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Define the perfect multiplicative functional (MF) M; = e="t. Then
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Ar =3y F(Xoo ,X) F >0, F(x,x) = 0.

Question: If P,(As < o0) = 1, when does it follow that B, Ay, < 00?

Define the perfect multiplicative functional (MF) M; = e="t. Then
My = e A > 0 iff Ao < 00.

Define u: RY — [0,1] by u(x) := ExMs. Then u is measureable and
(u(Xt))e>0 is cadlag.

Note: If Py(Ax < 00) = 1 for all x € R, then P, (M > 0) = 1 for all
x € R9, hence u > 0.
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The process (u(Xt)M¢)¢>0 is a bounded Py -martingale, Vx € RY.
Consequently, for t > 0,

u(x) = Ex[u(Xe)M:] = Ex[u(Xrp)Mrp],

7p = inf{t > 0: X; ¢ D} the exit time from D C RY. Interpretation: u
(regular) harmonic in D for the process perturbed by the MF M.

Assume that P, (A, < 00) =1 for all x € R9. Then lim; o u(X:) =1
P.-a.s. for every x € RY.
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F(x,y) =1—e FO¥) and set A, = ds<t F(Xs_, Xs).
For all t > 0 we have a Dynkin-type formula

u(x) = Ey [u(Xt) - /Ot u(Xs) dAZ} —1-E, /OOO u(Xs) dAs

X strongly Feller and lim;_,o sup, ExA; = 0 imply u is continuous.

Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wauhan, 17-21.7.2017. 6 /33




General result

Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
Py (As < 00) = 1 for all x € RY and inf,cpa u(x) = ¢ > 0, then
SUPyerd ExAs < 1/c— 1.




General result

Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
Py (As < 00) = 1 for all x € RY and inf,cpa u(x) = ¢ > 0, then
sup,cpd ExAoe < 1/c — 1.

Further, when F is bounded, then inf, s u(x) > 0 iff

SUP,crd ExAx < 00.




General result

Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
Py (As < 00) = 1 for all x € RY and inf,cpa u(x) = ¢ > 0, then
sup,cpd ExAoe < 1/c — 1.

Further, when F is bounded, then inf, s u(x) > 0 iff

SUP,crd ExAx < 00.

Proof: Assume ¢ := inf,cra u(x) > 0 and rewrite the Dynkin-type formula
as

1— u(x) = E, /OOO u(Xs) dAs

Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wauhan, 17-21.7.2017. 7 /33



General result

Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
Py (As < 00) = 1 for all x € RY and inf,cpa u(x) = ¢ > 0, then
sup,cpd ExAoe < 1/c — 1.

Further, when F is bounded, then inf, s u(x) > 0 iff

SUP,crd ExAx < 00.

Proof: Assume ¢ := inf,cra u(x) > 0 and rewrite the Dynkin-type formula
as

1— u(x) = E, / u(Xs) dAs > cE A .
0

Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wauhan, 17-21.7.2017. 7 /33



General result

Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
Py (As < 00) = 1 for all x € RY and inf,cpa u(x) = ¢ > 0, then
sup,cpd ExAoe < 1/c — 1.

Further, when F is bounded, then inf, s u(x) > 0 iff

SUP,crd ExAx < 00.

Proof: Assume ¢ := inf,cra u(x) > 0 and rewrite the Dynkin-type formula
as

oo ~ ~
1—c>1-u(x) :]EX/ u(Xs) dAs > cEyAs .
0

Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wauhan, 17-21.7.2017. 7 /33



Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
Py (As < 00) = 1 for all x € RY and inf,cpa u(x) = ¢ > 0, then

sup,cpd ExAoe < 1/c — 1.

Further, when F is bounded, then inf, s u(x) > 0 iff

SUP,crd ExAx < 00.

Proof: Assume ¢ := inf,cra u(x) > 0 and rewrite the Dynkin-type formula
as

oo ~ ~
1—c>1-u(x) :]EX/ u(Xs) dAs > cEyAs .
0

Question: How to check that u(x) = ExMy is bounded away from zero?

Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wauhan, 17-21.7.2017. 7 /33



General result

Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
Py (As < 00) = 1 for all x € RY and inf,cpa u(x) = ¢ > 0, then

sup,cpd ExAoe < 1/c — 1.

Further, when F is bounded, then inf, s u(x) > 0 iff

SUP,crd ExAx < 00.

Proof: Assume ¢ := inf,cra u(x) > 0 and rewrite the Dynkin-type formula
as

w ~ ~
l1—-c>1-u(x)= ]EX/ u(Xs) dAs > cE A .
0

Question: How to check that u(x) = ExMy is bounded away from zero?
Note: If Py(As < 00) =1, then u > 0. Further, if X strongly Feller and
lim¢—osup, ExA; = 0, then u is continuous, hence bounded away from 0
on compacts. Finally, lim;_,o u(X:) = 1.

Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wauhan, 17-21.7.2017. 7 /33



General result

Properties of u, cont.

Proposition 1: If ExAs < ¢ < 00, then u(x) > e~ € > 0. Conversely, if
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Proof: Assume ¢ := inf,cra u(x) > 0 and rewrite the Dynkin-type formula
as

w ~ ~
l1—-c>1-u(x)= ]EX/ u(Xs) dAs > cE A .
0

Question: How to check that u(x) = ExMy is bounded away from zero?
Note: If Py(As < 00) =1, then u > 0. Further, if X strongly Feller and
lim¢—osup, ExA; = 0, then u is continuous, hence bounded away from 0
on compacts. Finally, lim;_, o u(X:) = 1. There exists A such that

Py(Ax < o0) =1, but inf u = 0.
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An application to perpetual integral functionals

Let X = (X;,Px) be a strong Markov process on R, lim;_,o, X; = +0o0 and

Py (X7, =1) for all y < x where T, =inf{t >0: X; > x}.
For bounded f : R — [0, o0) define At fot f(Xs)ds, and for x € R,
fx(y):f( )l[xoo y) AX fo

Ao is often called perpetual /ntegral functiona/.

Let My = e A, MX = e, u(y) = E,My and v*(y) = E, MX.
Then u and v are non-decreasing. Further, since P, (M} =1) =1 for
y < x, it follows that inf, cr v*(y) = u™(x) > 0.
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A simple application of Proposition 1 gives the following result originally
proved in Khoshnevisan, Salminen, Yor (2006): The following are
equivalent

(i) Py(Asw < 00) =1 for all x € R;
(i) Py(AX <oo)=1lorall x eR;
(iii) ExA% < oo orall x € R;
(iv) sup,eg EyAS, < ocorall x € R;

Note: Even when f is bounded, we cannot conclude that ExA, < oo
because of the lack of control of u(x) as x — —occ.
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Subordinate Brownian motion

Let W = (W, Py) be a Brownian motion in R, S = (S;) an independent
subordinator.

The Laplace exponent ¢ of S satisfies E[e *%] = etV It is a
Bernstein function, hence has a representation

(1— e )u(dt), b> o,/ (1A N)u(dt) < oo
(0.00)

d(\) = bA + /
(0,00)
Define X = (X, Px) as X; := Ws, — subordinate BM. It is a Lévy process

with the characteristic exponent (&) = ¢(|¢]?), &€ € RY:
Ey[eé (Xe=¥)] = e~ t¥(&)
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(1— e )u(dt), b> o,/ (1A N)u(dt) < oo
(0.00)

d(\) = bA + /
(0,00)
Define X = (X, Px) as X; := Ws, — subordinate BM. It is a Lévy process

with the characteristic exponent (&) = ¢(|¢]?), &€ € RY:
Ey[eé (Xe=¥)] = e~ t¥(&)

v

For p(A) = A%/2 we get (&) = |€]%, so X is an isotropic a-stable process.J
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and that it satisfies the following weak scaling condition: There exist
ai,a» > 0and 0 < §; < d2 < 2 A d such that

51 52
31<R> §¢(R)§32(R) , 0<r<R< .
r o(r) r

Consequence: b =0 (no drift).

Notation: ®(\) = ( 7y For (X)) = A2 it holds that ®(\) = A~ J

For ¢(\) = A\*/2 we have exact scaling:

0 (7)
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F-harmonic functions

Let F: RY x R? — [0,00) be a symmetric function vanishing on the
diagonal, and let Af :=>"__, F(X,_, X;) be the corresponding AF.

A non-negative function h: RY — [0, 00) is F-harmonic in a bounded open
set D C RY with respect to X, if for every open V C V C D,

h(x) = Ex |e Avh(X.,)| , forallxe V.

The function h is regular F-harmonic in D if the above holds with V
replaced by D.

If ME = eA7 and u(x) = E,[ME], then it was shown that u is regular
F-harmonic in every bounded open D.
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Results for subordinate Brownian motion

Harnack inequality for F-harmonic functions

Theorem 2: Let D C R? be a bounded open set and K C D a compact
subset of D. Fix 8 > 1 and C > 0. There exists a constant

c =c(d, a1, az,d1,02,3,C,D,K) > 1 such that for every symmetric

F :RY x RY — [0, 00) vanishing on the diagonal and satisfying

F(x,y) < C(®(]x — y[)? A1), and every h: RY — [0, 00) which is
F-harmonic with respect to X in D, it holds that

cth(x) < h(y) < ch(x), x,y € K.
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subset of D. Fix 8 > 1 and C > 0. There exists a constant

c =c(d, a1, az,d1,02,3,C,D,K) > 1 such that for every symmetric

F :RY x RY — [0, 00) vanishing on the diagonal and satisfying

F(x,y) < C(®(]x — y[)? A1), and every h: RY — [0, 00) which is
F-harmonic with respect to X in D, it holds that

cth(x) < h(y) < ch(x), x,y € K.

The dependence of ¢ on K and D is only through the ratio

(ro A dist(K, D€))/diam(K) where ry = ro(d, a1, az, 91, 02, 3) will be
explained later.

v
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subset of D. Fix 8 > 1 and C > 0. There exists a constant

c =c(d, a1, az,d1,02,3,C,D,K) > 1 such that for every symmetric

F :RY x RY — [0, 00) vanishing on the diagonal and satisfying

F(x,y) < C(®(]x — y[)? A1), and every h: RY — [0, 00) which is
F-harmonic with respect to X in D, it holds that

cth(x) < h(y) < ch(x), x,y € K.

The dependence of ¢ on K and D is only through the ratio

(ro A dist(K, D€))/diam(K) where ry = ro(d, a1, az, 91, 02, 3) will be
explained later.

The HI will be used in case

D=V(0,1,2M +1) == {x€RY: 1 < |x| < 2M + 1} and

K =V(0,2,2M) = {x € RY: 2 < |x| < 2M}, M some large number.
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Results for subordinate Brownian motion

The key ingredient of the proof

The key ingredient in the proof of Theorem 2 is the following estimate:

For every € > 0, there exists ry = rp(d, a1, az, 91, d2, B, ) such that for
every r € (0,1), all xo € R? and all x,w € B(xp, r),

e ¢ < Ew[eiAfB(Xo»f)]
> By
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Results for subordinate Brownian motion

The key ingredient of the proof

The key ingredient in the proof of Theorem 2 is the following estimate:

For every € > 0, there exists ry = rp(d, a1, az, 91, d2, B, ) such that for
every r € (0,1), all xo € R? and all x,w € B(xp, r),

e ¢ < Ew[eiAfB(Xo»f)]
> By

By Jensen's inequality, this follows from EY [AF

Fan] <
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Results for subordinate Brownian motion

The key ingredient of the proof

The key ingredient in the proof of Theorem 2 is the following estimate:
For every € > 0, there exists ry = rp(d, a1, az, 91, d2, B, ) such that for
every r € (0,1), all xo € R? and all x,w € B(xp, r),

_ AF
< EY[e eron)

By Jensen's inequality, this follows from E} [ATFB( r)} <e.

Set B, = B(xp, r) and let Gg, denote the Green function of the process X
killed upon exiting the ball B(xg, r). It is well known that

Gg,(x,y)Gg,(z, w) ,
EyY AF : : F - |
TB’ /r/, Gg,(x, w) (v, 2)j(ly — z|) dzdy

Here j(|z]|) is the density of the Lévy measure of X.

v
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Results for subordinate Brownian motion

Key technical lemma

By using already existing two sided sharp estimates of Gg, and j, we prove
the following key technical lemma:

Lemma 3: Let 8> 1 and C > 0. For every € > 0 there exists a constant
ro = ro(d, a1, az, 01,92, 8, C,e) € (0, 1] such that for every r € (0, ro] and
symmetric F : R x RY — [0, 00) vanishing on the diagonal and satisfying
F(x,y) < C(®(|x — y[)? A1), it holds that

G X7 G , Z w .
sup / / B, .y B( )‘F(Y=Z)|J(’y—2\)dzdy<g
x,weB, J B, . GB, )
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Results for subordinate Brownian motion

Consequences of weak scaling

Assume ¢(1) = 1 and for every R > 0 define

_25
qu(s):‘z;((f;_Q)), s>0.




Results for subordinate Brownian motion

Consequences of weak scaling

Assume ¢(1) = 1 and for every R > 0 define

_25
qu(s):‘fﬁ((f;_Q)), s>0.

Then ¢® is a CBF satisfying the same weak scaling condition as ¢.
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Results for subordinate Brownian motion

Consequences of weak scaling

Assume ¢(1) = 1 and for every R > 0 define

_25
qb"’(s):‘z;((fl??_Q)), s>0.

Then ¢® is a CBF satisfying the same weak scaling condition as ¢.

Let ®R(s) = (¢R(s72))~ and let XR be the subordinate BM with the
characteristic exponent 1R (¢) = ¢R(|¢]?), € € RY. Note that

D,
(XE)ez0 = (R™ Xy g(r-2)) 20
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Results for subordinate Brownian motion

Consequences of weak scaling

Assume ¢(1) = 1 and for every R > 0 define

Ry B(R™%s)
¢ (S)_ ¢(R_2) )

Then ¢f is a CBF satisfying the same weak scaling condition as ¢.

s>0.

Let ®R(s) = (¢R(s72))~ and let XR be the subordinate BM with the
characteristic exponent 1R (¢) = ¢R(|¢]?), € € RY. Note that

D
(XE)ez0 = (R™ Xy g(r-2)) 20

The notions related to the process X will have the superscript R. E.g.,

R,F R R
ARF =3 F(XE X
s<t
Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wuhan, 17-21.7.2017.
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Results for subordinate Brownian motion

F-harmonic functions and scaling

For h: R — [0,00), F: RY x RY — [0,00), D C RY, and any R > 0, set

hr(x) := h(Rx), Fr(x,y):=F(Rx,Ry), Dgr:={Rx: x¢€ D}.
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Results for subordinate Brownian motion

F-harmonic functions and scaling

For h:RY — [0, 00), F:RYxRI— [0, 00), D c RY and any R > 0, set
hr(x) := h(Rx), Fr(x,y):=F(Rx,Ry), Dgr:={Rx: x¢€ D}.

Lemma 4: Let D be a bounded open set in R, R > 0, ( := Tp, and
n = Tg. Assume that h is regular F-harmonic in Dg for X, i.e.

h(x) = Ey [e—Af h(xg)} for all x € Dg.

Then hg is regular Fgr-harmonic in D for XR i.e.

R,F
hr(x) = Eyx [e—An RhR(X,;")} for all x € D.
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Results for subordinate Brownian motion

Condition on the function F

Let F: RY x RY — [0,00) be symmetric and bounded. Assume that there
exist constants C > 0 and § > 1 such that
d(|x — yl)°
L+ O(|x[)7 + o (ly)?”

F(x,y) < C for all x,y € RY.
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Results for subordinate Brownian motion

Condition on the function F

Let F: RY x RY — [0,00) be symmetric and bounded. Assume that there
exist constants C > 0 and § > 1 such that

o(|x — y|)?
1+ o(|x])P + ()P’

For R > 1 and a bounded open set D C B(0,1)€ let

F(x,y) < C for all x,y € RY.

Fr(x.y) = {FR(X,)/)  (x.y) € (D x BY) U (RY x D)

0 otherwise.

Then Fg is symmetric, bounded and satisfies I?R(x,y) < CoOR(|x — y|)?
for all x,y € RY.
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Results for subordinate Brownian motion

Hitting infinitely many annuli

For a Borel set C C RY let T¢ = inf{t > 0: X; € C} be its hitting time.
If 0 <a<b,let V(0,a,b) :={x €R?: a<|x| < b} be the open
annulus, and denote by V/(0, a, b) its closure.
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Results for subordinate Brownian motion

Hitting infinitely many annuli

For a Borel set C C RY let T¢ = inf{t > 0: X; € C} be its hitting time.
If0<a<b,let V(0,a,b) :={x€RY: a<|x| <b} be the open
annulus, and denote by V/(0, a, b) its closure.

Lemma 5: There exists a positive integer M = M(d, 01, a1) > 2 such that
for every strictly increasing sequence of positive numbers (R,)n>1
satisfying lim,_, o, R, = oo it holds that

Py <Iim sup{TV(0 RosMRy) < oo}> =1 forall xeRY.
n—o00 2Ny n
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Results for subordinate Brownian motion

Hitting infinitely many annuli

For a Borel set C C RY let T¢ = inf{t > 0: X; € C} be its hitting time.
If0<a<b,let V(0,a,b) :={x€RY: a<|x| <b} be the open
annulus, and denote by V/(0, a, b) its closure.

Lemma 5: There exists a positive integer M = M(d, 01, a1) > 2 such that
for every strictly increasing sequence of positive numbers (R,)n>1
satisfying lim,_, o, R, = oo it holds that

Py <Iim sup{TV(0 RosMRy) < oo}> =1 forall xeRY.
n—o00 2Ny n

That is, with P, probability 1, the process X visits infinitely many of the
sets V.
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Results for subordinate Brownian motion

Main theorem

Theorem 6: Assume that F : RY x RY — [0, 00) is symmetric, bounded
and that there exist constants C > 0 and 5 > 1 such that

o(|x — y|)? d
Fix,y)< C , for all x,y € R“.
Cor) = C 6 ()P + o (ly )7

Let Af = > g sct F(Xsm, Xs). If Py (AL, < 00) =1 for all x € R, then
sup,epd Ex[AL] < 0.
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Results for subordinate Brownian motion

Main theorem

Theorem 6: Assume that F : RY x RY — [0, 00) is symmetric, bounded
and that there exist constants C > 0 and 5 > 1 such that

o(|x — y|)°

Foey) < o T oy

for all x,y € R¢.

Let Af = > g sct F(Xsm, Xs). If Py (AL, < 00) =1 for all x € R, then
sup,epd Ex[AL] < 0.

Proof: Let u(x) := E,MEL . Since X is strongly Feller and
lim¢_osup, ExAs = 0, u is continuous. It suffices to prove that
liminf |00 u(x) > 0.
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Let D = V(0,1,2M + 1). The function u is regular F-harmonic in Dk,
R > 1. Then ug is regular Fg-harmonic in D for XR.

v
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Let D = V(0,1,2M + 1). The function u is regular F-harmonic in Dk,
R > 1. Then ug is regular Fg-harmonic in D for XR. Moreover, Fr
satisfies the upper bound from the Harnack inequality, hence

cYur(y) < ur(x) < cug(y) forall x,y € V(0,2,2M).

y
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Let D = V(0,1,2M + 1). The function u is regular F-harmonic in Dk,
R > 1. Then ug is regular Fg-harmonic in D for XR. Moreover, Fr
satisfies the upper bound from the Harnack inequality, hence

cYur(y) < ur(x) < cug(y) forall x,y € V(0,2,2M).
Therefore, for all R > 1,

ctu(y) < u(x) < cu(y) forall x,y € V(0,2R,2RM), (1)
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Let D = V(0,1,2M + 1). The function u is regular F-harmonic in Dk,
R > 1. Then ug is regular FR harmonic in D for X®. Moreover, FR
satisfies the upper bound from the Harnack inequality, hence

cYur(y) < ur(x) < cug(y) forall x,y € V(0,2,2M).
Therefore, for all R > 1,
ctu(y) < u(x) < cu(y) forall x,y € V(0,2R,2RM), (1)

Assume lim,_,o t(x,) = 0 for a sequence ]x,,| 0o. Then there exists an
increasing sequence (kn)n>1 such that x, € V, := V/(0, 2k 2k M) for
every n > 1.

v

Zoran Vondragek (University of Zagreb) Discontinuous AF's of SBM Wuhan, 17-21.7.2017. 22 /33



Results for subordinate Brownian motion

Proof of the main theorem, cont.

Let D = V(0,1,2M + 1). The function u is regular F-harmonic in Dk,
R > 1. Then ug is regular Fg-harmonic in D for XR. Moreover, Fr
satisfies the upper bound from the Harnack inequality, hence

cYur(y) < ur(x) < cug(y) forall x,y € V(0,2,2M).
Therefore, for all R > 1,
ctu(y) < u(x) < cu(y) forall x,y € V(0,2R,2RM), (1)

Assume lim,_,o t(x,) = 0 for a sequence |x,| — co. Then there exists an
increasing sequence (kn)n>1 such that x, € V, := V/(0, 2k 2k M) for
every n > 1. Since X hits infinitely many sets V,, Py-a.s., for Py-a.e. w
there exists a subsequence (n; = nj(w)) and a sequence of times

(tr = ty(w)), ty(w) — oo, such that X (w) € Vp,.

v
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Therefore it follows from (1) that

C_]'U(Xt,(w)) S U(Xn/) S Cu(Xt/(w))a

which implies that lim/_,o u(X¢(w)) = 0. But this is a contradiction with
tILm u(Xt) = 1 Py-a.s. Therefore, u is bounded away from zero. By

Proposition 1, sup,gs Ex[AL] < 0.
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Therefore it follows from (1) that
chu(Xy (W) < ulxn) < cu(Xe (W),

which implies that lim/_,o u(X¢(w)) = 0. But this is a contradiction with
tILm u(Xt) = 1 Py-a.s. Therefore, u is bounded away from zero. By

Proposition 1, sup, s Ex[AL ] < c0.

The idea of the proof comes from the paper |. Ben-Ari and R. G. Pinsky,
Absolute continuity/singularity and relative entropy properties for
probability measures induced by diffusions on infinite time intervals,
Stochastic Process. Appl. 115 (2005), 179-206, where it was used for a
similar result for diffusions.
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Results for subordinate Brownian motion

Two remarks

d(|x — y])’
1+ &(|x])7 + o (|y[)?

F(x,y)< C for all x,y € RY.




Results for subordinate Brownian motion

Two remarks

d(|x — y])’
1+ &(|x])7 + o (|y[)?

There exists F satisfying the above condition such that E,[A«] = co. Of
course, in this case it cannot hold that Py (Ax < o) = 1.

F(x,y) < C for all x,y € RY.
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Results for subordinate Brownian motion

Two remarks

d(|x — y])’
1+ &(|x])7 + o (|y[)?

There exists F satisfying the above condition such that E,[A«] = co. Of
course, in this case it cannot hold that Py (Ax < o) = 1.

F(x,y)< C for all x,y € RY.

On the other hand, this condition is almost necessary for the validity of
the main theorem.

v
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Results for subordinate Brownian motion

Two remarks

o(|x —yl)’ d
F(x,y) < C , for all x,y € RC.
14+ &(|x|)7 + o(|y[)?

There exists F satisfying the above condition such that E,[A«] = co. Of
course, in this case it cannot hold that Py (Ax < o) = 1.

On the other hand, this condition is almost necessary for the validity of
the main theorem.

Theorem 7: For all v and f3 satisfying 0 < v < 1 < 3, there exists a
symmetric F such that

o(x — y|)? .
0< F(x,y) < , for all x,y € RY,
) S T80+ oy )

P, (AF, < 00) =1 for all x € RY, but E,[Af ] = cc.

v
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Applications to absolute continuity/singularity

e Applications to absolute continuity/singularity
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Applications to absolute continuity/singularity

Lévy system

X = (Q,M, My, 0, X¢,Py) a symmetric (wrt Lebesgue measure) right
Markov process on R?, Q = D([0,00), RY), X; = w(t), M = o(Ur>oM,).
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Applications to absolute continuity/singularity

Lévy system

= (Q, M, My, 0¢, X¢,Py) a symmetric (wrt Lebesgue measure) right
Markov process on R?, Q = D([0,00), RY), X; = w(t), M = o(Ur>oM,).
(N, H) a Lévy system of X: For a Borel function F on RY x R? vanishing
on the diagonal

]E ZFXS 7X //d S ,y (XS 7dy)dH
R

s<t
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Applications to absolute continuity/singularity

Two families of functions

Two families of functions (Chen, Song, PTRF 2003, Song JTP 2006)
J(X): bounded, symmetric F : RY x RY — R,

t
Ilm sup EX/ / |F(XS—7y)|N(XS—ady)dHS:0
0 JRY

t—0 x€Rd




Applications to absolute continuity/singularity

Two families of functions

Two families of functions (Chen, Song, PTRF 2003, Song JTP 2006)
J(X): bounded, symmetric F : RY x RY — R,

t
lim supE// |F(Xs—,y)|N(Xs—,dy)dHs = 0.
Rd

t—0 x€Rd

I (X): bounded, symmetric F : RY x RY = R, for all t > 0 and x € R¥,

Ex Y F?(Xso, X) / /Rdﬂ <, y)N(Xs_, dy) dHs < 0.

s<t
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Applications to absolute continuity/singularity

Two families of functions

Two families of functions (Chen, Song, PTRF 2003, Song JTP 2006)
J(X): bounded, symmetric F : RY x RY — R,

t
lim supE// |F(Xs—,y)|N(Xs—,dy)dHs = 0.
Rd

t—0 x€Rd

I (X): bounded, symmetric F : RY x RY = R, for all t > 0 and x € R¥,

Ex Y F?(Xso, X) / /Rdﬂ <, y)N(Xs_, dy) dHs < 0.

s<t

J(X) C h(X); ifinf,, F(x,y) > =1 and F € h(X), then
log(1+ F) € h(X).
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Applications to absolute continuity/singularity

MAF and quadratic variations

If F e J(X), then
ZF (Xs—, Xs) // Xs—, y)N(Xs—, dy) dHs
s<t RY

is well-defined (pure jump) martingale additive functional with quadratic
and predictable quadratic variation

[Afle = D (AAD? =D FA(X._, X)

s<t s<t

t
/ / F2(Xe_, y)N(Xs_, dy) dH
0 R
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Applications to absolute continuity/singularity

MAF and quadratic variations

If F e J(X), then
AL =D F(Xeo, Xo) // Xs—, y)N(Xs_, dy) dHs
s<t Rd

is well-defined (pure jump) martingale additive functional with quadratic
and predictable quadratic variation

[Afle = D (AAD? =D FA(X._, X)

s<t s<t

F _ ‘ 2
@ = [ PN dy) b

If F € h(X), one defines AF by the limiting procedure in L2(P,) with the
same formulae for [AF]; and (AF);.
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Applications to absolute continuity/singularity

Purely discontinuous Girsanov transform

Assume infy, F(x,y) > —1 and let L} := £(AF); > 0 be the
Doleans-Dade exponential of AF:

E(AR)e = ep(AD) [T+ F(Xsm, X)) exp(—F(Xs—, Xs))

= exp (Af + Z (log(14+ F)—F) (XS—7XS)>

s<t




Applications to absolute continuity/singularity

Purely discontinuous Girsanov transform

Assume infy, F(x,y) > —1 and let L} := £(AF); > 0 be the
Doleans-Dade exponential of AF:

E(AR)e = ep(AD) [T+ F(Xsm, X)) exp(—F(Xs—, Xs))

= exp (Af + Z (log(14+ F)—F) (XS—7XS)>

s<t

There exists a family (Py),cre of probability measures on M such that
dPy ., = LEdP

XlMt X|Mt'




Applications to absolute continuity/singularity

Purely discontinuous Girsanov transform

Assume infy, F(x,y) > —1 and let L} := £(AF); > 0 be the
Doleans-Dade exponential of AF:

E(AR)e = ep(AD) [T+ F(Xsm, X)) exp(—F(Xs—, Xs))

s<t

= exp (Af + Z (log(14+ F)—F) (XS—7XS)>

s<t

There exists a family (Py),cre of probability measures on M such that

APy, = Lf dPx),,,- In particular, Pyj,, ~ Py, . forall t > 0.
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Applications to absolute continuity/singularity

Purely discontinuous Girsanov transform

Assume infy, F(x,y) > —1 and let L} := £(AF); > 0 be the
Doleans-Dade exponential of AF:

E(AR)e = ep(AD) [T+ F(Xsm, X)) exp(—F(Xs—, Xs))

= exp (Af + Z (log(14+ F)—F) (XS—7XS)>

s<t

There exists a family (Py),cre of probability measures on M such that

dPy|,, = LEdP In particular, Py),, ~ Px,, . forall t > 0.

XlMt X|Mt'

Under Py X is again a right Markov process with a Lévy system
((1+ F)N, H). Notation: X = (X¢, M, M;,P,) — purely discontinuous
Girsanov transform of X.

v
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Applications to absolute continuity/singularity

Relative entropy of probability measures

Recall that the relative entropy of two probability measures 1 and v is

defined by
d
/Ig dpu = /Iogd:dugoo

if v < p and +o00 otherwise.
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Applications to absolute continuity/singularity

Theorem 8: X conservative symmetric right Markov process on RY,
F € h(X) and inf., F(x,y) > —1.

(a) Py L Py iff [AF]oo = 310 F2(Xem, Xi) = 00 Py ass. or Py ais.
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Applications to absolute continuity/singularity

Theorem 8: X conservative symmetric right Markov process on RY,
F € h(X) and inf., F(x,y) > —1.

(a) Py L Py iff [AF]oo = 310 F2(Xem, Xi) = 00 Py ass. or Py ais.
(b1) Py < Py iff [AF]o < 00 Py as.

(b2) Py < Py iff [AF]oe < 00 Py as.
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Applications to absolute continuity/singularity

Theorem 8: X conservative symmetric right Markov process on RY,
F € h(X) and inf., F(x,y) > —1.

(a) Py L Py iff [AF]oo = 310 F2(Xem, Xi) = 00 Py ass. or Py ais.
(b1) Py < Py iff [AF]o < 00 Py as.
(b2) Py < Py iff [AF]oe < 00 Py as.

(c1) H(Pxi Px) = Ex 3o (log(l + F) — E2)(Xe—, X¢) and is finite iff
Ey[AFloo < o0.

(2) H(Px; Px) = Ex 3o o(F — log(1 + F))(Xe—, X¢) and is finite iff
Ex[Af]s < 0.
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Applications to absolute contin

F € h(X) and inf., F(x,y) > —1.
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Applications to absolute continuity/singularity

F € h(X) and inf., F(x,y) > —1.

Corollary 9: Assume X has strictly positive transition densities under Py
for all x € RY. If P, < PPy (respectively Py L PP,) for some x € R9, then
this is true for all x € R?. Analogously if densities exist under Py.
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Applications to absolute continuity/singularity

F € h(X) and inf., F(x,y) > —1.

Corollary 9: Assume X has strictly positive transition densities under Py
for all x € RY. If P, < PPy (respectively Py L PP,) for some x € R9, then
this is true for all x € R?. Analogously if densities exist under Py.

Corollary 10: If the invariant o-field 7 := {A € M : 0, IN=A Vt>0}is
trivial under both P, and Py then either P, L P, or IP’ ~ P,
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Applications to absolute continuity/singularity

Theorem 11: Suppose that X is the subordinate Brownian motion via the
subordinator whose Laplace exponent is a complete Bernstein function and
satisfies the weak scaling condition.

v
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Applications to absolute continuity/singularity

Theorem 11: Suppose that X is the subordinate Brownian motion via the

subordinator whose Laplace exponent is a complete Bernstein function and

satisfies the weak scaling condition.

(a) Let F € h(X) and inf,  cga F(x,y) > —1. Then either Py L Py or
Py ~ Py. If Py ~ Py, and if there exist C > 0 and 3 > 1/2 such that

o(|x —y|)’

, forall x,y e R?,
T+ o(x)f+o(y)?’ o570

0< F(x,y)<C

then H(IP’X;@X) < 00.
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Applications to absolute continuity/singularity

Theorem 11: Suppose that X is the subordinate Brownian motion via the

subordinator whose Laplace exponent is a complete Bernstein function and

satisfies the weak scaling condition.

(a) Let F € h(X) and inf,  cga F(x,y) > —1. Then either Py L Py or
Py ~ Py. If Py ~ Py, and if there exist C > 0 and 3 > 1/2 such that

o(|x —y|)’

0<F(x,y)<C ,
< Foey) < o7 T oyl

for all x,y € RY,

then H(IP’X;@X) < 00.

(b) For each «y and § satisfying 0 < v < 1/2 < 3 there exists F € h(X)
satisfying

Foy) < Olx=yl)?

, forallx,y e R?,
= 1+ o(x)) + o(lyl) Y

such that P, < P, and H(Py; ]?’X) = 00.

v

Zoran Vondra&ek (University of Zagreb) Discontinuous AF's of SBM Wuhan, 17-21.7.2017. 33 /33



	General result
	Results for subordinate Brownian motion
	Applications to absolute continuity/singularity

