Heat Kernel Estimates and Boundary Harnack Principle for Truncated Fractional Laplacian with Gradient Operator

Jieming Wang

Beijing Institute of Technology

The 13th Workshop on Markov Processes and Related Topics July 17-21, 2017

A stochastic process Z = (Z_t, P_x, x ∈ R^d) is called a rotationally symmetric α-stable process with α ∈ (0, 2) on R^d if it is a Lévy process such that its characteristic function is given by

$$\mathbb{E}_{x}\left[e^{i\xi\cdot(Z_{t}-Z_{0})}
ight]=e^{-t|\xi|^{lpha}} \qquad ext{for every } x\in\mathbb{R}^{d}.$$

$$\Delta^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \mathbb{1}_{\{|z| \le 1\}} \right) \frac{dz}{|z|^{d+\alpha}}$$

- Truncated symmetric α -stable process \overline{Z} is the symmetric α -stable process Z with large jumps more than 1 removed.
- Denote by $\overline{\Delta}^{\alpha/2}$ the operator of \overline{Z}_t , then

$$\overline{\Delta}^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\{|z| \le 1\}} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \right) \frac{dz}{|z|^{d+\alpha}}$$

A stochastic process Z = (Z_t, P_x, x ∈ R^d) is called a rotationally symmetric α-stable process with α ∈ (0, 2) on R^d if it is a Lévy process such that its characteristic function is given by

$$\mathbb{E}_x\left[e^{i\xi\cdot(Z_t-Z_0)}\right] = e^{-t|\xi|^{\alpha}} \quad \text{for every } x \in \mathbb{R}^d.$$

$$\Delta^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \mathbb{1}_{\{|z| \le 1\}} \right) \frac{dz}{|z|^{d+\alpha}}$$

- Truncated symmetric α -stable process \overline{Z} is the symmetric α -stable process Z with large jumps more than 1 removed.
- Denote by $\overline{\Delta}^{\alpha/2}$ the operator of \overline{Z}_t , then

$$\overline{\Delta}^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\{|z| \le 1\}} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \right) \frac{dz}{|z|^{d+\alpha}}$$

4

A stochastic process Z = (Z_t, P_x, x ∈ R^d) is called a rotationally symmetric α-stable process with α ∈ (0, 2) on R^d if it is a Lévy process such that its characteristic function is given by

$$\mathbb{E}_x\left[e^{i\xi\cdot(Z_t-Z_0)}\right] = e^{-t|\xi|^{\alpha}} \quad \text{for every } x \in \mathbb{R}^d.$$

$$\Delta^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \mathbf{1}_{\{|z| \le 1\}} \right) \frac{dz}{|z|^{d+\alpha}}$$

- Truncated symmetric α -stable process \overline{Z} is the symmetric α -stable process Z with large jumps more than 1 removed.
- Denote by $\overline{\Delta}^{\alpha/2}$ the operator of \overline{Z}_t , then

$$\overline{\Delta}^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\{|z| \le 1\}} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \right) \frac{dz}{|z|^{d+\alpha}}$$

A stochastic process Z = (Z_t, P_x, x ∈ R^d) is called a rotationally symmetric α-stable process with α ∈ (0, 2) on R^d if it is a Lévy process such that its characteristic function is given by

$$\mathbb{E}_x\left[e^{i\xi\cdot(Z_t-Z_0)}\right] = e^{-t|\xi|^{\alpha}} \quad \text{for every } x \in \mathbb{R}^d.$$

$$\Delta^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \mathbf{1}_{\{|z| \le 1\}} \right) \frac{dz}{|z|^{d+\alpha}}$$

- Truncated symmetric α-stable process Z is the symmetric α-stable process Z with large jumps more than 1 removed.
- Denote by $\overline{\Delta}^{\alpha/2}$ the operator of \overline{Z}_t , then

$$\overline{\Delta}^{\alpha/2} f(x) = \mathcal{A}(d, -\alpha) \int_{\{|z| \le 1\}} \left(f(x+z) - f(x) - \nabla f(x) \cdot z \right) \frac{dz}{|z|^{d+\alpha}}$$

• Chen-Kim-Kumagai (2008) considered a wide class of symmetric finite range non-local operator

$$\mathcal{S}f(x) = \lim_{\varepsilon \downarrow 0} \int_{\{|y-x| > \varepsilon\}} (f(y) - f(x)) \frac{c(x,y)}{|x-y|^{d+\alpha}} \mathbf{1}_{\{|x-y| \le \kappa\}} \, dy,$$

where $\alpha \in (0, 2)$, κ is a positive constant and c(x, y) is a measurable symmetric function and is bounded between two positive constants.

- The operator S is the operator $\overline{\Delta}^{\alpha/2}$ when c(x, y) = 1 and $\kappa = 1$.
- Associated with S is a symmetric jump process with jump density $\frac{c(x,y)}{|x-y|^{d+\alpha}} \mathbb{1}_{\{|x-y| \le \kappa\}}.$ Sharp two-sided heat kernel estimate for all t > 0 and parabolic Harnack principle are established for them in this paper.

• Chen-Kim-Kumagai (2008) considered a wide class of symmetric finite range non-local operator

$$\mathcal{S}f(x) = \lim_{\varepsilon \downarrow 0} \int_{\{|y-x| > \varepsilon\}} (f(y) - f(x)) \frac{c(x,y)}{|x-y|^{d+\alpha}} \mathbb{1}_{\{|x-y| \le \kappa\}} \, dy,$$

where $\alpha \in (0, 2)$, κ is a positive constant and c(x, y) is a measurable symmetric function and is bounded between two positive constants.

- The operator S is the operator $\overline{\Delta}^{\alpha/2}$ when c(x, y) = 1 and $\kappa = 1$.
- Associated with S is a symmetric jump process with jump density $\frac{c(x,y)}{|x-y|^{d+\alpha}} \mathbb{1}_{\{|x-y| \le \kappa\}}.$ Sharp two-sided heat kernel estimate for all t > 0 and parabolic Harnack principle are established for them in this paper.

• Chen-Kim-Kumagai (2008) considered a wide class of symmetric finite range non-local operator

$$\mathcal{S}f(x) = \lim_{\varepsilon \downarrow 0} \int_{\{|y-x| > \varepsilon\}} (f(y) - f(x)) \frac{c(x,y)}{|x-y|^{d+\alpha}} \mathbb{1}_{\{|x-y| \le \kappa\}} \, dy,$$

where $\alpha \in (0, 2)$, κ is a positive constant and c(x, y) is a measurable symmetric function and is bounded between two positive constants.

- The operator S is the operator $\overline{\Delta}^{\alpha/2}$ when c(x, y) = 1 and $\kappa = 1$.
- Associated with S is a symmetric jump process with jump density $\frac{c(x,y)}{|x-y|^{d+\alpha}} \mathbb{1}_{\{|x-y| \le \kappa\}}.$ Sharp two-sided heat kernel estimate for all t > 0and parabolic Harnack principle are established for them in this paper.

Denote by p(t, x, y) and $\overline{p}(t, x, y)$ the heat kernels of $\Delta^{\alpha/2}$ and $\overline{\Delta}^{\alpha/2}$ correspondingly.

• $\overline{p}(t, x, y)$ is jointly continuous and satisfies that

$$\overline{p}(t,x,y) \asymp p(t,x,y), \quad |x-y| \le 1, t \in (0,1],$$

and there are constants $c_k > 0$, k = 1, 2, 3, 4 so that

$$c_1\left(\frac{t}{|x-y|}\right)^{c_2|x-y|} \le \overline{p}(t,x,y) \le c_3\left(\frac{t}{|x-y|}\right)^{c_4|x-y|}$$

for |x - y| > 1 and $t \in (0, 1)$.

(ロ ト (厚 ト (匡 ト (匡 ト ― 三

Purpose

• We are concerned with the operator

$$\mathcal{L}^b := \overline{\Delta}^{\alpha/2} + b \cdot \nabla,$$

where $\alpha \in (1,2)$ and $b \in K_d^{\alpha-1}$. Here a function $b \in K_d^{\alpha-1}$ with $\alpha \in (1,2)$, if $\lim_{r \to 0} \sup_{x} \int_{B(x,r)} |y-x|^{\alpha-1-d} |b|(y) = 0.$

• The operator \mathcal{L}^b can be viewed as the operator

$$\tilde{\mathcal{L}}^b = \Delta^{\alpha/2} + b \cdot \nabla$$

with large jumps more than 1 removed.

Purpose

• We are concerned with the operator

$$\mathcal{L}^b := \overline{\Delta}^{\alpha/2} + b \cdot \nabla,$$

where $\alpha \in (1,2)$ and $b \in K_d^{\alpha-1}$. Here a function $b \in K_d^{\alpha-1}$ with $\alpha \in (1,2)$, if $\lim_{r \to 0} \sup_{x} \int_{B(x,r)} |y-x|^{\alpha-1-d} |b|(y) = 0.$

• The operator \mathcal{L}^b can be viewed as the operator

$$\tilde{\mathcal{L}}^b = \Delta^{\alpha/2} + b \cdot \nabla$$

with large jumps more than 1 removed.

$$\tilde{\mathcal{L}}^b = \Delta^{\alpha/2} + b \cdot \nabla$$

where $\alpha \in (1, 2)$ and $b \in K_d^{\alpha - 1}$.

- $p^b(t, x, y)$ is comparable to the heat kernel of the operator $\Delta^{\alpha/2}$ in short time.
- Bogdan-Jakubowski (2012) established the Green function estimates and the boundary Harnack principle for the operator in bounded $C^{1,1}$ open set.
- Chen-Kim-Song (2012) established the sharp two sided Dirichlet heat kernel estimates of the operator in bounded $C^{1,1}$ open set.

$$\tilde{\mathcal{L}}^b = \Delta^{\alpha/2} + b \cdot \nabla$$

where $\alpha \in (1, 2)$ and $b \in K_d^{\alpha - 1}$.

- $p^b(t, x, y)$ is comparable to the heat kernel of the operator $\Delta^{\alpha/2}$ in short time.
- Bogdan-Jakubowski (2012) established the Green function estimates and the boundary Harnack principle for the operator in bounded $C^{1,1}$ open set.
- Chen-Kim-Song (2012) established the sharp two sided Dirichlet heat kernel estimates of the operator in bounded $C^{1,1}$ open set.

$$ilde{\mathcal{L}}^b = \Delta^{lpha/2} + b \cdot
abla$$

where $\alpha \in (1,2)$ and $b \in K_d^{\alpha-1}$.

- $p^b(t, x, y)$ is comparable to the heat kernel of the operator $\Delta^{\alpha/2}$ in short time.
- Bogdan-Jakubowski (2012) established the Green function estimates and the boundary Harnack principle for the operator in bounded $C^{1,1}$ open set.
- Chen-Kim-Song (2012) established the sharp two sided Dirichlet heat kernel estimates of the operator in bounded $C^{1,1}$ open set.

$$\tilde{\mathcal{L}}^b = \Delta^{\alpha/2} + b \cdot \nabla$$

where $\alpha \in (1,2)$ and $b \in K_d^{\alpha-1}$.

- $p^b(t, x, y)$ is comparable to the heat kernel of the operator $\Delta^{\alpha/2}$ in short time.
- Bogdan-Jakubowski (2012) established the Green function estimates and the boundary Harnack principle for the operator in bounded $C^{1,1}$ open set.
- Chen-Kim-Song (2012) established the sharp two sided Dirichlet heat kernel estimates of the operator in bounded *C*^{1,1} open set.

Question:

Does the transition density function exist of the operator L^b? If so, is it comparable to that of Δ^{α/2} for t ∈ (0, 1)?

• What about the boundary Harnack principle for \mathcal{L}^b ?

Question:

- Does the transition density function exist of the operator L^b? If so, is it comparable to that of Δ^{α/2} for t ∈ (0, 1)?
- What about the boundary Harnack principle for \mathcal{L}^b ?

Theorem 1: Heat kernel estimates

(i)There exist a family of martingale solutions $\{\mathbb{P}_x, x \in \mathbb{R}^d\}$ for $(\mathcal{L}^b, C_c^{\infty}(\mathbb{R}^d))$ with initial value *x*. The solutions $\{\mathbb{P}_x, x \in \mathbb{R}^d\}$ form a strong Markov process X^b , which possesses a continuous transition density function $q^b(t, x, y)$ with respect to the Lebesgue measure on \mathbb{R}^d .

(ii) There exist positive constants C_k , k = 1, 2, 3 such that

 $C_1^{-1}\overline{p}(t, C_2 x, C_2 y) \le q^b(t, x, y) \le C_1 p(t, C_3 x, C_3 y)$

for all $t \in (0, 1)$ and $x, y \in \mathbb{R}^d$. Especially, suppose *b* is a bounded function, there exist positive constants $C_k, k = 4, 5, 6$ such that

 $C_4^{-1}\overline{p}(t, C_5 x, C_5 y) \le q^b(t, x, y) \le C_4 \overline{p}(t, C_6 x, C_6 y)$

for all $t \in (0, 1)$ and $x, y \in \mathbb{R}^d$.

・ロト ・聞 ト ・ ヨト ・ ヨト

Theorem 1: Heat kernel estimates

(i)There exist a family of martingale solutions $\{\mathbb{P}_x, x \in \mathbb{R}^d\}$ for $(\mathcal{L}^b, C_c^{\infty}(\mathbb{R}^d))$ with initial value *x*. The solutions $\{\mathbb{P}_x, x \in \mathbb{R}^d\}$ form a strong Markov process X^b , which possesses a continuous transition density function $q^b(t, x, y)$ with respect to the Lebesgue measure on \mathbb{R}^d .

(ii) There exist positive constants C_k , k = 1, 2, 3 such that

 $C_1^{-1}\overline{p}(t, C_2x, C_2y) \le q^b(t, x, y) \le C_1p(t, C_3x, C_3y)$

for all $t \in (0, 1)$ and $x, y \in \mathbb{R}^d$. Especially, suppose *b* is a bounded function, there exist positive constants C_k , k = 4, 5, 6 such that

$$C_4^{-1}\overline{p}(t, C_5 x, C_5 y) \le q^b(t, x, y) \le C_4 \overline{p}(t, C_6 x, C_6 y)$$

for all $t \in (0, 1)$ and $x, y \in \mathbb{R}^d$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proposition

Suppose a strong Markov process *Y* associated with the following operator possesses a transition density function $q_Y(t, x, y)$

$$\mathcal{L}_{Y}f(x) = \int_{\{|z| \le 1\}} (f(x+z) - f(x)) - \langle \nabla f(x), z \rangle) j(x,z) \, dz + b(x) \nabla f(x),$$

where $\int_{\mathbb{R}^d} (1 \wedge |z|^2) j(x, z) dz < +\infty$ for each $x \in \mathbb{R}^d$, *b* is a Borel measurable function in \mathbb{R}^d . Suppose $q_Y(t, x, y)$ satisfies

$$q_Y(t, x, y) \asymp p(t, x, y)$$
 for $t \in (0, 1), |x - y| \le 1$, (1)

and there exists $c_1 > 0$ such that

$$q_Y(t, x, y) \le c_1 t$$
 for $t \in (0, 1), |x - y| > 1.$ (2)

Continued

Moreover, suppose there exists $c_2 > 0$ independent of r such that for any $x \in \mathbb{R}^d, t \in (0, 1)$ and r > 0,

$$\mathbb{P}_{x}(\tau_{B(x,r)} \le t) \le c_{2}t/\phi(r), \quad (3)$$

where ϕ is an increasing function in \mathbb{R}^d such that $\phi(r) \to +\infty$ as $r \to +\infty$. Then there exist positive constants $C_k, k = 7, 8, 9$ such that for all $t \in (0, 1)$ and $x, y \in \mathbb{R}^d$,

 $C_7^{-1}\overline{p}(t, C_8x, C_8y) \le q_Y(t, x, y) \le C_7\overline{p}(t, C_9x, C_9y)$

Boundary Harnack principle

• Suppose that X is a strong Markov process. Suppose U is an open set of \mathbb{R}^d . A Borel function h is said to be a harmonic function in U with respect to X, if

$$h(x) = \mathbb{E}_x[h(X_{\tau_B})], \quad x \in B$$

for every bounded open set *B* with $\overline{B} \subset U$.

• BHP for X in D: For a domain D in \mathbb{R}^d , there exist positive constants R_0 and C such that for any $Q \in \partial D, r \in (0, R_0]$ any positive harmonic functions u and v in $D \cap B(Q, r)$ that vanish continuously on $D^c \cap B(Q, r)$, we have

$$\frac{u(x)}{u(y)} \le C \frac{v(x)}{v(y)}, \quad x, y \in D \cap B(\mathcal{Q}, r/2).$$

That is, *u* and *v* tend to 0 at exactly the same rate.

Boundary Harnack principle

• Suppose that X is a strong Markov process. Suppose U is an open set of \mathbb{R}^d . A Borel function h is said to be a harmonic function in U with respect to X, if

$$h(x) = \mathbb{E}_x[h(X_{\tau_B})], \quad x \in B$$

for every bounded open set *B* with $\overline{B} \subset U$.

• BHP for X in D: For a domain D in \mathbb{R}^d , there exist positive constants R_0 and C such that for any $Q \in \partial D, r \in (0, R_0]$ any positive harmonic functions u and v in $D \cap B(Q, r)$ that vanish continuously on $D^c \cap B(Q, r)$, we have

$$\frac{u(x)}{u(y)} \leq C \frac{v(x)}{v(y)}, \quad x, y \in D \cap B(Q, r/2).$$

That is, *u* and *v* tend to 0 at exactly the same rate.

- Bogdan (1997) first obtained BHP for rotationally α -stable processes(or equivalently for $\Delta^{\alpha/2}$) with $\alpha \in (0, 2)$ in bounded Lipschitz domains.
- Later, Song-Wu (1999) extended it to κ -fat open sets.
- Bogdan-Kulczycki-Kwasnicki (2008) established it in any open set with the constant independent of the open set itself.
- The boundary Harnack principle has been extended to more purely discontinuous processes, including subordinate Brownian motion and a wide class of rotationally symmetric Lévy processes, as well as discontinuous processes with Brownian part.

- Bogdan (1997) first obtained BHP for rotationally α -stable processes(or equivalently for $\Delta^{\alpha/2}$) with $\alpha \in (0, 2)$ in bounded Lipschitz domains.
- Later, Song-Wu (1999) extended it to κ -fat open sets.
- Bogdan-Kulczycki-Kwasnicki (2008) established it in any open set with the constant independent of the open set itself.
- The boundary Harnack principle has been extended to more purely discontinuous processes, including subordinate Brownian motion and a wide class of rotationally symmetric Lévy processes, as well as discontinuous processes with Brownian part.

- Bogdan (1997) first obtained BHP for rotationally α-stable processes(or equivalently for Δ^{α/2}) with α ∈ (0, 2) in bounded Lipschitz domains.
- Later, Song-Wu (1999) extended it to κ -fat open sets.
- Bogdan-Kulczycki-Kwasnicki (2008) established it in any open set with the constant independent of the open set itself.
- The boundary Harnack principle has been extended to more purely discontinuous processes, including subordinate Brownian motion and a wide class of rotationally symmetric Lévy processes, as well as discontinuous processes with Brownian part.

- Bogdan (1997) first obtained BHP for rotationally α-stable processes(or equivalently for Δ^{α/2}) with α ∈ (0, 2) in bounded Lipschitz domains.
- Later, Song-Wu (1999) extended it to κ -fat open sets.
- Bogdan-Kulczycki-Kwasnicki (2008) established it in any open set with the constant independent of the open set itself.
- The boundary Harnack principle has been extended to more purely discontinuous processes, including subordinate Brownian motion and a wide class of rotationally symmetric Lévy processes, as well as discontinuous processes with Brownian part.

- Kim-Song (2007) established the boundary Harnack principle for truncated symmetric stable process on bounded and convex domain for harmonic functions vanishing continuously on D^c .
- The paper showed that unlike symmetric stable process, the boundary Harnack principle for truncated stable process does not always hold in any open set, especially not always in non-convex open sets.
- The main reason is that for each subset *A* in \mathbb{R}^d , some points can jump to it with positive jump density, while some others not.

- Kim-Song (2007) established the boundary Harnack principle for truncated symmetric stable process on bounded and convex domain for harmonic functions vanishing continuously on D^c .
- The paper showed that unlike symmetric stable process, the boundary Harnack principle for truncated stable process does not always hold in any open set, especially not always in non-convex open sets.
- The main reason is that for each subset *A* in \mathbb{R}^d , some points can jump to it with positive jump density, while some others not.

- Kim-Song (2007) established the boundary Harnack principle for truncated symmetric stable process on bounded and convex domain for harmonic functions vanishing continuously on D^c .
- The paper showed that unlike symmetric stable process, the boundary Harnack principle for truncated stable process does not always hold in any open set, especially not always in non-convex open sets.
- The main reason is that for each subset *A* in \mathbb{R}^d , some points can jump to it with positive jump density, while some others not.

• We shall first establish the boundary Harnack principle for X^b with $b \in K_d^{\alpha-1}$ in Lipshchitz open sets.

Recall that an open set *D* in ℝ^d (when *d* ≥ 2) is said to be a Lipschitz open set with characteristics (*R*, Λ) if there exist a localization radius *R* > 0 and a constant Λ > 0 such that for every *Q* ∈ ∂*D*, there exist a Lipschitz function φ = φ_Q : ℝ^{d-1} → ℝ satisfying φ(0) = 0, |φ(x) - φ(y)| ≤ Λ|x - y|, and an orthonormal coordinate system *CS*_Q : *y* = (*y*₁, ..., *y*_{d-1}, *y*_d) =: (*ỹ*, *y*_d) with its origin at *Q* such that

$$B(Q,R) \cap D = \{ y = (\tilde{y}, y_d) \in B(0,R) \text{ in } CS_Q : y_d > \phi(\tilde{y}) \}.$$

Without loss of generality, we assume $R \in (0, 1/4)$ and $\Lambda \ge 1$.

- We shall first establish the boundary Harnack principle for X^b with $b \in K_d^{\alpha-1}$ in Lipshchitz open sets.
- Recall that an open set *D* in ℝ^d (when d ≥ 2) is said to be a Lipschitz open set with characteristics (*R*, Λ) if there exist a localization radius *R* > 0 and a constant Λ > 0 such that for every Q ∈ ∂D, there exist a Lipschitz function φ = φ_Q : ℝ^{d-1} → ℝ satisfying φ(0) = 0, |φ(x) φ(y)| ≤ Λ|x y|, and an orthonormal coordinate system CS_Q : y = (y₁, ..., y_{d-1}, y_d) =: (ỹ, y_d) with its origin at Q such that

$$B(Q,R) \cap D = \{ y = (\tilde{y}, y_d) \in B(0,R) \text{ in } CS_Q : y_d > \phi(\tilde{y}) \}.$$

Without loss of generality, we assume $R \in (0, 1/4)$ and $\Lambda \ge 1$.

- Note that $\mathcal{L}^b = \overline{\Delta}^{\alpha/2}$ when $b \equiv 0$. Next we shall give an assumption. For the simplicity of notation, denote by $D_{Q,r}$ as the set $D \cap B(Q,r)$.
- Fix a constant $\kappa \in (0, 1/4)$. For each r > 0 and $Q \in \partial D$, define

$$\Omega_{\kappa,r,\mathcal{Q}} := \{ y \in D_{\mathcal{Q},r} : \delta_{D_{\mathcal{Q},r}}(y) > \kappa r \}.$$

For each point $u \in \mathbb{R}^d$ and each set $F \subseteq \mathbb{R}^d$, define

$$H_{u,F} := \{ y \in F : |u - y| \le 1 \} = \{ y \in F : J(y, u) > 0 \},\$$

where $J(y, u) = |y - u|^{-(d+\alpha)} \mathbf{1}_{|u-y| \le 1}(y, u)$ is the jump density function of X^b .

- Note that $\mathcal{L}^b = \overline{\Delta}^{\alpha/2}$ when $b \equiv 0$. Next we shall give an assumption. For the simplicity of notation, denote by $D_{Q,r}$ as the set $D \cap B(Q,r)$.
- Fix a constant $\kappa \in (0, 1/4)$. For each r > 0 and $Q \in \partial D$, define

$$\Omega_{\kappa,r,Q} := \{ y \in D_{Q,r} : \delta_{D_{Q,r}}(y) > \kappa r \}.$$

For each point $u \in \mathbb{R}^d$ and each set $F \subseteq \mathbb{R}^d$, define

$$H_{u,F} := \{ y \in F : |u - y| \le 1 \} = \{ y \in F : J(y, u) > 0 \},\$$

where $J(y, u) = |y - u|^{-(d+\alpha)} \mathbf{1}_{|u-y| \le 1}(y, u)$ is the jump density function of X^b .

Define $m(\cdot)$ as the Lebesgue measure on \mathbb{R}^d .

• (A1) For each Lipschitz open set *D* with characteristics (R, Λ) , suppose there exists a constant $c = c(d, R, \Lambda) > 0$ such that for any $r \in (0, R)$, $Q \in \partial D$ and $u \in \{u \in B(Q, 4r)^c : m(H_{u,D_{Q,r}}) > 0\}$,

$$\int_{\Omega_{\kappa,2r,Q}} 1_{|u-y| \le 1}(y) \, dy \ge cr^d$$
$$\iff \int_{\Omega_{\kappa,2r,Q}} 1_{\{J(y,u) > 0\}}(y) \, dy \ge cr^d.$$

Remarks:

- The assumption (A1) is restricted to large jumps of the process X^b from the set D ∩ B(Q, r) near the boundary.
- If there exist some jumps from $D_{Q,r}$ to the point u, then there should be enough amount of jumps from $\Omega_{\kappa,2r,Q}$ to u.

Define $m(\cdot)$ as the Lebesgue measure on \mathbb{R}^d .

• (A1) For each Lipschitz open set *D* with characteristics (R, Λ) , suppose there exists a constant $c = c(d, R, \Lambda) > 0$ such that for any $r \in (0, R)$, $Q \in \partial D$ and $u \in \{u \in B(Q, 4r)^c : m(H_{u, D_{Q, r}}) > 0\}$,

$$\int_{\Omega_{\kappa,2r,Q}} 1_{|u-y| \le 1}(y) \, dy \ge cr^d$$
$$\iff \int_{\Omega_{\kappa,2r,Q}} 1_{\{J(y,u) > 0\}}(y) \, dy \ge cr^d.$$

Remarks:

- The assumption (A1) is restricted to large jumps of the process X^b from the set D ∩ B(Q, r) near the boundary.
- If there exist some jumps from $D_{Q,r}$ to the point u, then there should be enough amount of jumps from $\Omega_{\kappa,2r,Q}$ to u.

Define $m(\cdot)$ as the Lebesgue measure on \mathbb{R}^d .

• (A1) For each Lipschitz open set *D* with characteristics (R, Λ) , suppose there exists a constant $c = c(d, R, \Lambda) > 0$ such that for any $r \in (0, R)$, $Q \in \partial D$ and $u \in \{u \in B(Q, 4r)^c : m(H_{u, D_{Q, r}}) > 0\}$,

$$\int_{\Omega_{\kappa,2r,Q}} 1_{|u-y| \le 1}(y) \, dy \ge cr^d$$
$$\iff \int_{\Omega_{\kappa,2r,Q}} 1_{\{J(y,u) > 0\}}(y) \, dy \ge cr^d.$$

Remarks:

- The assumption (A1) is restricted to large jumps of the process X^b from the set D ∩ B(Q, r) near the boundary.
- If there exist some jumps from $D_{Q,r}$ to the point *u*, then there should be enough amount of jumps from $\Omega_{\kappa,2r,Q}$ to *u*.

Denote by G_D^b the Green function of the process X^b killed upon the open set D. Define

$$s_D(x) := \int_D G_D^b(x, y) \, dy = \mathbb{E}_x \tau_D.$$

Recall that $D_{Q,r}$ is the set $D \cap B(Q, r)$.

Theorem: BHP with $b \in K_d^{\alpha-1}$ **in** Lipschitz domain

Suppose the function $b \in K_d^{\alpha-1}$. For each Lipschitz open set D with characteristics (R, Λ) satisfying the assumption (A1), there exists a positive constant $C = C(d, \alpha, R, \Lambda, b)$ such that for all $Q \in \partial D, r \in (0, R]$ and all function $h \ge 0$ on \mathbb{R}^d that is harmonic with respect to the process X^b in $D \cap B(Q, 2r)$ and vanishes continuously on $D^c \cap B(Q, 2r)$, we have

$$\frac{h(x)}{h(y)} \le C \frac{s_{D_{\mathcal{Q},r}}(x)}{s_{D_{\mathcal{Q},r}}(y)}, \quad x, y \in D \cap B(\mathcal{Q}, r/2).$$

Examples:

- *D* is a bounded and convex domain. The boundary Harnack principle holds for harmonic functions vanishing continuously on *D*^{*c*}.
- $D = \mathbb{R}^d \setminus \overline{B(0, R_0)}$ with $R_0 > 12$. The boundary Harnack principle holds for harmonic functions vanishing in D^c .

Remark: The theorem gives the decay rate of harmonic function w.r.t. X^b . Especially, if *D* is a $C^{1,1}$ domain, then

$$\frac{h(x)}{h(y)} \le C \frac{\delta_D^{\alpha/2}(x)}{\delta_D^{\alpha/2}(y)}.$$

Examples:

- D is a bounded and convex domain. The boundary Harnack principle holds for harmonic functions vanishing continuously on D^c .
- $D = \mathbb{R}^d \setminus \overline{B(0, R_0)}$ with $R_0 > 12$. The boundary Harnack principle holds for harmonic functions vanishing in D^c .

Remark: The theorem gives the decay rate of harmonic function w.r.t. X^b . Especially, if *D* is a $C^{1,1}$ domain, then

$$\frac{h(x)}{h(y)} \le C \frac{\delta_D^{\alpha/2}(x)}{\delta_D^{\alpha/2}(y)}.$$

Examples:

- *D* is a bounded and convex domain. The boundary Harnack principle holds for harmonic functions vanishing continuously on *D*^{*c*}.
- $D = \mathbb{R}^d \setminus \overline{B(0, R_0)}$ with $R_0 > 12$. The boundary Harnack principle holds for harmonic functions vanishing in D^c .

Remark: The theorem gives the decay rate of harmonic function w.r.t. X^b . Especially, if *D* is a $C^{1,1}$ domain, then

$$rac{h(x)}{h(y)} \leq C rac{\delta_D^{lpha/2}(x)}{\delta_D^{lpha/2}(y)}.$$

BHP with bounded function *b* in open sets

• (A2): For each open set D, suppose there exist constants $r_0 = r_0(D) > 0$ and c = c(d, D) > 0 such that for any $r \in (0, r_0)$, $Q \in \partial D$ and $u \in \{u \in B(Q, 4r)^c : m(H_{u, D_{Q, r}}) > 0\}$,

$$\int_{\Omega_{\kappa,2r,Q}} 1_{|u-y| \le 1}(y) \, dy \ge cr^d.$$

Theorem: BHP with bounded function *b* **in open sets**

Suppose the function *b* is a bounded function. For each open set *D* satisfying the assumption (*A*2), there exists a positive constant $C = C(d, \alpha, b, D)$ such that for all $Q \in \partial D, r \in (0, r_0)$ and all function $h \ge 0$ on \mathbb{R}^d that is harmonic with respect to the process X^b in $D \cap B(Q, 2r)$ and vanishes continuously on $D^c \cap B(Q, 2r)$, we have

$$\frac{h(x)}{h(y)} \leq C \frac{s_{D_{\mathcal{Q},r}}(x)}{s_{D_{\mathcal{Q},r}}(y)}, \quad x, y \in D \cap B(\mathcal{Q}, r/2).$$

BHP with bounded function *b* in open sets

• (A2): For each open set D, suppose there exist constants $r_0 = r_0(D) > 0$ and c = c(d, D) > 0 such that for any $r \in (0, r_0)$, $Q \in \partial D$ and $u \in \{u \in B(Q, 4r)^c : m(H_{u, D_{Q, r}}) > 0\}$,

$$\int_{\Omega_{\kappa,2r,Q}} \mathbb{1}_{|u-y| \le 1}(y) \, dy \ge cr^d.$$

Theorem: BHP with bounded function b in open sets

Suppose the function *b* is a bounded function. For each open set *D* satisfying the assumption (*A*2), there exists a positive constant $C = C(d, \alpha, b, D)$ such that for all $Q \in \partial D$, $r \in (0, r_0)$ and all function $h \ge 0$ on \mathbb{R}^d that is harmonic with respect to the process X^b in $D \cap B(Q, 2r)$ and vanishes continuously on $D^c \cap B(Q, 2r)$, we have

$$\frac{h(x)}{h(y)} \leq C \frac{s_{D_{\mathcal{Q},r}}(x)}{s_{D_{\mathcal{Q},r}}(y)}, \quad x, y \in D \cap B(\mathcal{Q}, r/2).$$

Remarks

- The proof of the boundary Harnack principle for X^b when *b* is bounded is adapted from the one in Bogdan-Kulczycki-Kwasnicki (2008) for the BHP for symmetric stable process in open sets.
- One key Lemma is as follows (see Kim-Song (2007) for symmetric truncated stable process and Bogdan-Kulczycki-Kwasnicki (2008) for symmetric stable process)

Lemma

Suppose *D* is an open set and ϕ is a $C_c^{\infty}(\mathbb{R}^d)$ function, then for $x \in D$,

$$\begin{aligned} \mathbb{E}_{x}\phi(X^{b}_{\tau_{D}}) &= \phi(x) + \int_{D} G^{b}_{D}(x,v)\mathcal{L}^{b}\phi(v) \, dv \\ &= \phi(x) + \int_{D} G^{b}_{D}(x,v)(\overline{\Delta}^{\alpha/2}\phi(v) + \boldsymbol{b}(v)\nabla\phi(v)) \, dv. \end{aligned}$$

• This method seems not work well when the function *b* belongs to Kato class $K_d^{\alpha-1}$.

Remarks

- The proof of the boundary Harnack principle for X^b when *b* is bounded is adapted from the one in Bogdan-Kulczycki-Kwasnicki (2008) for the BHP for symmetric stable process in open sets.
- One key Lemma is as follows (see Kim-Song (2007) for symmetric truncated stable process and Bogdan-Kulczycki-Kwasnicki (2008) for symmetric stable process)

Lemma

Suppose *D* is an open set and ϕ is a $C_c^{\infty}(\mathbb{R}^d)$ function, then for $x \in D$,

$$\begin{aligned} \mathbb{E}_{x}\phi(X^{b}_{\tau_{D}}) &= \phi(x) + \int_{D} G^{b}_{D}(x,v)\mathcal{L}^{b}\phi(v) \, dv \\ &= \phi(x) + \int_{D} G^{b}_{D}(x,v)(\overline{\Delta}^{\alpha/2}\phi(v) + b(v)\nabla\phi(v)) \, dv. \end{aligned}$$

• This method seems not work well when the function *b* belongs to Kato class $K_d^{\alpha-1}$.

Remarks

- The proof of the boundary Harnack principle for X^b when *b* is bounded is adapted from the one in Bogdan-Kulczycki-Kwasnicki (2008) for the BHP for symmetric stable process in open sets.
- One key Lemma is as follows (see Kim-Song (2007) for symmetric truncated stable process and Bogdan-Kulczycki-Kwasnicki (2008) for symmetric stable process)

Lemma

Suppose *D* is an open set and ϕ is a $C_c^{\infty}(\mathbb{R}^d)$ function, then for $x \in D$,

$$\begin{aligned} \mathbb{E}_{x}\phi(X^{b}_{\tau_{D}}) &= \phi(x) + \int_{D} G^{b}_{D}(x,v)\mathcal{L}^{b}\phi(v) \, dv \\ &= \phi(x) + \int_{D} G^{b}_{D}(x,v)(\overline{\Delta}^{\alpha/2}\phi(v) + b(v)\nabla\phi(v)) \, dv. \end{aligned}$$

• This method seems not work well when the function *b* belongs to Kato class $K_d^{\alpha-1}$.

• Suppose D is a Lipschitz domain, then

$$\mathbb{P}_x(X^b_{\tau_D} \in \partial D) = 0, \quad x \in D.$$

• By the Lévy system formula, for any Lipschitz open set *D* and nonnegative function *h*,

$$\mathbb{E}_{x}[h(X_{\tau_{D}}^{b})] = \int_{\overline{D}^{c}} \int_{D} G_{D}^{b}(x, y) J(y, u) h(u) \, dy \, du,$$

where $J(y, u) = |y - u|^{-(d+\alpha)} 1_{|y-u| \le 1}$.

• Suppose *D* is a Lipschitz domain, then

$$\mathbb{P}_x(X^b_{\tau_D} \in \partial D) = 0, \quad x \in D.$$

• By the Lévy system formula, for any Lipschitz open set *D* and nonnegative function *h*,

$$\mathbb{E}_{x}[h(X_{\tau_{D}}^{b})] = \int_{\overline{D}^{c}} \int_{D} G_{D}^{b}(x, y) J(y, u) h(u) \, dy \, du$$

where $J(y, u) = |y - u|^{-(d+\alpha)} \mathbf{1}_{|y-u| \le 1}$.

Denote by \tilde{G}_D^b the Green function of $\tilde{\mathcal{L}}^b = \Delta^{\alpha/2} + b\nabla$ on the set D.

Lemma 1

For each bounded Lipschitz open set U with characteristics (R, Λ) , there exist constants $r_0 = r_0(d, \alpha, b)$ and $C = C(d, \alpha, R, \Lambda, b) > 1$ such that if $diam(U) \le r_0$, then

$$C^{-1}\tilde{G}^b_U(x,y) \le G^b_U(x,y) \le C\tilde{G}^b_U(x,y), \quad x,y \in U.$$

Lemma 2: BHP w.r.t. \tilde{L}^b in Lipschitz domain

Suppose the function $b \in K_d^{\alpha-1}$. For each Lipschitz open set D with characteristics (R, Λ) , there exists a positive constant $C = C(d, \alpha, R, \Lambda, b)$ such that for all $Q \in \partial D, r \in (0, R]$ and any two nonnegative harmonic functions u and vwith respect to $\tilde{\mathcal{L}}^b$ in $D \cap B(Q, r)$ and vanishes continuously on $D^c \cap B(Q, r)$, we have

$$\frac{u(x)}{u(y)} \le C\frac{v(x)}{v(y)}, \quad x, y \in D \cap B(Q, r/2).$$

Denote by \tilde{G}_D^b the Green function of $\tilde{\mathcal{L}}^b = \Delta^{\alpha/2} + b\nabla$ on the set D.

Lemma 1

For each bounded Lipschitz open set U with characteristics (R, Λ) , there exist constants $r_0 = r_0(d, \alpha, b)$ and $C = C(d, \alpha, R, \Lambda, b) > 1$ such that if $diam(U) \le r_0$, then

$$C^{-1}\tilde{G}^b_U(x,y) \le G^b_U(x,y) \le C\tilde{G}^b_U(x,y), \quad x,y \in U.$$

Lemma 2: BHP w.r.t. \tilde{L}^b in Lipschitz domain

Suppose the function $b \in K_d^{\alpha-1}$. For each Lipschitz open set D with characteristics (R, Λ) , there exists a positive constant $C = C(d, \alpha, R, \Lambda, b)$ such that for all $Q \in \partial D, r \in (0, R]$ and any two nonnegative harmonic functions u and vwith respect to $\tilde{\mathcal{L}}^b$ in $D \cap B(Q, r)$ and vanishes continuously on $D^c \cap B(Q, r)$, we have

$$\frac{u(x)}{u(y)} \le C\frac{v(x)}{v(y)}, \quad x, y \in D \cap B(Q, r/2).$$

Thank you!

∃ ► < ∃ ►</p>