 \|v\|_V^{r+1} + c_3 \|v\|_H^2. \\ \text{(H4)} & (\text{Boundedness}) \ \exists c_4 > 0, \ c_5 > 0 \text{ s.t. } \forall v \in V, \\ & \|A(v)\|_{V^*} \leq c_4 + c_5 \|v\|_V^r. \end{array}$$

Solution

Definition

A continuous H-valued \mathcal{F}_t -adapted process $\{X_t\}_{t\geq 0}$ is called a solution of (4), if

$$\mathbb{E}\left[\int_0^t \left(\|X(s)\|_V^{r+1} + \|X(s)\|_H^2\right) \mathrm{d}s\right] < \infty, \quad \forall t > 0, \qquad (5)$$

and \mathbb{P} -a.s.

$$X(t)=X(0)+\int_0^t A(X(s))\mathrm{d}s+\int_0^t B(X(s))\mathrm{d}W(s), \ \ orall t\geq 0.$$

According to (Krylov-Rozovskii, Prévôt-Röckner), under Conditions (H1)-(H4), for any $X_0 \in L^2(\Omega \to H; \mathcal{F}_0; \mathbb{P})$, (4) admits a unique solution $\{X_t\}_{t\geq 0}$.

Examples

Equation (4) contains the following models

- Stochastic *p*-Laplace equation (*r* > 1)
- Stochastic generalized porous media equations (r > 1)
- Stochastic fast-diffusion equations $(r \in (0, 1])$

Exponential Ergodicity, Strong Feller, Irreduciability are studied by methods of coupling and Wang's Harnark inequality, see F.Y. Wang, W. Liu, S.Q. Zhang, ···

Main Results

Recall the occupation measure \mathcal{L}_t :

$$\mathcal{L}_t(A) := \frac{1}{t} \int_0^t \delta_{X_s}(A) \mathrm{d}s \quad A \in \mathcal{B}(H).$$
(6)

Theorem (W-Xiong-Xu, 2016)

Assume that (H1)-(H4) hold with r > 1 and P_t is strong Feller and irreducible in H. Then the family $\mathbb{P}^{\nu}(\mathcal{L}_T \in \cdot)$ as $T \to +\infty$ satisfies the LDP on $(\mathcal{M}_1(H), \tau)$, with speed T and rate function J, uniformly for any initial measure ν in $\mathcal{M}_1(H)$.

Main Results

Theorem (W-Xiong-Xu, 2016)

Assume that (H1)-(H4) hold with $r \in (0, 1]$ and $c_3 < 0$, P_t is strong Feller and irreducible in H, and $C_B := \sup_{u \in H} \|B(u)\|_{L^2(U,H)}^2 < \infty$. Let $\lambda_0 \in (0, -\frac{c_3}{2C_B})$ and

$$\mathcal{M}_{\lambda_0,L} := \left\{
u \in \mathcal{M}_1(H) : \int_H e^{\lambda_0 \|x\|_H^2}
u(\mathrm{d} x) \leq L
ight\}.$$

Then the family $\mathbb{P}^{\nu}(\mathcal{L}_T \in \cdot)$ as $T \to +\infty$ satisfies the LDP on $(\mathcal{M}_1(H), \tau)$, with speed T and rate function J, uniformly for any initial measure ν in $\mathcal{M}_{\lambda_0,L}$.

Example: Stochastic differential equation

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x \in \mathbb{R}^d.$$
(7)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There exists $\lambda_i > 0, p > 2$ s.t.

$$\begin{cases} 2\langle x-y, b(x)-b(y)\rangle + \|\sigma(x)-\sigma(y)\|_2^2\\ \leq \lambda_0|x-y|^2(1\vee\log|x-y|^{-1}),\\ \|\sigma(x)\|_2 \leq \lambda_1(1+|x|),\\ \sup_{x\in\mathbb{R}^d}\|\sigma^{-1}(x)\|_2 \leq \lambda_2,\\ 2\langle x, b(x)\rangle + \|\sigma(x)\|_2^2 \leq -\lambda_3|x|^p + \lambda_4. \end{cases}$$

• Strong Feller, Irreducible, [X.C. Zhang 2009].

Example: Stochastic *p*-Laplace equation

$$\mathrm{d}X_t = \left[\mathsf{div}(|\nabla X_t|^{p-2}\nabla X_t) - \gamma |X_t|^{q-2}X_t\right] \mathrm{d}t + B\mathrm{d}W_t, \quad (8)$$

where $\max\{1, 2d/(d+2)\} and <math>\gamma > 0$, *B* is a Hilbert-Schmidt operator on $L^2(\Lambda)$. Take

$$V := H_0^{1,p}(\Lambda) \cap L^q(\Lambda), H := L^2(\Lambda).$$

- Conditions (H1)-(H4) with r > 1, [Prévôt-Röckner].
- Strong Feller, Irreducibility, [W. Liu, 2009].

Example: Stochastic generalized porous media equations

$$\mathrm{d}X(t) = (L\Psi(X(t)) + \Phi(X(t)))\,\mathrm{d}t + B(X(t))\mathrm{d}W(t).$$

$$egin{aligned} & L := -(-\Delta)^{\gamma}, \gamma > 0, \Psi(s) := s|s|^{r-1}, \ & \Phi(s) := cs, \ B(x)e_j := b_i(x)j^{-q}e_j, \ j \ge 1, \ & \left\{ egin{aligned} & |b_i(u) - b_i(v)| \le b|u - v|, \ & \inf_{u \in H^{\gamma}(D,\mu)} \inf_{i \ge 1} b_i(u) > 0. \end{aligned}
ight. \end{aligned}$$

r > 1: Stochastic generalized porous media equations

$$L^{r+1}(D,\mu) \subset H^{\gamma}(D,\mu) \subset (L^{r+1}(D,\mu))^*,$$

- Conditions (H1)-(H4) with r > 1, [Prévôt-Röckner]
- Strong Feller [F.Y. Wang, 2015], [S.Q. Zhang, 2014]
- Irreducibility [S.Q. Zhang, 2015].

Example: Stochastic fast-diffusion equations

0 < r < 1: Stochastic fast-diffusion equations: Take $D = (0, 1) \subset \mathbb{R}$, 1/3 < r < 1, $\gamma = 1$, c < 0.

$$V := L^{r+1}(D,\mu) \bigcap H^1(D,\mu), H := H^1(D,\mu).$$

(H1)-(H4) hold with 1/3 < r < 1 and c₃ < 0, [Röckner, Ren, Wang, 2007]

• Strong Feller, Irreducibility, [S.Q, Zhang, 2015].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of Theorem (r > 1)

By Itô's formula, for $t > s \ge 0$,

$$\mathbb{E}\left[\|X_t\|_H^2\right] \leq \mathbb{E}\left[\|X_s\|_H^2\right] + c_1(t-s) - c_2 \int_s^t \mathbb{E}\left[\|X_u\|_V^{r+1}\right] \mathrm{d}u + c_3 \int_s^t \mathbb{E}\left[\|X_u\|_H^2\right] \mathrm{d}u \leq \mathbb{E}\left[\|X_s\|_H^2\right] + C_1(t-s) - C_2 \int_s^t \mathbb{E}\left[\|X_u\|_H^{r+1}\right] \mathrm{d}u \Longrightarrow \sup_{t\geq 1} \mathbb{E}\left[\|X_t\|_H^2\right] \leq C \Rightarrow \int_1^2 \mathbb{E}\left[\|X_u\|_V^{r+1}\right] \mathrm{d}u \leq C \Rightarrow \quad \exists t \in [1,2] \ s.t. \quad \mathbb{E}\left[\|X_t\|_V^{r+1}\right] \leq C,$$

where *C* is independent of X_0 .

By the Markov property of X, there exists a sequence of times $\{t_n; n \ge 1\}$ such that $t_n \in [2n - 1, 2n]$ and

$$\mathbb{E}\left[\|X_{t_n}\|_V\right] \le C. \tag{9}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For any M > 0,

$$K := \{x \in V : ||x||_V \le M\} \text{ is compact in } H.$$

Based on (9), we have

$$\sup_{\nu\in\mathcal{M}_1(H)}\mathbb{E}^\nu[e^{\lambda\tau_{\mathcal{K}}}]<\infty.$$

Proof of Theorem $(r \in (0,1], c_3 < 0)$

Inspirited by [Gourcy, 07]

• For any $0 < \lambda_0 < -c_3/(2C_B)$, $x \in H$,

$$\mathbb{E}^{\mathsf{x}}\left[\exp\left(\frac{\lambda_0 c_2}{2} \int_0^t \|X_s\|_V^{\mathsf{r}} \mathrm{d}s\right)\right] \leq e^{\lambda_0 c_1 t} \cdot e^{\lambda_0 \|\mathbf{x}\|_H^2}.$$

• $K := \{x \in V : ||x||_V \le M\}$ is compact in H.

$$\begin{split} & \mathbb{P}^{\nu}(\tau_{K}^{(1)} > n) \leq \mathbb{P}^{\nu}\left(\mathcal{L}_{n}(K^{c}) \geq 1 - \frac{1}{n}\right) \\ & \leq \mathbb{P}^{\nu}\left(\mathcal{L}_{n}(\|x\|_{V}^{r}) \geq M^{r}\left(1 - \frac{1}{n}\right)\right) \\ & \leq \exp\left\{-\frac{n\lambda_{0}c_{2}M^{r}}{2}\left(1 - \frac{1}{n}\right)\right\}\mathbb{E}^{\nu}\left[\exp\left(\frac{\lambda_{0}c_{2}}{2}\int_{0}^{n}\|X_{s}\|_{V}^{r}\mathrm{d}s\right)\right] \\ & \leq \exp\left\{-n\lambda_{0}CM^{r}\right\}\mathbb{E}^{\nu}\left[e^{\lambda_{0}\|x\|_{H}^{2}}\right]. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stochastic Ginzburg-Landau equation driven by α -stable noises

$$\begin{cases} \mathrm{d}X_t - \Delta X_t \mathrm{d}t = (X_t - X_t^3)\mathrm{d}t + \mathrm{d}L_t, \\ X_0 = x_0, \end{cases}$$
(10)

where $L_t = \sum_{k \in \mathbb{Z}_*} \beta_k l_k(t) e_k$ is an α -stable process on H with $\{l_k(t)\}_{k \in \mathbb{Z}_*}$ being i.i.d. 1-dimensional symmetric α -stable process sequence with $\alpha > 1$.

Assume that there exist some $C_1, C_2 > 0$ so that

$$C_1 \gamma_k^{-\beta} \le |\beta_k| \le C_2 \gamma_k^{-\beta}, \quad \beta > \frac{1}{2} + \frac{1}{2\alpha}$$

The equation

We say that a predictable *H*-valued stochastic process $X = (X_t^{\times})$ is a mild solution to Eq. (10) if, for any $t \ge 0, x \in H$,

$$X_t^{\times} = e^{-At}x + \int_0^t e^{-A(t-s)} (X_s^{\times} - (X_s^{\times})^3) \mathrm{d}s + \int_0^t e^{-A(t-s)} \mathrm{d}L_s.$$

Theorem (Xu (SPA 2013) , W-Xiong-Xu (Bernoulli 2017))

- If $\alpha \in (3/2,2)$ and $\frac{1}{2} + \frac{1}{2\alpha} < \beta < \frac{3}{2} \frac{1}{\alpha}$, the followings hold
 - **1** Eq. (10) admits a unique mild solution.
 - **2** $(X_t^{\times})_{t \ge 0, x \in H}$ is strong Feller and irreducible in H.
 - **3** $(X_t^x)_{t \ge 0, x \in H}$ is exponential ergodic.

Theorem (W.-Xiong-Xu, 2016)

Assume that $\alpha \in (3/2, 2)$ and $\frac{1}{2} + \frac{1}{2\alpha} < \beta < \frac{3}{2} - \frac{1}{\alpha}$. Then $\mathbb{P}_{\nu}(\mathcal{L}_{T} \in \cdot)$ as $T \to +\infty$ satisfies the LDP w.r.t. the τ -topology, with speed T and rate function J, uniformly for any initial measure ν in $\mathcal{M}_{1}(H)$.

Difficulty: Due to the discontinuity and the lack of second moment, Itô's formula can't be used directly like the Wiener case. However, the strong coercive nonlinearity $x - x^3$ paves way to produce the hyper-exponential recurrence.

Lemma

For all
$$T > 0$$
, $\delta \in (0, 1/2)$, $p \in (0, \alpha/4)$,
 $\mathbb{E}_{x}\left[\|X_{T}\|_{\mathcal{H}_{\delta}}^{p} \right] \leq C_{T,\delta,p}$

where $C_{T,\delta,p}$ does not depend on $X_0 = x$.

- ◆ □ ▶ ★ □ ▶ ★ 三 ▶ ★ □ ▶ ↓ □ ▶ ◆ □ ▶ ◆

SDPE driven by subordinate BM

Let S_t be $\alpha/2$ -stable process on \mathbb{R} independent with the cylindrical B.M. W, Q_β be a Hilbert-Schmit operator

$$\mathrm{d}X - \Delta X \mathrm{d}t = (X - X^3) \mathrm{d}t + Q_\beta \mathrm{d}W_{S_t}, \qquad (11)$$

Theorem (W.-Xu, 2017)

For $\alpha \in (1, 2)$, the Markov process X is strong Feller and irreducible in H, $\mathbb{P}_{\nu}(\mathcal{L}_T \in \cdot)$ as $T \to +\infty$ satisfies the LDP w.r.t. the τ -topology, with speed T and rate function J, uniformly for any initial measure ν in $\mathcal{M}_1(H)$.

Difficulty: Non-independence of the components in the noise brings some new challenges, especially in the proof of irreducibility.

Critical lemma in the proof of irreducibility.

Lemma

For any T > 0, p > 0, the random variable $(\{W_{S_t}\}_{0 \le t \le T}, W_{S_T})$ has a full support in $L^p([0, T]; \mathbb{V}) \times \mathbb{V}$. More precisely, for any $\phi \in L^p([0, T]; \mathbb{V}), a \in \mathbb{V}, \varepsilon > 0$,

$$\mathbb{P}\left(\int_{0}^{T} \|W_{\mathcal{S}_{t}} - \phi_{t}\|_{\mathbb{V}}^{p} \mathrm{d}t + \|W_{\mathcal{S}_{T}} - \mathbf{a}\|_{\mathbb{V}} < \varepsilon\right) > 0.$$
(12)

References

- M. Gourcy, A large deviation principle for 2D stochastic Navier-Stokes equation, *Stochastic Proc. Appl.* **117**(2007) 904-927.
- F.-Y. Wang, Harnack inequalities for stochastic partial differential equations. Springer Briefs in Mathematics, 2013.
- L. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamiltionian systems. *Stochastic Proc. Appl.*, **91**(2001) 205-238.
- L. Xu, Ergodicity of the stochastic real Ginzburg-Landau equation driven by α-stable noises. *Stochastic Proc. Appl.*, **123** (2013) 3710-3736.

• S. Q. Zhang, Irreducibility for a class of SPDEs with locally monotone coefficients. Preprint, 2015.

Thanks for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?