# On purely discontinuous additive functionals of subordinate Brownian motions

Zoran Vondraček

Department of Mathematics University of Zagreb Croatia

Wuhan, 17-21.7.2017.

Zoran Vondraček (University of Zagreb)

Discontinuous AF's of SBM

Wuhan, 17-21.7.2017. 1 / 33

# Outline

#### 🕽 General result

2 Results for subordinate Brownian motion

3 Applications to absolute continuity/singularity

Zoran Vondraček (University of Zagreb)

3

(日) (周) (三) (三)

# Outline

#### General result

Results for subordinate Brownian motion

3 Applications to absolute continuity/singularity

R.L. Schilling, Z. Vondraček: Absolute continuity and singularity of probability measures induced by a purely discontinuous Girsanov transform of a stable process, *Trans. Amer. Math. Soc.* **369(3)** (2017) 1547–1577.

(4月) とうてい くうい

# Outline

#### General result

Results for subordinate Brownian motion

3 Applications to absolute continuity/singularity

R.L. Schilling, Z. Vondraček: Absolute continuity and singularity of probability measures induced by a purely discontinuous Girsanov transform of a stable process, *Trans. Amer. Math. Soc.* **369(3)** (2017) 1547–1577. Z. Vondraček, V. Wagner: On purely discontinuous additive functionals of subordinate Brownian motions, to appear in *Stoch. Process. Appl.*, arXiv:1403.7364 (2016)

2 / 33



Results for subordinate Brownian motion



Applications to absolute continuity/singularity

(日) (同) (三) (三)

$$\begin{split} &X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x) \text{ a strong Markov process on } \mathbb{R}^d, \\ &\mathcal{M} = \sigma(\cup_{t \geq 0} \mathcal{M}_t). \end{split}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

$$\begin{split} &X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x) \text{ a strong Markov process on } \mathbb{R}^d, \\ &\mathcal{M} = \sigma(\cup_{t \geq 0} \mathcal{M}_t). \\ &A = (A_t)_{t \geq 0} \text{ a perfect, non-negative, additive functional (AF) of } X; \\ &A_{t+s} = A_t + A_s \circ \theta_t \end{split}$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

$$\begin{split} &X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x) \text{ a strong Markov process on } \mathbb{R}^d, \\ &\mathcal{M} = \sigma(\cup_{t \ge 0} \mathcal{M}_t). \\ &A = (A_t)_{t \ge 0} \text{ a perfect, non-negative, additive functional (AF) of } X; \\ &A_{t+s} = A_t + A_s \circ \theta_t \\ &\text{Examples: } A_t = \int_0^t f(X_s) \, ds, \text{ with } f \ge 0; \\ &A_t = \sum_{s \le t} F(X_{s-}, X_s), F \ge 0, F(x, x) = 0. \end{split}$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

$$\begin{split} &X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x) \text{ a strong Markov process on } \mathbb{R}^d, \\ &\mathcal{M} = \sigma(\cup_{t \ge 0} \mathcal{M}_t). \\ &A = (A_t)_{t \ge 0} \text{ a perfect, non-negative, additive functional (AF) of } X; \\ &A_{t+s} = A_t + A_s \circ \theta_t \\ &\text{Examples: } A_t = \int_0^t f(X_s) \, ds, \text{ with } f \ge 0; \\ &A_t = \sum_{s \le t} F(X_{s-}, X_s), F \ge 0, F(x, x) = 0. \\ &\text{Question: } \text{ If } \mathbb{P}_x(A_\infty < \infty) = 1, \text{ when does it follow that } \mathbb{E}_x A_\infty < \infty? \end{split}$$

イロト 不得下 イヨト イヨト 二日

$$\begin{split} &X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x) \text{ a strong Markov process on } \mathbb{R}^d, \\ &\mathcal{M} = \sigma(\cup_{t \geq 0} \mathcal{M}_t). \\ &A = (A_t)_{t \geq 0} \text{ a perfect, non-negative, additive functional (AF) of } X; \\ &A_{t+s} = A_t + A_s \circ \theta_t \\ &\text{Examples: } A_t = \int_0^t f(X_s) \, ds, \text{ with } f \geq 0; \\ &A_t = \sum_{s \leq t} F(X_{s-}, X_s), F \geq 0, F(x, x) = 0. \\ &\text{Question: } \text{ If } \mathbb{P}_x(A_\infty < \infty) = 1, \text{ when does it follow that } \mathbb{E}_x A_\infty < \infty ? \end{split}$$

Define the perfect multiplicative functional (MF)  $M_t = e^{-A_t}$ . Then  $M_{\infty} = e^{-A_{\infty}} > 0$  iff  $A_{\infty} < \infty$ .

$$\begin{split} &X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x) \text{ a strong Markov process on } \mathbb{R}^d, \\ &\mathcal{M} = \sigma(\cup_{t \geq 0} \mathcal{M}_t). \\ &A = (A_t)_{t \geq 0} \text{ a perfect, non-negative, additive functional (AF) of } X; \\ &A_{t+s} = A_t + A_s \circ \theta_t \\ &\text{Examples: } A_t = \int_0^t f(X_s) \, ds, \text{ with } f \geq 0; \\ &A_t = \sum_{s \leq t} F(X_{s-}, X_s), F \geq 0, F(x, x) = 0. \\ &\text{Question: } \text{ If } \mathbb{P}_x(A_\infty < \infty) = 1, \text{ when does it follow that } \mathbb{E}_x A_\infty < \infty ? \end{split}$$

Define the perfect multiplicative functional (MF)  $M_t = e^{-A_t}$ . Then  $M_{\infty} = e^{-A_{\infty}} > 0$  iff  $A_{\infty} < \infty$ . Define  $u : \mathbb{R}^d \to [0, 1]$  by  $u(x) := \mathbb{E}_x M_{\infty}$ . Then u is measureable and  $(u(X_t))_{t\geq 0}$  is cadlag.

Zoran Vondraček (University of Zagreb)

$$\begin{split} &X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x) \text{ a strong Markov process on } \mathbb{R}^d, \\ &\mathcal{M} = \sigma(\cup_{t \geq 0} \mathcal{M}_t). \\ &A = (A_t)_{t \geq 0} \text{ a perfect, non-negative, additive functional (AF) of } X; \\ &A_{t+s} = A_t + A_s \circ \theta_t \\ &\text{Examples: } A_t = \int_0^t f(X_s) \, ds, \text{ with } f \geq 0; \\ &A_t = \sum_{s \leq t} F(X_{s-}, X_s), F \geq 0, F(x, x) = 0. \\ &\text{Question: } \text{ If } \mathbb{P}_x(A_\infty < \infty) = 1, \text{ when does it follow that } \mathbb{E}_x A_\infty < \infty? \end{split}$$

Define the perfect multiplicative functional (MF)  $M_t = e^{-A_t}$ . Then  $M_{\infty} = e^{-A_{\infty}} > 0$  iff  $A_{\infty} < \infty$ . Define  $u : \mathbb{R}^d \to [0, 1]$  by  $u(x) := \mathbb{E}_x M_{\infty}$ . Then u is measureable and  $(u(X_t))_{t\geq 0}$  is cadlag.

Note: If  $\mathbb{P}_x(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^d$ , then  $\mathbb{P}_x(M_{\infty} > 0) = 1$  for all  $x \in \mathbb{R}^d$ , hence u > 0.

Zoran Vondraček (University of Zagreb)

4 / 33

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

## Properties of *u*

#### Clearly, $0 \le u \le 1$ . If $\mathbb{P}_x(M_\infty > 0) = 1$ , then u(x) > 0.

#### Properties of *u*

Clearly,  $0 \le u \le 1$ . If  $\mathbb{P}_x(M_\infty > 0) = 1$ , then u(x) > 0.

The process  $(u(X_t)M_t)_{t\geq 0}$  is a bounded  $\mathbb{P}_x$ -martingale,  $\forall x \in \mathbb{R}^d$ . Consequently, for  $t \geq 0$ ,

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

$$u(x) = \mathbb{E}_{x}[u(X_{t})M_{t}]$$

#### Properties of *u*

Clearly,  $0 \le u \le 1$ . If  $\mathbb{P}_x(M_\infty > 0) = 1$ , then u(x) > 0.

The process  $(u(X_t)M_t)_{t\geq 0}$  is a bounded  $\mathbb{P}_x$ -martingale,  $\forall x \in \mathbb{R}^d$ . Consequently, for  $t \geq 0$ ,

$$u(x) = \mathbb{E}_{x}[u(X_{t})M_{t}] = \mathbb{E}_{x}[u(X_{\tau_{D}})M_{\tau_{D}}],$$

 $\tau_D = \inf\{t > 0 : X_t \notin D\}$  the exit time from  $D \subset \mathbb{R}^d$ . Interpretation: *u* (regular) harmonic in *D* for the process perturbed by the MF *M*.

A B F A B F

#### Properties of u

Clearly,  $0 \le u \le 1$ . If  $\mathbb{P}_x(M_\infty > 0) = 1$ , then u(x) > 0.

The process  $(u(X_t)M_t)_{t\geq 0}$  is a bounded  $\mathbb{P}_x$ -martingale,  $\forall x \in \mathbb{R}^d$ . Consequently, for  $t \geq 0$ ,

$$u(x) = \mathbb{E}_{x}[u(X_{t})M_{t}] = \mathbb{E}_{x}[u(X_{\tau_{D}})M_{\tau_{D}}],$$

 $\tau_D = \inf\{t > 0 : X_t \notin D\}$  the exit time from  $D \subset \mathbb{R}^d$ . Interpretation: *u* (regular) harmonic in *D* for the process perturbed by the MF *M*.

Assume that  $\mathbb{P}_x(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^d$ . Then  $\lim_{t\to\infty} u(X_t) = 1$  $\mathbb{P}_x$ -a.s. for every  $x \in \mathbb{R}^d$ .

Zoran Vondraček (University of Zagreb)

イロト イポト イヨト イヨト 二日

From now on we assume that  $A_t = \sum_{s \le t} F(X_{s-}, X_s)$ . Let  $\widetilde{F}(x, y) = 1 - e^{-F(x, y)}$ , and set  $\widetilde{A}_t = \sum_{s \le t} \widetilde{F}(X_{s-}, X_s)$ .

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

From now on we assume that  $A_t = \sum_{s \leq t} F(X_{s-}, X_s)$ . Let  $\widetilde{F}(x, y) = 1 - e^{-F(x, y)}$ , and set  $\widetilde{A}_t = \sum_{s \leq t} \widetilde{F}(X_{s-}, X_s)$ . For all t > 0 we have a Dynkin-type formula

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

$$u(x) = \mathbb{E}_{x}\left[u(X_{t}) - \int_{0}^{t} u(X_{s}) d\widetilde{A}_{s}\right]$$

From now on we assume that  $A_t = \sum_{s \le t} F(X_{s-}, X_s)$ . Let  $\widetilde{F}(x, y) = 1 - e^{-F(x, y)}$ , and set  $\widetilde{A}_t = \sum_{s \le t} \widetilde{F}(X_{s-}, X_s)$ . For all t > 0 we have a Dynkin-type formula

$$u(x) = \mathbb{E}_{x}\left[u(X_{t}) - \int_{0}^{t} u(X_{s}) d\widetilde{A}_{s}\right] = 1 - \mathbb{E}_{x} \int_{0}^{\infty} u(X_{s}) d\widetilde{A}_{s}$$

From now on we assume that  $A_t = \sum_{s \leq t} F(X_{s-}, X_s)$ . Let  $\widetilde{F}(x, y) = 1 - e^{-F(x, y)}$ , and set  $\widetilde{A}_t = \sum_{s \leq t} \widetilde{F}(X_{s-}, X_s)$ . For all t > 0 we have a Dynkin-type formula

$$u(x) = \mathbb{E}_{x}\left[u(X_{t}) - \int_{0}^{t} u(X_{s}) d\widetilde{A}_{s}\right] = 1 - \mathbb{E}_{x} \int_{0}^{\infty} u(X_{s}) d\widetilde{A}_{s}$$

X strongly Feller and  $\lim_{t\to 0} \sup_x \mathbb{E}_x A_t = 0$  imply u is continuous.

Zoran Vondraček (University of Zagreb)

< □ > < □ > < □ > < □ > < □ > 
 Wuhan, 17-21.7.2017.

6 / 33

Proposition 1: If  $\mathbb{E}_{x}A_{\infty} \leq c < \infty$ , then  $u(x) \geq e^{-c} > 0$ . Conversely, if  $\mathbb{P}_{x}(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^{d}$  and  $\inf_{x \in \mathbb{R}^{d}} u(x) = c > 0$ , then  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\widetilde{A}_{\infty} \leq 1/c - 1$ .

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Proposition 1: If  $\mathbb{E}_{x}A_{\infty} \leq c < \infty$ , then  $u(x) \geq e^{-c} > 0$ . Conversely, if  $\mathbb{P}_{x}(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^{d}$  and  $\inf_{x \in \mathbb{R}^{d}} u(x) = c > 0$ , then  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\widetilde{A}_{\infty} \leq 1/c - 1$ . Further, when F is bounded, then  $\inf_{x \in \mathbb{R}^{d}} u(x) > 0$  iff  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}A_{\infty} < \infty$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Proposition 1: If 
$$\mathbb{E}_x A_\infty \leq c < \infty$$
, then  $u(x) \geq e^{-c} > 0$ . Conversely, if  $\mathbb{P}_x(A_\infty < \infty) = 1$  for all  $x \in \mathbb{R}^d$  and  $\inf_{x \in \mathbb{R}^d} u(x) = c > 0$ , then  $\sup_{x \in \mathbb{R}^d} \mathbb{E}_x \widetilde{A}_\infty \leq 1/c - 1$ .  
Further, when  $F$  is bounded, then  $\inf_{x \in \mathbb{R}^d} u(x) > 0$  iff  $\sup_{x \in \mathbb{R}^d} \mathbb{E}_x A_\infty < \infty$ .  
Proof: Assume  $c := \inf_{x \in \mathbb{R}^d} u(x) > 0$  and rewrite the Dynkin-type formula as
$$1 - u(x) = \mathbb{E}_x \int_0^\infty u(X_s) d\widetilde{A}_s \qquad .$$

Zoran Vondraček (University of Zagreb)

3

<ロ> (日) (日) (日) (日) (日)

Proposition 1: If 
$$\mathbb{E}_{x}A_{\infty} \leq c < \infty$$
, then  $u(x) \geq e^{-c} > 0$ . Conversely, if  $\mathbb{P}_{x}(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^{d}$  and  $\inf_{x \in \mathbb{R}^{d}} u(x) = c > 0$ , then  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\widetilde{A}_{\infty} \leq 1/c - 1$ .  
Further, when  $F$  is bounded, then  $\inf_{x \in \mathbb{R}^{d}} u(x) > 0$  iff  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}A_{\infty} < \infty$ .  
Proof: Assume  $c := \inf_{x \in \mathbb{R}^{d}} u(x) > 0$  and rewrite the Dynkin-type formula as
$$1 - u(x) = \mathbb{E}_{x} \int_{0}^{\infty} u(X_{s}) d\widetilde{A}_{s} \geq c\mathbb{E}_{x}\widetilde{A}_{\infty}.$$

Zoran Vondraček (University of Zagreb)

3

<ロ> (日) (日) (日) (日) (日)

Proposition 1: If 
$$\mathbb{E}_{x}A_{\infty} \leq c < \infty$$
, then  $u(x) \geq e^{-c} > 0$ . Conversely, if  
 $\mathbb{P}_{x}(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^{d}$  and  $\inf_{x \in \mathbb{R}^{d}} u(x) = c > 0$ , then  
 $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\widetilde{A}_{\infty} \leq 1/c - 1$ .  
Further, when  $F$  is bounded, then  $\inf_{x \in \mathbb{R}^{d}} u(x) > 0$  iff  
 $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}A_{\infty} < \infty$ .  
Proof: Assume  $c := \inf_{x \in \mathbb{R}^{d}} u(x) > 0$  and rewrite the Dynkin-type formula  
as  
 $1 - c \geq 1 - u(x) = \mathbb{E}_{x} \int_{0}^{\infty} u(X_{s}) d\widetilde{A}_{s} \geq c\mathbb{E}_{x}\widetilde{A}_{\infty}$ .

Zoran Vondraček (University of Zagreb)

3

<ロ> (日) (日) (日) (日) (日)

Proposition 1: If 
$$\mathbb{E}_{x}A_{\infty} \leq c < \infty$$
, then  $u(x) \geq e^{-c} > 0$ . Conversely, if  $\mathbb{P}_{x}(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^{d}$  and  $\inf_{x \in \mathbb{R}^{d}} u(x) = c > 0$ , then  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\widetilde{A}_{\infty} \leq 1/c - 1$ .  
Further, when  $F$  is bounded, then  $\inf_{x \in \mathbb{R}^{d}} u(x) > 0$  iff  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}A_{\infty} < \infty$ .  
Proof: Assume  $c := \inf_{x \in \mathbb{R}^{d}} u(x) > 0$  and rewrite the Dynkin-type formula as
$$1 - c \geq 1 - u(x) = \mathbb{E}_{x} \int_{0}^{\infty} u(X_{s}) d\widetilde{A}_{s} \geq c\mathbb{E}_{x}\widetilde{A}_{\infty}.$$

Question: How to check that  $u(x) = \mathbb{E}_x M_\infty$  is bounded away from zero?

Proposition 1: If 
$$\mathbb{E}_{x}A_{\infty} \leq c < \infty$$
, then  $u(x) \geq e^{-c} > 0$ . Conversely, if  $\mathbb{P}_{x}(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^{d}$  and  $\inf_{x \in \mathbb{R}^{d}} u(x) = c > 0$ , then  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\widetilde{A}_{\infty} \leq 1/c - 1$ .  
Further, when  $F$  is bounded, then  $\inf_{x \in \mathbb{R}^{d}} u(x) > 0$  iff  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}A_{\infty} < \infty$ .  
Proof: Assume  $c := \inf_{x \in \mathbb{R}^{d}} u(x) > 0$  and rewrite the Dynkin-type formula as
$$1 - c \geq 1 - u(x) = \mathbb{E}_{x} \int_{0}^{\infty} u(X_{s}) d\widetilde{A}_{s} \geq c\mathbb{E}_{x}\widetilde{A}_{\infty}.$$

Question: How to check that  $u(x) = \mathbb{E}_x M_\infty$  is bounded away from zero? Note: If  $\mathbb{P}_x(A_\infty < \infty) = 1$ , then u > 0. Further, if X strongly Feller and  $\lim_{t\to 0} \sup_x \mathbb{E}_x A_t = 0$ , then u is continuous, hence bounded away from 0 on compacts. Finally,  $\lim_{t\to\infty} u(X_t) = 1$ .

Proposition 1: If 
$$\mathbb{E}_{x}A_{\infty} \leq c < \infty$$
, then  $u(x) \geq e^{-c} > 0$ . Conversely, if  $\mathbb{P}_{x}(A_{\infty} < \infty) = 1$  for all  $x \in \mathbb{R}^{d}$  and  $\inf_{x \in \mathbb{R}^{d}} u(x) = c > 0$ , then  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\widetilde{A}_{\infty} \leq 1/c - 1$ .  
Further, when  $F$  is bounded, then  $\inf_{x \in \mathbb{R}^{d}} u(x) > 0$  iff  $\sup_{x \in \mathbb{R}^{d}} \mathbb{E}_{x}A_{\infty} < \infty$ .  
Proof: Assume  $c := \inf_{x \in \mathbb{R}^{d}} u(x) > 0$  and rewrite the Dynkin-type formula as
$$1 - c \geq 1 - u(x) = \mathbb{E}_{x} \int_{0}^{\infty} u(X_{s}) d\widetilde{A}_{s} \geq c\mathbb{E}_{x}\widetilde{A}_{\infty}.$$

Question: How to check that  $u(x) = \mathbb{E}_x M_\infty$  is bounded away from zero? Note: If  $\mathbb{P}_x(A_\infty < \infty) = 1$ , then u > 0. Further, if X strongly Feller and  $\lim_{t\to 0} \sup_x \mathbb{E}_x A_t = 0$ , then u is continuous, hence bounded away from 0 on compacts. Finally,  $\lim_{t\to\infty} u(X_t) = 1$ . There exists A such that  $\mathbb{P}_x(A_\infty < \infty) = 1$ , but inf u = 0. Zoran Vordraček (University of Zagreb) Discontinuous AF's of SBM Wuhan, 17-21.7.2017. 7/33

Let  $X = (X_t, \mathbb{P}_x)$  be a strong Markov process on  $\mathbb{R}$ ,  $\lim_{t\to\infty} X_t = +\infty$  and  $\mathbb{P}_y(X_{T_x} = 1)$  for all y < x where  $T_x = \inf\{t > 0 : X_t \ge x\}$ .

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Let  $X = (X_t, \mathbb{P}_x)$  be a strong Markov process on  $\mathbb{R}$ ,  $\lim_{t\to\infty} X_t = +\infty$  and  $\mathbb{P}_y(X_{T_x} = 1)$  for all y < x where  $T_x = \inf\{t > 0 : X_t \ge x\}$ . For bounded  $f : \mathbb{R} \to [0, \infty)$  define  $A_t = \int_0^t f(X_s) ds$ , and for  $x \in \mathbb{R}$ ,  $f_x(y) = f(y) \mathbf{1}_{[x,\infty)}(y)$ ,  $A_t^x = \int_0^t f_x(X_s) ds$ .

Let  $X = (X_t, \mathbb{P}_x)$  be a strong Markov process on  $\mathbb{R}$ ,  $\lim_{t\to\infty} X_t = +\infty$  and  $\mathbb{P}_y(X_{T_x} = 1)$  for all y < x where  $T_x = \inf\{t > 0 : X_t \ge x\}$ . For bounded  $f : \mathbb{R} \to [0, \infty)$  define  $A_t = \int_0^t f(X_s) ds$ , and for  $x \in \mathbb{R}$ ,  $f_x(y) = f(y) \mathbf{1}_{[x,\infty)}(y)$ ,  $A_t^x = \int_0^t f_x(X_s) ds$ .  $A_\infty$  is often called *perpetual integral functional*.

Let  $X = (X_t, \mathbb{P}_x)$  be a strong Markov process on  $\mathbb{R}$ ,  $\lim_{t\to\infty} X_t = +\infty$  and  $\mathbb{P}_y(X_{T_x} = 1)$  for all y < x where  $T_x = \inf\{t > 0 : X_t \ge x\}$ . For bounded  $f : \mathbb{R} \to [0, \infty)$  define  $A_t = \int_0^t f(X_s) ds$ , and for  $x \in \mathbb{R}$ ,  $f_x(y) = f(y) \mathbf{1}_{[x,\infty)}(y)$ ,  $A_t^x = \int_0^t f_x(X_s) ds$ .  $A_\infty$  is often called *perpetual integral functional*.

Let 
$$M_t=e^{-A_t}$$
,  $M_t^{ imes}=e^{-A_t^{ imes}}$ ,  $u(y)=\mathbb{E}_y M_\infty$  and  $u^{ imes}(y)=\mathbb{E}_y M_\infty^{ imes}$ .

8 / 33

Let  $X = (X_t, \mathbb{P}_x)$  be a strong Markov process on  $\mathbb{R}$ ,  $\lim_{t\to\infty} X_t = +\infty$  and  $\mathbb{P}_y(X_{T_x} = 1)$  for all y < x where  $T_x = \inf\{t > 0 : X_t \ge x\}$ . For bounded  $f : \mathbb{R} \to [0, \infty)$  define  $A_t = \int_0^t f(X_s) ds$ , and for  $x \in \mathbb{R}$ ,  $f_x(y) = f(y) \mathbf{1}_{[x,\infty)}(y)$ ,  $A_t^x = \int_0^t f_x(X_s) ds$ .  $A_\infty$  is often called *perpetual integral functional*.

Let  $M_t = e^{-A_t}$ ,  $M_t^{\times} = e^{-A_t^{\times}}$ ,  $u(y) = \mathbb{E}_y M_{\infty}$  and  $u^{\times}(y) = \mathbb{E}_y M_{\infty}^{\times}$ . Then u and  $u^{\times}$  are non-decreasing. Further, since  $\mathbb{P}_y(M_{T_x}^{\times} = 1) = 1$  for y < x, it follows that  $\inf_{y \in \mathbb{R}} u^{\times}(y) = u^{\times}(x) > 0$ .

Zoran Vondraček (University of Zagreb)

8 / 33

イロト 不得 トイヨト イヨト 二日

A simple application of Proposition 1 gives the following result originally proved in Khoshnevisan, Salminen, Yor (2006): The following are equivalent

(i) 
$$\mathbb{P}_x(A_{\infty} < \infty) = 1$$
 for all  $x \in \mathbb{R}$ ;  
(i)  $\mathbb{P}_x(A_{\infty}^x < \infty) = 1$  or all  $x \in \mathbb{R}$ ;  
(iii)  $\mathbb{E}_x A_{\infty}^x < \infty$  or all  $x \in \mathbb{R}$ ;  
(iv)  $\sup_{y \in \mathbb{R}} \mathbb{E}_y A_{\infty}^x < \infty$  or all  $x \in \mathbb{R}$ ;

A simple application of Proposition 1 gives the following result originally proved in Khoshnevisan, Salminen, Yor (2006): The following are equivalent

9 / 33



#### 2 Results for subordinate Brownian motion



10 / 33

(日) (同) (三) (三)
Let  $W = (W_t, \mathbb{P}_x)$  be a Brownian motion in  $\mathbb{R}^d$ ,  $S = (S_t)$  an independent subordinator.

Let  $W = (W_t, \mathbb{P}_x)$  be a Brownian motion in  $\mathbb{R}^d$ ,  $S = (S_t)$  an independent subordinator.

The Laplace exponent  $\phi$  of S satisfies  $\mathbb{E}[e^{-\lambda S_t}] = e^{-t\phi(\lambda)}$ . It is a Bernstein function, hence has a representation

$$\phi(\lambda)=b\lambda+\int_{(0,\infty)}(1-e^{-\lambda t})\mu(dt)\,,\quad b\geq 0, \int_{(0,\infty)}(1\wedge\lambda)\mu(dt)<\infty\,.$$

Let  $W = (W_t, \mathbb{P}_x)$  be a Brownian motion in  $\mathbb{R}^d$ ,  $S = (S_t)$  an independent subordinator.

The Laplace exponent  $\phi$  of S satisfies  $\mathbb{E}[e^{-\lambda S_t}] = e^{-t\phi(\lambda)}$ . It is a Bernstein function, hence has a representation

$$\phi(\lambda)=b\lambda+\int_{(0,\infty)}(1-e^{-\lambda t})\mu(dt)\,,\quad b\geq 0, \int_{(0,\infty)}(1\wedge\lambda)\mu(dt)<\infty\,.$$

Define  $X = (X_t, \mathbb{P}_x)$  as  $X_t := W_{S_t}$  – subordinate BM. It is a Lévy process with the characteristic exponent  $\psi(\xi) = \phi(|\xi|^2)$ ,  $\xi \in \mathbb{R}^d$ :  $\mathbb{E}_x[e^{i\xi \cdot (X_t - x)}] = e^{-t\psi(\xi)}$ .

- \* 帰 \* \* き \* \* き \* … き

Let  $W = (W_t, \mathbb{P}_x)$  be a Brownian motion in  $\mathbb{R}^d$ ,  $S = (S_t)$  an independent subordinator.

The Laplace exponent  $\phi$  of S satisfies  $\mathbb{E}[e^{-\lambda S_t}] = e^{-t\phi(\lambda)}$ . It is a Bernstein function, hence has a representation

$$\phi(\lambda)=b\lambda+\int_{(0,\infty)}(1-e^{-\lambda t})\mu(dt)\,,\quad b\geq 0, \int_{(0,\infty)}(1\wedge\lambda)\mu(dt)<\infty\,.$$

Define  $X = (X_t, \mathbb{P}_x)$  as  $X_t := W_{S_t}$  – subordinate BM. It is a Lévy process with the characteristic exponent  $\psi(\xi) = \phi(|\xi|^2)$ ,  $\xi \in \mathbb{R}^d$ :  $\mathbb{E}_x[e^{i\xi \cdot (X_t - x)}] = e^{-t\psi(\xi)}$ .

For  $\phi(\lambda) = \lambda^{\alpha/2}$  we get  $\psi(\xi) = |\xi|^{\alpha}$ , so X is an isotropic  $\alpha$ -stable process.

イロト イポト イヨト イヨト

We assume that the Laplace exponent  $\phi$  is a complete Bernstein function and that it satisfies the following weak scaling condition: There exist  $a_1, a_2 > 0$  and  $0 < \delta_1 \le \delta_2 < 2 \land d$  such that

$$\mathsf{a}_1\left(rac{R}{r}
ight)^{\delta_1} \leq rac{\phi(R)}{\phi(r)} \leq \mathsf{a}_2\left(rac{R}{r}
ight)^{\delta_2}, \quad 0 < r \leq R < \infty$$

イロト 不得下 イヨト イヨト 二日

We assume that the Laplace exponent  $\phi$  is a complete Bernstein function and that it satisfies the following weak scaling condition: There exist  $a_1, a_2 > 0$  and  $0 < \delta_1 \le \delta_2 < 2 \land d$  such that

$$\mathsf{a}_1\left(rac{R}{r}
ight)^{\delta_1} \leq rac{\phi(R)}{\phi(r)} \leq \mathsf{a}_2\left(rac{R}{r}
ight)^{\delta_2}, \quad 0 < r \leq R < \infty$$

Consequence: b = 0 (no drift).

We assume that the Laplace exponent  $\phi$  is a complete Bernstein function and that it satisfies the following weak scaling condition: There exist  $a_1, a_2 > 0$  and  $0 < \delta_1 \le \delta_2 < 2 \land d$  such that

$$\mathsf{a}_1\left(rac{R}{r}
ight)^{\delta_1} \leq rac{\phi(R)}{\phi(r)} \leq \mathsf{a}_2\left(rac{R}{r}
ight)^{\delta_2}, \quad 0 < r \leq R < \infty$$

Consequence: b = 0 (no drift).

Notation: 
$$\Phi(\lambda) = \frac{1}{\phi(\lambda^{-2})}$$
. For  $\phi(\lambda) = \lambda^{\alpha/2}$  it holds that  $\Phi(\lambda) = \lambda^{\alpha}$ .

We assume that the Laplace exponent  $\phi$  is a complete Bernstein function and that it satisfies the following weak scaling condition: There exist  $a_1, a_2 > 0$  and  $0 < \delta_1 \le \delta_2 < 2 \land d$  such that

$$\mathsf{a}_1\left(rac{R}{r}
ight)^{\delta_1} \leq rac{\phi(R)}{\phi(r)} \leq \mathsf{a}_2\left(rac{R}{r}
ight)^{\delta_2}, \quad 0 < r \leq R < \infty$$

Consequence: b = 0 (no drift).

Notation: 
$$\Phi(\lambda) = \frac{1}{\phi(\lambda^{-2})}$$
. For  $\phi(\lambda) = \lambda^{\alpha/2}$  it holds that  $\Phi(\lambda) = \lambda^{\alpha}$ .

For  $\phi(\lambda) = \lambda^{\alpha/2}$  we have exact scaling:

$$\frac{\phi(R)}{\phi(r)} = \left(\frac{R}{r}\right)^{\alpha}$$

Zoran Vondraček (University of Zagreb)

Discontinuous AF's of SBM

Let  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  be a symmetric function vanishing on the diagonal, and let  $A_t^F := \sum_{s < t} F(X_{s-}, X_s)$  be the corresponding AF.

Let  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  be a symmetric function vanishing on the diagonal, and let  $A_t^F := \sum_{s \le t} F(X_{s-}, X_s)$  be the corresponding AF. A non-negative function  $h : \mathbb{R}^d \to [0, \infty)$  is *F*-harmonic in a bounded open set  $D \subset \mathbb{R}^d$  with respect to X, if for every open  $V \subset \overline{V} \subset D$ ,

$$h(x) = \mathbb{E}_x \left[ e^{-A_{\tau_V}^F} h(X_{\tau_V}) 
ight], \quad ext{for all } x \in V.$$

(日) (間) (日) (日) (日)

Let  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  be a symmetric function vanishing on the diagonal, and let  $A_t^F := \sum_{s \le t} F(X_{s-}, X_s)$  be the corresponding AF. A non-negative function  $h : \mathbb{R}^d \to [0, \infty)$  is *F*-harmonic in a bounded open set  $D \subset \mathbb{R}^d$  with respect to X, if for every open  $V \subset \overline{V} \subset D$ ,

$$h(x) = \mathbb{E}_x \left[ e^{-A_{\tau_V}^F} h(X_{\tau_V}) 
ight], \quad ext{for all } x \in V.$$

The function h is regular F-harmonic in D if the above holds with V replaced by D.

4 2 5 4 2 5

Let  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  be a symmetric function vanishing on the diagonal, and let  $A_t^F := \sum_{s \leq t} F(X_{s-}, X_s)$  be the corresponding AF. A non-negative function  $h : \mathbb{R}^d \to [0, \infty)$  is *F*-harmonic in a bounded open set  $D \subset \mathbb{R}^d$  with respect to X, if for every open  $V \subset \overline{V} \subset D$ ,

$$h(x) = \mathbb{E}_x \left[ e^{-A_{\tau_V}^F} h(X_{\tau_V}) 
ight], \quad ext{for all } x \in V.$$

The function h is regular F-harmonic in D if the above holds with V replaced by D.

If  $M_t^F = e^{-A_t^F}$  and  $u(x) = \mathbb{E}_x[M_\infty^F]$ , then it was shown that u is regular *F*-harmonic in every bounded open *D*.

イロト 不得 トイヨト イヨト

#### Harnack inequality for F-harmonic functions

Theorem 2: Let  $D \subset \mathbb{R}^d$  be a bounded open set and  $K \subset D$  a compact subset of D. Fix  $\beta > 1$  and C > 0. There exists a constant  $c = c(d, a_1, a_2, \delta_1, \delta_2, \beta, C, D, K) > 1$  such that for every symmetric  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  vanishing on the diagonal and satisfying  $F(x, y) \leq C(\Phi(|x - y|)^\beta \land 1)$ , and every  $h : \mathbb{R}^d \to [0, \infty)$  which is *F*-harmonic with respect to *X* in *D*, it holds that

$$c^{-1}h(x) \leq h(y) \leq ch(x), \quad x, y \in K.$$

#### Harnack inequality for F-harmonic functions

Theorem 2: Let  $D \subset \mathbb{R}^d$  be a bounded open set and  $K \subset D$  a compact subset of D. Fix  $\beta > 1$  and C > 0. There exists a constant  $c = c(d, a_1, a_2, \delta_1, \delta_2, \beta, C, D, K) > 1$  such that for every symmetric  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  vanishing on the diagonal and satisfying  $F(x, y) \leq C(\Phi(|x - y|)^\beta \land 1)$ , and every  $h : \mathbb{R}^d \to [0, \infty)$  which is *F*-harmonic with respect to *X* in *D*, it holds that

$$c^{-1}h(x) \leq h(y) \leq ch(x), \quad x, y \in K.$$

The dependence of *c* on *K* and *D* is only through the ratio  $(r_0 \wedge \operatorname{dist}(K, D^c))/\operatorname{diam}(K)$  where  $r_0 = r_0(d, a_1, a_2, \delta_1, \delta_2, \beta)$  will be explained later.

#### Harnack inequality for F-harmonic functions

Theorem 2: Let  $D \subset \mathbb{R}^d$  be a bounded open set and  $K \subset D$  a compact subset of D. Fix  $\beta > 1$  and C > 0. There exists a constant  $c = c(d, a_1, a_2, \delta_1, \delta_2, \beta, C, D, K) > 1$  such that for every symmetric  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  vanishing on the diagonal and satisfying  $F(x, y) \leq C(\Phi(|x - y|)^\beta \land 1)$ , and every  $h : \mathbb{R}^d \to [0, \infty)$  which is *F*-harmonic with respect to *X* in *D*, it holds that

$$c^{-1}h(x) \leq h(y) \leq ch(x), \quad x, y \in K.$$

The dependence of *c* on *K* and *D* is only through the ratio  $(r_0 \wedge \operatorname{dist}(K, D^c))/\operatorname{diam}(K)$  where  $r_0 = r_0(d, a_1, a_2, \delta_1, \delta_2, \beta)$  will be explained later.

The HI will be used in case

$$D = V(0, 1, 2M + 1) := \{x \in \mathbb{R}^d : 1 < |x| < 2M + 1\}$$
 and

 $K = \overline{V}(0, 2, 2M) = \{x \in \mathbb{R}^d : 2 \le |x| \le 2M\}$ , M some large number.

### The key ingredient of the proof

The key ingredient in the proof of Theorem 2 is the following estimate: For every  $\varepsilon > 0$ , there exists  $r_0 = r_0(d, a_1, a_2, \delta_1, \delta_2, \beta, \varepsilon)$  such that for every  $r \in (0, r_0)$ , all  $x_0 \in \mathbb{R}^d$  and all  $x, w \in B(x_0, r)$ ,

$$e^{-\varepsilon} \leq \mathbb{E}_{x}^{w}[e^{-A_{\tau_{B(x_{0},r)}}^{F}}]$$

< 口 > < 同 >

### The key ingredient of the proof

The key ingredient in the proof of Theorem 2 is the following estimate: For every  $\varepsilon > 0$ , there exists  $r_0 = r_0(d, a_1, a_2, \delta_1, \delta_2, \beta, \varepsilon)$  such that for every  $r \in (0, r_0)$ , all  $x_0 \in \mathbb{R}^d$  and all  $x, w \in B(x_0, r)$ ,

$$e^{-\varepsilon} \leq \mathbb{E}_{x}^{w}[e^{-A_{\tau_{B(x_{0},r)}}^{F}}]$$

By Jensen's inequality, this follows from  $\mathbb{E}_{x}^{w}\left[A_{\tau_{B(x_{0},r)}}^{F}\right] < \varepsilon$ .

15 / 33

### The key ingredient of the proof

The key ingredient in the proof of Theorem 2 is the following estimate: For every  $\varepsilon > 0$ , there exists  $r_0 = r_0(d, a_1, a_2, \delta_1, \delta_2, \beta, \varepsilon)$  such that for every  $r \in (0, r_0)$ , all  $x_0 \in \mathbb{R}^d$  and all  $x, w \in B(x_0, r)$ ,

$$e^{-\varepsilon} \leq \mathbb{E}_{x}^{w}[e^{-A_{\tau_{B(x_{0},r)}}^{F}}]$$

By Jensen's inequality, this follows from  $\mathbb{E}_x^w \left[ A_{\tau_{B(x_0,r)}}^F \right] < \varepsilon$ . Set  $B_r = B(x_0, r)$  and let  $G_{B_r}$  denote the Green function of the process X killed upon exiting the ball  $B(x_0, r)$ . It is well known that

$$\mathbb{E}_x^w \left[ A_{\tau_{B_r}}^F \right] = \int_{B_r} \int_{B_r} \frac{G_{B_r}(x, y) G_{B_r}(z, w)}{G_{B_r}(x, w)} F(y, z) j(|y-z|) \, dz \, dy \, .$$

Here j(|z|) is the density of the Lévy measure of X.

Zoran Vondraček (University of Zagreb)

15 / 33

イロト イポト イヨト イヨト

## Key technical lemma

By using already existing two sided sharp estimates of  $G_{B_r}$  and j, we prove the following key technical lemma:

Lemma 3: Let  $\beta > 1$  and C > 0. For every  $\varepsilon > 0$  there exists a constant  $r_0 = r_0(d, a_1, a_2, \delta_1, \delta_2, \beta, C, \varepsilon) \in (0, 1]$  such that for every  $r \in (0, r_0]$  and symmetric  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  vanishing on the diagonal and satisfying  $F(x, y) \leq C(\Phi(|x - y|)^{\beta} \wedge 1)$ , it holds that

$$\sup_{x,w\in B_r}\int_{B_r}\int_{B_r}\frac{G_{B_r}(x,y)G_{B_r}(z,w)}{G_{B_r}(x,w)}|F(y,z)|j(|y-z|)\,dz\,dy<\varepsilon.$$

Zoran Vondraček (University of Zagreb)

Assume  $\phi(1) = 1$  and for every R > 0 define

$$\phi^{R}(s) = rac{\phi(R^{-2}s)}{\phi(R^{-2})}\,,\quad s>0\,.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Assume  $\phi(1) = 1$  and for every R > 0 define

$$\phi^{R}(s)=rac{\phi(R^{-2}s)}{\phi(R^{-2})}\,,\quad s>0\,.$$

Then  $\phi^R$  is a CBF satisfying the same weak scaling condition as  $\phi$ .

Assume  $\phi(1) = 1$  and for every R > 0 define

$$\phi^{R}(s)=rac{\phi(R^{-2}s)}{\phi(R^{-2})}\,,\quad s>0\,.$$

Then  $\phi^R$  is a CBF satisfying the same weak scaling condition as  $\phi$ .

Let  $\Phi^R(s) = (\phi^R(s^{-2}))^{-1}$  and let  $X^R$  be the subordinate BM with the characteristic exponent  $\psi^R(\xi) = \phi^R(|\xi|^2)$ ,  $\xi \in \mathbb{R}^d$ . Note that

$$(X_t^R)_{t\geq 0} \stackrel{\mathsf{D}}{=} (R^{-1}X_{t/\phi(R^{-2})})_{t\geq 0}.$$

Assume  $\phi(1) = 1$  and for every R > 0 define

$$\phi^{R}(s) = rac{\phi(R^{-2}s)}{\phi(R^{-2})}, \quad s > 0.$$

Then  $\phi^R$  is a CBF satisfying the same weak scaling condition as  $\phi$ .

Let  $\Phi^R(s) = (\phi^R(s^{-2}))^{-1}$  and let  $X^R$  be the subordinate BM with the characteristic exponent  $\psi^R(\xi) = \phi^R(|\xi|^2)$ ,  $\xi \in \mathbb{R}^d$ . Note that

$$(X_t^R)_{t\geq 0} \stackrel{\mathsf{D}}{=} (R^{-1}X_{t/\phi(R^{-2})})_{t\geq 0}.$$

The notions related to the process  $X^R$  will have the superscript R. E.g.,

$$A_t^{R,F} = \sum_{s \leq t} F(X_{s-}^R, X_s^R).$$

Zoran Vondraček (University of Zagreb)

Discontinuous AF's of SBM

### F-harmonic functions and scaling

For  $h : \mathbb{R}^d \to [0, \infty)$ ,  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$ ,  $D \subset \mathbb{R}^d$ , and any R > 0, set

 $h_R(x) := h(Rx), \quad F_R(x,y) := F(Rx,Ry), \quad D_R := \{Rx : x \in D\}.$ 

・ロン ・聞と ・ヨン ・ヨン … ヨ

### F-harmonic functions and scaling

For 
$$h: \mathbb{R}^d \to [0,\infty)$$
,  $F: \mathbb{R}^d \times \mathbb{R}^d \to [0,\infty)$ ,  $D \subset \mathbb{R}^d$ , and any  $R > 0$ , set

$$h_R(x) := h(Rx), \quad F_R(x,y) := F(Rx,Ry), \quad D_R := \{Rx : x \in D\}.$$

Lemma 4: Let D be a bounded open set in  $\mathbb{R}^d$ , R > 0,  $\zeta := \tau_{D_R}$  and  $\eta := \tau_D^R$ . Assume that h is regular F-harmonic in  $D_R$  for X, i.e.

$$h(x) = \mathbb{E}_x \left[ e^{-A_{\zeta}^F} h(X_{\zeta}) 
ight]$$
 for all  $x \in D_R$ .

Then  $h_R$  is regular  $F_R$ -harmonic in D for  $X^R$ , i.e.

$$h_R(x) = \mathbb{E}_x \left[ e^{-A_\eta^{R,F_R}} h_R(X_\eta^R) 
ight] \quad ext{for all } x \in D.$$

Zoran Vondraček (University of Zagreb)

#### Condition on the function F

Let  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0,\infty)$  be symmetric and bounded. Assume that there exist constants C > 0 and  $\beta > 1$  such that

$${\sf F}(x,y) \leq C rac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^eta+\Phi(|y|)^eta}\,, \qquad {
m for \ all} \ \ x,y\in \mathbb{R}^d$$

### Condition on the function F

Let  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0,\infty)$  be symmetric and bounded. Assume that there exist constants C > 0 and  $\beta > 1$  such that

$$\mathsf{F}(x,y) \leq C rac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^eta+\Phi(|y|)^eta}\,, \qquad ext{for all } x,y\in \mathbb{R}^d$$

For  $R\geq 1$  and a bounded open set  $D\subset B(0,1)^c$  let

$$\widehat{F}_R(x,y) = egin{cases} F_R(x,y) & ext{if } (x,y) \in (D imes \mathbb{R}^d) \cup (\mathbb{R}^d imes D) \\ 0 & ext{otherwise.} \end{cases}$$

Then  $\widehat{F}_R$  is symmetric, bounded and satisfies  $\widehat{F}_R(x,y) \leq C\Phi^R(|x-y|)^{\beta}$  for all  $x, y \in \mathbb{R}^d$ .

## Hitting infinitely many annuli

For a Borel set  $C \subset \mathbb{R}^d$  let  $T_C = \inf\{t > 0 : X_t \in C\}$  be its hitting time. If 0 < a < b, let  $V(0, a, b) := \{x \in \mathbb{R}^d : a < |x| < b\}$  be the open annulus, and denote by  $\overline{V}(0, a, b)$  its closure.

## Hitting infinitely many annuli

For a Borel set  $C \subset \mathbb{R}^d$  let  $T_C = \inf\{t > 0 : X_t \in C\}$  be its hitting time. If 0 < a < b, let  $V(0, a, b) := \{x \in \mathbb{R}^d : a < |x| < b\}$  be the open annulus, and denote by  $\overline{V}(0, a, b)$  its closure. Lemma 5: There exists a positive integer  $M = M(d, \delta_1, a_1) \ge 2$  such that for every strictly increasing sequence of positive numbers  $(R_n)_{n \ge 1}$ satisfying  $\lim_{n \to \infty} R_n = \infty$  it holds that

$$\mathbb{P}_{x}\left(\limsup_{n\to\infty}\left\{T_{\overline{V}(0,R_{n},MR_{n})}<\infty\right\}\right)=1\quad\text{for all}\ x\in\mathbb{R}^{d}.$$

Zoran Vondraček (University of Zagreb)

Wuhan, 17-21.7.2017.

# Hitting infinitely many annuli

For a Borel set  $C \subset \mathbb{R}^d$  let  $T_C = \inf\{t > 0 : X_t \in C\}$  be its hitting time. If 0 < a < b, let  $V(0, a, b) := \{x \in \mathbb{R}^d : a < |x| < b\}$  be the open annulus, and denote by  $\overline{V}(0, a, b)$  its closure. Lemma 5: There exists a positive integer  $M = M(d, \delta_1, a_1) \ge 2$  such that for every strictly increasing sequence of positive numbers  $(R_n)_{n \ge 1}$ satisfying  $\lim_{n \to \infty} R_n = \infty$  it holds that

$$\mathbb{P}_x\left(\limsup_{n\to\infty}\left\{ T_{\overline{V}(0,R_n,MR_n)}<\infty\right\}\right)=1\quad\text{for all}\ \ x\in\mathbb{R}^d.$$

That is, with  $\mathbb{P}_x$  probability 1, the process X visits infinitely many of the sets  $V_n$ .

Zoran Vondraček (University of Zagreb)

20 / 33

・ロト ・ 同ト ・ ヨト ・ ヨト

#### Main theorem

Theorem 6: Assume that  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  is symmetric, bounded and that there exist constants C > 0 and  $\beta > 1$  such that

$$F(x,y) \leq C rac{\Phi(|x-y|)^{eta}}{1+\Phi(|x|)^{eta}+\Phi(|y|)^{eta}}\,, \qquad ext{for all } x,y\in \mathbb{R}^d.$$

Let  $A_t^F = \sum_{0 \le s \le t} F(X_{s-}, X_s)$ . If  $\mathbb{P}_x(A_{\infty}^F < \infty) = 1$  for all  $x \in \mathbb{R}^d$ , then  $\sup_{x \in \mathbb{R}^d} \mathbb{E}_x[A_{\infty}^F] < \infty$ .

• • = • • = •

#### Main theorem

Theorem 6: Assume that  $F : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$  is symmetric, bounded and that there exist constants C > 0 and  $\beta > 1$  such that

$${\sf F}(x,y)\leq Crac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^eta+\Phi(|y|)^eta}\,,\qquad {
m for \ all}\ \ x,y\in \mathbb{R}^d.$$

Let  $A_t^F = \sum_{0 \le s \le t} F(X_{s-}, X_s)$ . If  $\mathbb{P}_x(A_\infty^F < \infty) = 1$  for all  $x \in \mathbb{R}^d$ , then  $\sup_{x \in \mathbb{R}^d} \mathbb{E}_x[A_\infty^F] < \infty$ .

Proof: Let  $u(x) := \mathbb{E}_x M_{\infty}^F$ . Since X is strongly Feller and  $\lim_{t\to 0} \sup_x \mathbb{E}_x A_t = 0$ , u is continuous. It suffices to prove that  $\liminf_{|x|\to\infty} u(x) > 0$ .

Zoran Vondraček (University of Zagreb)

21 / 33

イロト 不得下 イヨト イヨト 三日

Let D = V(0, 1, 2M + 1). The function u is regular F-harmonic in  $D_R$ ,  $R \ge 1$ . Then  $u_R$  is regular  $\widehat{F}_R$ -harmonic in D for  $X^R$ .

Let D = V(0, 1, 2M + 1). The function u is regular F-harmonic in  $D_R$ ,  $R \ge 1$ . Then  $u_R$  is regular  $\hat{F}_R$ -harmonic in D for  $X^R$ . Moreover,  $\hat{F}_R$  satisfies the upper bound from the Harnack inequality, hence

 $c^{-1}u_R(y) \leq u_R(x) \leq cu_R(y)$  for all  $x,y \in \overline{V}(0,2,2M)$ .

Let D = V(0, 1, 2M + 1). The function u is regular F-harmonic in  $D_R$ ,  $R \ge 1$ . Then  $u_R$  is regular  $\hat{F}_R$ -harmonic in D for  $X^R$ . Moreover,  $\hat{F}_R$  satisfies the upper bound from the Harnack inequality, hence

$$c^{-1}u_R(y) \leq u_R(x) \leq cu_R(y)$$
 for all  $x,y \in \overline{V}(0,2,2M)$  .

Therefore, for all  $R \ge 1$ ,

$$c^{-1}u(y) \le u(x) \le cu(y)$$
 for all  $x, y \in \overline{V}(0, 2R, 2RM)$ , (1)

Zoran Vondraček (University of Zagreb)

Let D = V(0, 1, 2M + 1). The function u is regular F-harmonic in  $D_R$ ,  $R \ge 1$ . Then  $u_R$  is regular  $\hat{F}_R$ -harmonic in D for  $X^R$ . Moreover,  $\hat{F}_R$  satisfies the upper bound from the Harnack inequality, hence

$$c^{-1}u_R(y)\leq u_R(x)\leq cu_R(y) \quad ext{for all} \quad x,y\in \overline{V}(0,2,2M)\,.$$

Therefore, for all  $R \ge 1$ ,

$$c^{-1}u(y) \le u(x) \le cu(y)$$
 for all  $x, y \in \overline{V}(0, 2R, 2RM)$ , (1)

Assume  $\lim_{n\to\infty} u(x_n) = 0$  for a sequence  $|x_n| \to \infty$ . Then there exists an increasing sequence  $(k_n)_{n\geq 1}$  such that  $x_n \in V_n := \overline{V}(0, 2^{k_n}, 2^{k_n}M)$  for every  $n \geq 1$ .

Zoran Vondraček (University of Zagreb)

Discontinuous AF's of SBM

Wuhan, 17-21.7.2017.
## Proof of the main theorem, cont.

Let D = V(0, 1, 2M + 1). The function u is regular F-harmonic in  $D_R$ ,  $R \ge 1$ . Then  $u_R$  is regular  $\hat{F}_R$ -harmonic in D for  $X^R$ . Moreover,  $\hat{F}_R$  satisfies the upper bound from the Harnack inequality, hence

$$c^{-1}u_R(y)\leq u_R(x)\leq cu_R(y) ext{ for all } x,y\in \overline{V}(0,2,2M)$$
 .

Therefore, for all  $R \ge 1$ ,

$$c^{-1}u(y) \le u(x) \le cu(y)$$
 for all  $x, y \in \overline{V}(0, 2R, 2RM)$ , (1)

Assume  $\lim_{n\to\infty} u(x_n) = 0$  for a sequence  $|x_n| \to \infty$ . Then there exists an increasing sequence  $(k_n)_{n\geq 1}$  such that  $x_n \in V_n := \overline{V}(0, 2^{k_n}, 2^{k_n}M)$  for every  $n \geq 1$ . Since X hits infinitely many sets  $V_n \mathbb{P}_X$ -a.s., for  $\mathbb{P}_X$ -a.e.  $\omega$  there exists a subsequence  $(n_l = n_l(\omega))$  and a sequence of times  $(t_l = t_l(\omega)), t_l(\omega) \to \infty$ , such that  $X_{t_l}(\omega) \in V_{n_l}$ .

## Proof of the main theorem, cont.

Therefore it follows from (1) that

$$c^{-1}u(X_{t_l}(\omega)) \leq u(x_{n_l}) \leq cu(X_{t_l}(\omega)),$$

which implies that  $\lim_{t\to\infty} u(X_{t_l}(\omega)) = 0$ . But this is a contradiction with  $\lim_{t\to\infty} u(X_t) = 1 \mathbb{P}_x$ -a.s. Therefore, u is bounded away from zero. By Proposition 1,  $\sup_{x\in\mathbb{R}^d} \mathbb{E}_x[A_\infty^F] < \infty$ .

# Proof of the main theorem, cont.

Therefore it follows from (1) that

$$c^{-1}u(X_{t_l}(\omega)) \leq u(x_{n_l}) \leq cu(X_{t_l}(\omega)),$$

which implies that  $\lim_{t\to\infty} u(X_{t_l}(\omega)) = 0$ . But this is a contradiction with  $\lim_{t\to\infty} u(X_t) = 1 \mathbb{P}_x$ -a.s. Therefore, u is bounded away from zero. By Proposition 1,  $\sup_{x\in\mathbb{R}^d} \mathbb{E}_x[A_\infty^F] < \infty$ .

The idea of the proof comes from the paper I. Ben-Ari and R. G. Pinsky, Absolute continuity/singularity and relative entropy properties for probability measures induced by diffusions on infinite time intervals, *Stochastic Process. Appl.* **115** (2005), 179–206, where it was used for a similar result for diffusions.

イロト 不得下 イヨト イヨト

$$F(x,y) \leq C rac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^eta+\Phi(|y|)^eta}\,, \qquad ext{for all } x,y\in \mathbb{R}^d.$$

$${\mathcal F}(x,y) \leq C rac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^eta+\Phi(|y|)^eta}\,, \qquad {
m for \ all} \ \ x,y\in {\mathbb R}^d.$$

There exists F satisfying the above condition such that  $\mathbb{E}_x[A_\infty] = \infty$ . Of course, in this case it cannot hold that  $\mathbb{P}_x(A_\infty < \infty) = 1$ .

24 / 33

イロト 不得下 イヨト イヨト

$$F(x,y) \leq C rac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^eta+\Phi(|y|)^eta}\,, \qquad ext{for all } x,y\in \mathbb{R}^d.$$

There exists F satisfying the above condition such that  $\mathbb{E}_x[A_\infty] = \infty$ . Of course, in this case it cannot hold that  $\mathbb{P}_x(A_\infty < \infty) = 1$ .

On the other hand, this condition is almost necessary for the validity of the main theorem.

$$F(x,y) \leq C rac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^eta+\Phi(|y|)^eta}\,, \qquad ext{for all } x,y\in \mathbb{R}^d.$$

There exists F satisfying the above condition such that  $\mathbb{E}_x[A_\infty] = \infty$ . Of course, in this case it cannot hold that  $\mathbb{P}_x(A_\infty < \infty) = 1$ .

On the other hand, this condition is almost necessary for the validity of the main theorem.

Theorem 7: For all  $\gamma$  and  $\beta$  satisfying  $0 < \gamma < 1 < \beta$ , there exists a symmetric F such that

$$0 \leq F(x,y) \leq \frac{\Phi(|x-y|)^{\beta}}{1+\Phi(|x|)^{\gamma}+\Phi(|y|)^{\gamma}}\,, \qquad \text{for all} \ \ x,y \in \mathbb{R}^d,$$

 $\mathbb{P}_x(A^F_\infty<\infty)=1 \text{ for all } x\in \mathbb{R}^d \text{, but } \mathbb{E}_x[A^F_\infty]=\infty.$ 







3 Applications to absolute continuity/singularity

25 / 33

< □ > < ---->

## Lévy system

 $X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x)$  a symmetric (wrt Lebesgue measure) right Markov process on  $\mathbb{R}^d$ ,  $\Omega = D([0, \infty), \mathbb{R}^d)$ ,  $X_t = \omega(t)$ ,  $\mathcal{M} = \sigma(\cup_{t \ge 0} \mathcal{M}_t)$ .

## Lévy system

 $X = (\Omega, \mathcal{M}, \mathcal{M}_t, \theta_t, X_t, \mathbb{P}_x)$  a symmetric (wrt Lebesgue measure) right Markov process on  $\mathbb{R}^d$ ,  $\Omega = D([0, \infty), \mathbb{R}^d)$ ,  $X_t = \omega(t)$ ,  $\mathcal{M} = \sigma(\cup_{t \ge 0} \mathcal{M}_t)$ . (N, H) a Lévy system of X: For a Borel function F on  $\mathbb{R}^d \times \mathbb{R}^d$  vanishing on the diagonal

$$\mathbb{E}_{x}\sum_{s\leq t}F(X_{s-},X_{s})=\mathbb{E}_{x}\int_{0}^{t}\int_{\mathbb{R}^{d}}F(X_{s-},y)N(X_{s-},dy)\,dH_{s}$$

# Two families of functions

Two families of functions (Chen, Song, PTRF 2003, Song JTP 2006) J(X): bounded, symmetric  $F : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ ,

$$\lim_{t\to 0}\sup_{x\in\mathbb{R}^d}\mathbb{E}_x\int_0^t\int_{\mathbb{R}^d}|F(X_{s-},y)|N(X_{s-},dy)\,dH_s=0$$

# Two families of functions

Two families of functions (Chen, Song, PTRF 2003, Song JTP 2006) J(X): bounded, symmetric  $F : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ ,

$$\lim_{t\to 0}\sup_{x\in\mathbb{R}^d}\mathbb{E}_x\int_0^t\int_{\mathbb{R}^d}|F(X_{s-},y)|N(X_{s-},dy)\,dH_s=0\,.$$

 $I_2(X)$ : bounded, symmetric  $F: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ , for all t > 0 and  $x \in \mathbb{R}^d$ ,

$$\mathbb{E}_{\mathsf{x}}\sum_{s\leq t}F^2(X_{s-},X_s)=\mathbb{E}_{\mathsf{x}}\int_0^t\int_{\mathbb{R}^d}F^2(X_{s-},y)N(X_{s-},dy)\,dH_s<\infty\,.$$

# Two families of functions

Two families of functions (Chen, Song, PTRF 2003, Song JTP 2006) J(X): bounded, symmetric  $F : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ ,

$$\lim_{t\to 0}\sup_{x\in\mathbb{R}^d}\mathbb{E}_x\int_0^t\int_{\mathbb{R}^d}|F(X_{s-},y)|N(X_{s-},dy)\,dH_s=0\,.$$

 $I_2(X)$ : bounded, symmetric  $F: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ , for all t > 0 and  $x \in \mathbb{R}^d$ ,

$$\mathbb{E}_{\mathsf{x}}\sum_{s\leq t}F^2(X_{s-},X_s)=\mathbb{E}_{\mathsf{x}}\int_0^t\int_{\mathbb{R}^d}F^2(X_{s-},y)N(X_{s-},dy)\,dH_s<\infty\,.$$

$$J(X) \subset I_2(X)$$
; if  $\inf_{x,y} F(x,y) > -1$  and  $F \in I_2(X)$ , then  $\log(1+F) \in I_2(X)$ .

Zoran Vondraček (University of Zagreb)

27 / 33

(日) (四) (日) (日) (日)

## MAF and quadratic variations

If  $F \in J(X)$ , then

$$A_t^F := \sum_{s \le t} F(X_{s-}, X_s) - \int_0^t \int_{\mathbb{R}^d} F(X_{s-}, y) N(X_{s-}, dy) \, dH_s$$

is well-defined (pure jump) martingale additive functional with quadratic and predictable quadratic variation

$$[A^{F}]_{t} = \sum_{s \leq t} (\Delta A_{s}^{F})^{2} = \sum_{s \leq t} F^{2}(X_{s-}, X_{s})$$
$$\langle A^{F} \rangle_{t} = \int_{0}^{t} \int_{\mathbb{R}^{d}} F^{2}(X_{s-}, y) N(X_{s-}, dy) dH_{s}$$

Zoran Vondraček (University of Zagreb)

## MAF and quadratic variations

If  $F \in J(X)$ , then

$$A_t^F := \sum_{s \le t} F(X_{s-}, X_s) - \int_0^t \int_{\mathbb{R}^d} F(X_{s-}, y) N(X_{s-}, dy) \, dH_s$$

is well-defined (pure jump) martingale additive functional with quadratic and predictable quadratic variation

$$[A^{F}]_{t} = \sum_{s \leq t} (\Delta A_{s}^{F})^{2} = \sum_{s \leq t} F^{2}(X_{s-}, X_{s})$$
$$\langle A^{F} \rangle_{t} = \int_{0}^{t} \int_{\mathbb{R}^{d}} F^{2}(X_{s-}, y) N(X_{s-}, dy) dH_{s}$$

If  $F \in I_2(X)$ , one defines  $A_t^F$  by the limiting procedure in  $L^2(\mathbb{P}_x)$  with the same formulae for  $[A^F]_t$  and  $\langle A^F \rangle_t$ .

Zoran Vondraček (University of Zagreb)

Discontinuous AF's of SBM

Assume  $\inf_{x,y} F(x,y) > -1$  and let  $L_t^F := \mathcal{E}(A^F)_t > 0$  be the Doleans-Dade exponential of  $A^F$ :

$$\begin{aligned} \mathcal{E}(A^{F})_{t} &= \exp(A^{F}_{t}) \prod_{s \leq t} (1 + F(X_{s-}, X_{s})) \exp(-F(X_{s-}, X_{s})) \\ &= \exp\left(A^{F}_{t} + \sum_{s \leq t} (\log(1 + F) - F) (X_{s-}, X_{s})\right) \end{aligned}$$

Assume  $\inf_{x,y} F(x,y) > -1$  and let  $L_t^F := \mathcal{E}(A^F)_t > 0$  be the Doleans-Dade exponential of  $A^F$ :

$$\begin{aligned} \mathcal{E}(A^{F})_{t} &= \exp(A_{t}^{F}) \prod_{s \leq t} (1 + F(X_{s-}, X_{s})) \exp(-F(X_{s-}, X_{s})) \\ &= \exp\left(A_{t}^{F} + \sum_{s \leq t} (\log(1 + F) - F) (X_{s-}, X_{s})\right) \end{aligned}$$

There exists a family  $(\widetilde{\mathbb{P}}_x)_{x \in \mathbb{R}^d}$  of probability measures on  $\mathcal{M}$  such that  $d\widetilde{\mathbb{P}}_{x|_{\mathcal{M}_t}} = L_t^F d\mathbb{P}_{x|_{\mathcal{M}_t}}.$ 

Assume  $\inf_{x,y} F(x,y) > -1$  and let  $L_t^F := \mathcal{E}(A^F)_t > 0$  be the Doleans-Dade exponential of  $A^F$ :

$$\begin{aligned} \mathcal{E}(A^{F})_{t} &= \exp(A_{t}^{F}) \prod_{s \leq t} (1 + F(X_{s-}, X_{s})) \exp(-F(X_{s-}, X_{s})) \\ &= \exp\left(A_{t}^{F} + \sum_{s \leq t} (\log(1 + F) - F) (X_{s-}, X_{s})\right) \end{aligned}$$

There exists a family  $(\widetilde{\mathbb{P}}_x)_{x \in \mathbb{R}^d}$  of probability measures on  $\mathcal{M}$  such that  $d\widetilde{\mathbb{P}}_{x|_{\mathcal{M}_t}} = L_t^F d\mathbb{P}_{x|_{\mathcal{M}_t}}$ . In particular,  $\widetilde{\mathbb{P}}_{x|_{\mathcal{M}_t}} \sim \mathbb{P}_{x|_{\mathcal{M}_t}}$ , for all t > 0.

Assume  $\inf_{x,y} F(x,y) > -1$  and let  $L_t^F := \mathcal{E}(A^F)_t > 0$  be the Doleans-Dade exponential of  $A^F$ :

$$\begin{aligned} \mathcal{E}(A^{F})_{t} &= \exp(A_{t}^{F}) \prod_{s \leq t} (1 + F(X_{s-}, X_{s})) \exp(-F(X_{s-}, X_{s})) \\ &= \exp\left(A_{t}^{F} + \sum_{s \leq t} (\log(1 + F) - F) (X_{s-}, X_{s})\right) \end{aligned}$$

There exists a family  $(\widetilde{\mathbb{P}}_x)_{x \in \mathbb{R}^d}$  of probability measures on  $\mathcal{M}$  such that  $d\widetilde{\mathbb{P}}_{x|_{\mathcal{M}_t}} = L_t^F d\mathbb{P}_{x|_{\mathcal{M}_t}}$ . In particular,  $\widetilde{\mathbb{P}}_{x|_{\mathcal{M}_t}} \sim \mathbb{P}_{x|_{\mathcal{M}_t}}$ , for all t > 0.

Under  $\widetilde{\mathbb{P}}_{x} X$  is again a right Markov process with a Lévy system ((1+F)N, H). Notation:  $\widetilde{X} = (\widetilde{X}_{t}, \mathcal{M}, \mathcal{M}_{t}, \widetilde{\mathbb{P}}_{x})$  – purely discontinuous Girsanov transform of X.

Zoran Vondraček (University of Zagreb)

# Relative entropy of probability measures

Recall that the relative entropy of two probability measures  $\mu$  and  $\nu$  is defined by

$$\mathcal{H}(
u;\mu) := \int rac{d
u}{d\mu} \log rac{d
u}{d\mu} \, d\mu = \int \log rac{d
u}{d\mu} \, d
u \leq \infty$$

if  $\nu \ll \mu$  and  $+\infty$  otherwise.

Theorem 8: X conservative symmetric right Markov process on  $\mathbb{R}^d$ ,  $F \in I_2(X)$  and  $\inf_{x,y} F(x,y) > -1$ .

(a)  $\mathbb{P}_x \perp \widetilde{\mathbb{P}}_x$  iff  $[A^F]_{\infty} = \sum_{t>0} F^2(X_{t-}, X_t) = \infty \mathbb{P}_x$  a.s. or  $\widetilde{\mathbb{P}}_x$  a.s.

Theorem 8: X conservative symmetric right Markov process on  $\mathbb{R}^d$ ,  $F \in I_2(X)$  and  $\inf_{x,y} F(x,y) > -1$ .

(a) 
$$\mathbb{P}_x \perp \widetilde{\mathbb{P}}_x$$
 iff  $[A^F]_{\infty} = \sum_{t>0} F^2(X_{t-}, X_t) = \infty \mathbb{P}_x$  a.s. or  $\widetilde{\mathbb{P}}_x$  a.s.  
(b1)  $\widetilde{\mathbb{P}}_x \ll \mathbb{P}_x$  iff  $[A^F]_{\infty} < \infty \widetilde{\mathbb{P}}_x$  a.s.

(b2)  $\mathbb{P}_x \ll \widetilde{\mathbb{P}}_x$  iff  $[A^F]_{\infty} < \infty \mathbb{P}_x$  a.s.

Theorem 8: X conservative symmetric right Markov process on  $\mathbb{R}^d$ ,  $F \in I_2(X)$  and  $\inf_{x,y} F(x,y) > -1$ .

(a) 
$$\mathbb{P}_{x} \perp \widetilde{\mathbb{P}}_{x}$$
 iff  $[A^{F}]_{\infty} = \sum_{t>0} F^{2}(X_{t-}, X_{t}) = \infty \mathbb{P}_{x}$  a.s. or  $\widetilde{\mathbb{P}}_{x}$  a.s.  
(b1)  $\widetilde{\mathbb{P}}_{x} \ll \mathbb{P}_{x}$  iff  $[A^{F}]_{\infty} < \infty \widetilde{\mathbb{P}}_{x}$  a.s.  
(b2)  $\mathbb{P}_{x} \ll \widetilde{\mathbb{P}}_{x}$  iff  $[A^{F}]_{\infty} < \infty \mathbb{P}_{x}$  a.s.  
(c1)  $\mathcal{H}(\widetilde{\mathbb{P}}_{x}; \mathbb{P}_{x}) = \widetilde{\mathbb{E}}_{x} \sum_{t>0} (\log(1+F) - \frac{F}{1+F})(X_{t-}, X_{t})$  and is finite iff  
 $\widetilde{\mathbb{E}}_{x}[A^{F}]_{\infty} < \infty.$   
(c2)  $\mathcal{H}(\mathbb{P}_{x}; \widetilde{\mathbb{P}}_{x}) = \mathbb{E}_{x} \sum_{t>0} (F - \log(1+F))(X_{t-}, X_{t})$  and is finite iff  
 $\mathbb{E}_{x}[A^{F}]_{\infty} < \infty.$ 

#### $F \in I_2(X)$ and $\inf_{x,y} F(x,y) > -1$ .

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $F \in I_2(X)$  and  $\inf_{x,y} F(x,y) > -1$ .

Corollary 9: Assume X has strictly positive transition densities under  $\mathbb{P}_x$  for all  $x \in \mathbb{R}^d$ . If  $\mathbb{P}_x \ll \widetilde{\mathbb{P}}_x$  (respectively  $\mathbb{P}_x \perp \widetilde{\mathbb{P}}_x$ ) for some  $x \in \mathbb{R}^d$ , then this is true for all  $x \in \mathbb{R}^d$ . Analogously if densities exist under  $\widetilde{\mathbb{P}}_x$ .

 $F \in I_2(X)$  and  $\inf_{x,y} F(x,y) > -1$ .

Corollary 9: Assume X has strictly positive transition densities under  $\mathbb{P}_x$  for all  $x \in \mathbb{R}^d$ . If  $\mathbb{P}_x \ll \widetilde{\mathbb{P}}_x$  (respectively  $\mathbb{P}_x \perp \widetilde{\mathbb{P}}_x$ ) for some  $x \in \mathbb{R}^d$ , then this is true for all  $x \in \mathbb{R}^d$ . Analogously if densities exist under  $\widetilde{\mathbb{P}}_x$ .

Corollary 10: If the invariant  $\sigma$ -field  $\mathcal{I} := \{\Lambda \in \mathcal{M} : \theta_t^{-1}\Lambda = \Lambda \ \forall t \ge 0\}$  is trivial under both  $\mathbb{P}_x$  and  $\widetilde{\mathbb{P}}_x$  then either  $\mathbb{P}_x \perp \widetilde{\mathbb{P}}_x$  or  $\mathbb{P}_x \sim \widetilde{\mathbb{P}}_x$ .

Zoran Vondraček (University of Zagreb)

Discontinuous AF's of SBM

Wuhan, 17-21.7.2017.

Theorem 11: Suppose that X is the subordinate Brownian motion via the subordinator whose Laplace exponent is a complete Bernstein function and satisfies the weak scaling condition.

Theorem 11: Suppose that X is the subordinate Brownian motion via the subordinator whose Laplace exponent is a complete Bernstein function and satisfies the weak scaling condition.

(a) Let  $F \in I_2(X)$  and  $\inf_{x,y \in \mathbb{R}^d} F(x,y) > -1$ . Then either  $\widetilde{\mathbb{P}}_x \perp \mathbb{P}_x$  or  $\widetilde{\mathbb{P}}_x \sim \mathbb{P}_x$ . If  $\widetilde{\mathbb{P}}_x \sim \mathbb{P}_x$ , and if there exist C > 0 and  $\beta > 1/2$  such that

$$0 \leq F(x,y) \leq C \frac{\Phi(|x-y|)^{\beta}}{1 + \Phi(|x|)^{\beta} + \Phi(|y|)^{\beta}}, \quad \text{for all } x, y \in \mathbb{R}^{d},$$

then  $\mathcal{H}(\mathbb{P}_x; \widetilde{\mathbb{P}}_x) < \infty$ .

Theorem 11: Suppose that X is the subordinate Brownian motion via the subordinator whose Laplace exponent is a complete Bernstein function and satisfies the weak scaling condition.

(a) Let  $F \in I_2(X)$  and  $\inf_{x,y \in \mathbb{R}^d} F(x,y) > -1$ . Then either  $\widetilde{\mathbb{P}}_x \perp \mathbb{P}_x$  or  $\widetilde{\mathbb{P}}_x \sim \mathbb{P}_x$ . If  $\widetilde{\mathbb{P}}_x \sim \mathbb{P}_x$ , and if there exist C > 0 and  $\beta > 1/2$  such that

$$0 \leq F(x,y) \leq C \frac{\Phi(|x-y|)^\beta}{1+\Phi(|x|)^\beta + \Phi(|y|)^\beta}\,, \quad \text{for all } x,y \in \mathbb{R}^d\,,$$

then  $\mathcal{H}(\mathbb{P}_x; \widetilde{\mathbb{P}}_x) < \infty$ .

(b) For each  $\gamma$  and  $\beta$  satisfying  $0 < \gamma < 1/2 < \beta$  there exists  $F \in I_2(X)$  satisfying

$$F(x,y) \leq rac{\Phi(|x-y|)^eta}{1+\Phi(|x|)^\gamma+\Phi(|y|)^\gamma}\,,\quad ext{for all }x,y\in\mathbb{R}^d\,,$$

such that  $\mathbb{P}_x \ll \widetilde{\mathbb{P}}_x$  and  $\mathcal{H}(\mathbb{P}_x; \widetilde{\mathbb{P}}_x) = \infty$ .