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General result

Additive functionals

X = (Ω,M,Mt , θt ,Xt ,Px) a strong Markov process on Rd ,
M = σ(∪t≥0Mt).

A = (At)t≥0 a perfect, non-negative, additive functional (AF) of X ;
At+s = At + As ◦ θt
Examples: At =

∫ t
0 f (Xs) ds, with f ≥ 0;

At =
∑

s≤t F (Xs−,Xs), F ≥ 0, F (x , x) = 0.
Question: If Px(A∞ <∞) = 1, when does it follow that ExA∞ <∞?

Define the perfect multiplicative functional (MF) Mt = e−At . Then
M∞ = e−A∞ > 0 iff A∞ <∞.

Define u : Rd → [0, 1] by u(x) := ExM∞. Then u is measureable and
(u(Xt))t≥0 is cadlag.

Note: If Px(A∞ <∞) = 1 for all x ∈ Rd , then Px(M∞ > 0) = 1 for all
x ∈ Rd , hence u > 0.
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Zoran Vondraček (University of Zagreb) Discontinuous AF’s of SBM Wuhan, 17-21.7.2017. 4 / 33



General result

Additive functionals

X = (Ω,M,Mt , θt ,Xt ,Px) a strong Markov process on Rd ,
M = σ(∪t≥0Mt).
A = (At)t≥0 a perfect, non-negative, additive functional (AF) of X ;
At+s = At + As ◦ θt
Examples: At =

∫ t
0 f (Xs) ds, with f ≥ 0;

At =
∑

s≤t F (Xs−,Xs), F ≥ 0, F (x , x) = 0.
Question: If Px(A∞ <∞) = 1, when does it follow that ExA∞ <∞?

Define the perfect multiplicative functional (MF) Mt = e−At . Then
M∞ = e−A∞ > 0 iff A∞ <∞.
Define u : Rd → [0, 1] by u(x) := ExM∞. Then u is measureable and
(u(Xt))t≥0 is cadlag.

Note: If Px(A∞ <∞) = 1 for all x ∈ Rd , then Px(M∞ > 0) = 1 for all
x ∈ Rd , hence u > 0.
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General result

Properties of u

Clearly, 0 ≤ u ≤ 1. If Px(M∞ > 0) = 1, then u(x) > 0.

The process (u(Xt)Mt)t≥0 is a bounded Px -martingale, ∀x ∈ Rd .
Consequently, for t ≥ 0,

u(x) = Ex [u(Xt)Mt ]

= Ex [u(XτD )MτD ] ,

τD = inf{t > 0 : Xt /∈ D} the exit time from D ⊂ Rd . Interpretation: u
(regular) harmonic in D for the process perturbed by the MF M.

Assume that Px(A∞ <∞) = 1 for all x ∈ Rd . Then limt→∞ u(Xt) = 1
Px -a.s. for every x ∈ Rd .

Zoran Vondraček (University of Zagreb) Discontinuous AF’s of SBM Wuhan, 17-21.7.2017. 5 / 33



General result

Properties of u

Clearly, 0 ≤ u ≤ 1. If Px(M∞ > 0) = 1, then u(x) > 0.

The process (u(Xt)Mt)t≥0 is a bounded Px -martingale, ∀x ∈ Rd .
Consequently, for t ≥ 0,

u(x) = Ex [u(Xt)Mt ]

= Ex [u(XτD )MτD ] ,

τD = inf{t > 0 : Xt /∈ D} the exit time from D ⊂ Rd . Interpretation: u
(regular) harmonic in D for the process perturbed by the MF M.

Assume that Px(A∞ <∞) = 1 for all x ∈ Rd . Then limt→∞ u(Xt) = 1
Px -a.s. for every x ∈ Rd .
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Zoran Vondraček (University of Zagreb) Discontinuous AF’s of SBM Wuhan, 17-21.7.2017. 5 / 33



General result

Properties of u, cont.

From now on we assume that At =
∑

s≤t F (Xs−,XS). Let

F̃ (x , y) = 1− e−F (x ,y), and set Ãt =
∑

s≤t F̃ (Xs−,Xs).

For all t > 0 we have a Dynkin-type formula

u(x) = Ex

[
u(Xt)−

∫ t

0
u(Xs) dÃs

]
= 1− Ex

∫ ∞
0

u(Xs) dÃs

X strongly Feller and limt→0 supx ExAt = 0 imply u is continuous.
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General result

Properties of u, cont.

Proposition 1: If ExA∞ ≤ c <∞, then u(x) ≥ e−c > 0. Conversely, if
Px(A∞ <∞) = 1 for all x ∈ Rd and infx∈Rd u(x) = c > 0, then

supx∈Rd Ex Ã∞ ≤ 1/c − 1.

Further, when F is bounded, then infx∈Rd u(x) > 0 iff
supx∈Rd ExA∞ <∞.
Proof: Assume c := infx∈Rd u(x) > 0 and rewrite the Dynkin-type formula
as

1− c ≥

1− u(x) = Ex

∫ ∞
0

u(Xs) dÃs

≥ cEx Ã∞

.

Question: How to check that u(x) = ExM∞ is bounded away from zero?

Note: If Px(A∞ <∞) = 1, then u > 0. Further, if X strongly Feller and
limt→0 supx ExAt = 0, then u is continuous, hence bounded away from 0
on compacts. Finally, limt→∞ u(Xt) = 1. There exists A such that
Px(A∞ <∞) = 1, but inf u = 0.
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≥ cEx Ã∞
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supx∈Rd Ex Ã∞ ≤ 1/c − 1.
Further, when F is bounded, then infx∈Rd u(x) > 0 iff
supx∈Rd ExA∞ <∞.
Proof: Assume c := infx∈Rd u(x) > 0 and rewrite the Dynkin-type formula
as

1− c ≥

1− u(x) = Ex

∫ ∞
0

u(Xs) dÃs
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General result

An application to perpetual integral functionals

Let X = (Xt ,Px) be a strong Markov process on R, limt→∞ Xt = +∞ and
Py (XTx = 1) for all y < x where Tx = inf{t > 0 : Xt ≥ x}.

For bounded f : R→ [0,∞) define At =
∫ t

0 f (Xs)ds, and for x ∈ R,

fx(y) = f (y)1[x ,∞)(y), Ax
t =

∫ t
0 fx(Xs)ds.

A∞ is often called perpetual integral functional.

Let Mt = e−At , Mx
t = e−A

x
t , u(y) = EyM∞ and ux(y) = EyM
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General result

An application to perpetual integral functionals, cont.

A simple application of Proposition 1 gives the following result originally
proved in Khoshnevisan, Salminen, Yor (2006): The following are
equivalent

(i) Px(A∞ <∞) = 1 for all x ∈ R;

(i) Px(Ax
∞ <∞) = 1 or all x ∈ R;

(iii) ExA
x
∞ <∞ or all x ∈ R;

(iv) supy∈R EyA
x
∞ <∞ or all x ∈ R;

Note: Even when f is bounded, we cannot conclude that ExA∞ <∞
because of the lack of control of u(x) as x → −∞.
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Results for subordinate Brownian motion

1 General result

2 Results for subordinate Brownian motion

3 Applications to absolute continuity/singularity
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Results for subordinate Brownian motion

Subordinate Brownian motion

Let W = (Wt ,Px) be a Brownian motion in Rd , S = (St) an independent
subordinator.

The Laplace exponent φ of S satisfies E[e−λSt ] = e−tφ(λ). It is a
Bernstein function, hence has a representation

φ(λ) = bλ+

∫
(0,∞)

(1− e−λt)µ(dt) , b ≥ 0,

∫
(0,∞)

(1 ∧ λ)µ(dt) <∞ .

Define X = (Xt ,Px) as Xt := WSt – subordinate BM. It is a Lévy process
with the characteristic exponent ψ(ξ) = φ(|ξ|2), ξ ∈ Rd :
Ex [e iξ·(Xt−x)] = e−tψ(ξ).

For φ(λ) = λα/2 we get ψ(ξ) = |ξ|α, so X is an isotropic α-stable process.
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Results for subordinate Brownian motion

Weak scaling condition

We assume that the Laplace exponent φ is a complete Bernstein function
and that it satisfies the following weak scaling condition: There exist
a1, a2 > 0 and 0 < δ1 ≤ δ2 < 2 ∧ d such that

a1

(
R

r

)δ1

≤ φ(R)

φ(r)
≤ a2

(
R

r

)δ2

, 0 < r ≤ R <∞ .

Consequence: b = 0 (no drift).

Notation: Φ(λ) = 1
φ(λ−2)

. For φ(λ) = λα/2 it holds that Φ(λ) = λα.

For φ(λ) = λα/2 we have exact scaling:

φ(R)

φ(r)
=

(
R

r

)α
.
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Results for subordinate Brownian motion

F -harmonic functions

Let F : Rd × Rd → [0,∞) be a symmetric function vanishing on the
diagonal, and let AF

t :=
∑

s≤t F (Xs−,Xs) be the corresponding AF.

A non-negative function h : Rd → [0,∞) is F -harmonic in a bounded open
set D ⊂ Rd with respect to X , if for every open V ⊂ V ⊂ D,

h(x) = Ex

[
e−A

F
τV h(XτV )

]
, for all x ∈ V .

The function h is regular F -harmonic in D if the above holds with V
replaced by D.

If MF
t = e−A

F
t and u(x) = Ex [MF

∞], then it was shown that u is regular
F -harmonic in every bounded open D.
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Results for subordinate Brownian motion

Harnack inequality for F -harmonic functions

Theorem 2: Let D ⊂ Rd be a bounded open set and K ⊂ D a compact
subset of D. Fix β > 1 and C > 0. There exists a constant
c = c(d , a1, a2, δ1, δ2, β,C ,D,K ) > 1 such that for every symmetric
F : Rd × Rd → [0,∞) vanishing on the diagonal and satisfying
F (x , y) ≤ C

(
Φ(|x − y |)β ∧ 1

)
, and every h : Rd → [0,∞) which is

F -harmonic with respect to X in D, it holds that

c−1h(x) ≤ h(y) ≤ ch(x), x , y ∈ K .

The dependence of c on K and D is only through the ratio
(r0 ∧ dist(K ,Dc))/diam(K ) where r0 = r0(d , a1, a2, δ1, δ2, β) will be
explained later.

The HI will be used in case
D = V (0, 1, 2M + 1) := {x ∈ Rd : 1 < |x | < 2M + 1} and
K = V (0, 2, 2M) = {x ∈ Rd : 2 ≤ |x | ≤ 2M}, M some large number.
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Results for subordinate Brownian motion

The key ingredient of the proof

The key ingredient in the proof of Theorem 2 is the following estimate:
For every ε > 0, there exists r0 = r0(d , a1, a2, δ1, δ2, β, ε) such that for
every r ∈ (0, r0), all x0 ∈ Rd and all x ,w ∈ B(x0, r),

e−ε ≤ Ew
x [e
−AF

τB(x0,r) ]

By Jensen’s inequality, this follows from Ew
x

[
AF
τB(x0,r)

]
< ε.

Set Br = B(x0, r) and let GBr denote the Green function of the process X
killed upon exiting the ball B(x0, r). It is well known that

Ew
x

[
AF
τBr

]
=

∫
Br

∫
Br

GBr (x , y)GBr (z ,w)

GBr (x ,w)
F (y , z)j(|y − z |) dz dy .

Here j(|z |) is the density of the Lévy measure of X .
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Zoran Vondraček (University of Zagreb) Discontinuous AF’s of SBM Wuhan, 17-21.7.2017. 15 / 33



Results for subordinate Brownian motion

Key technical lemma

By using already existing two sided sharp estimates of GBr and j , we prove
the following key technical lemma:
Lemma 3: Let β > 1 and C > 0. For every ε > 0 there exists a constant
r0 = r0(d , a1, a2, δ1, δ2, β,C , ε) ∈ (0, 1] such that for every r ∈ (0, r0] and
symmetric F : Rd × Rd → [0,∞) vanishing on the diagonal and satisfying
F (x , y) ≤ C

(
Φ(|x − y |)β ∧ 1

)
, it holds that

sup
x ,w∈Br

∫
Br

∫
Br

GBr (x , y)GBr (z ,w)

GBr (x ,w)
|F (y , z)|j(|y − z |) dz dy < ε.
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Results for subordinate Brownian motion

Consequences of weak scaling

Assume φ(1) = 1 and for every R > 0 define

φR(s) =
φ(R−2s)

φ(R−2)
, s > 0 .

Then φR is a CBF satisfying the same weak scaling condition as φ.

Let ΦR(s) = (φR(s−2))−1 and let XR be the subordinate BM with the
characteristic exponent ψR(ξ) = φR(|ξ|2), ξ ∈ Rd . Note that

(XR
t )t≥0

D
= (R−1Xt/φ(R−2))t≥0.

The notions related to the process XR will have the superscript R. E.g.,

AR,F
t =

∑
s≤t

F (XR
s−,X

R
s ) .
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The notions related to the process XR will have the superscript R. E.g.,

AR,F
t =
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s≤t

F (XR
s−,X

R
s ) .
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Results for subordinate Brownian motion

F -harmonic functions and scaling

For h : Rd → [0,∞), F : Rd × Rd → [0,∞), D ⊂ Rd , and any R > 0, set

hR(x) := h(Rx) , FR(x , y) := F (Rx ,Ry) , DR := {Rx : x ∈ D} .

Lemma 4: Let D be a bounded open set in Rd , R > 0, ζ := τDR
and

η := τRD . Assume that h is regular F -harmonic in DR for X , i.e.

h(x) = Ex

[
e−A

F
ζ h(Xζ)

]
for all x ∈ DR .

Then hR is regular FR -harmonic in D for XR , i.e.

hR(x) = Ex

[
e−A

R,FR
η hR(XR

η )
]

for all x ∈ D.
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Results for subordinate Brownian motion

Condition on the function F

Let F : Rd × Rd → [0,∞) be symmetric and bounded. Assume that there
exist constants C > 0 and β > 1 such that

F (x , y) ≤ C
Φ(|x − y |)β

1 + Φ(|x |)β + Φ(|y |)β
, for all x , y ∈ Rd .

For R ≥ 1 and a bounded open set D ⊂ B(0, 1)c let

F̂R(x , y) =

{
FR(x , y) if (x , y) ∈ (D × Rd) ∪ (Rd × D)

0 otherwise.

Then F̂R is symmetric, bounded and satisfies F̂R(x , y) ≤ CΦR(|x − y |)β
for all x , y ∈ Rd .
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Results for subordinate Brownian motion

Hitting infinitely many annuli

For a Borel set C ⊂ Rd let TC = inf{t > 0 : Xt ∈ C} be its hitting time.
If 0 < a < b, let V (0, a, b) := {x ∈ Rd : a < |x | < b} be the open
annulus, and denote by V (0, a, b) its closure.

Lemma 5: There exists a positive integer M = M(d , δ1, a1) ≥ 2 such that
for every strictly increasing sequence of positive numbers (Rn)n≥1

satisfying limn→∞ Rn =∞ it holds that

Px

(
lim sup
n→∞

{TV (0,Rn,MRn) <∞}
)

= 1 for all x ∈ Rd .

That is, with Px probability 1, the process X visits infinitely many of the
sets Vn.
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Results for subordinate Brownian motion

Main theorem

Theorem 6: Assume that F : Rd × Rd → [0,∞) is symmetric, bounded
and that there exist constants C > 0 and β > 1 such that

F (x , y) ≤ C
Φ(|x − y |)β

1 + Φ(|x |)β + Φ(|y |)β
, for all x , y ∈ Rd .

Let AF
t =

∑
0<s≤t F (Xs−,Xs). If Px(AF

∞ <∞) = 1 for all x ∈ Rd , then

supx∈Rd Ex [AF
∞] <∞.

Proof: Let u(x) := ExM
F
∞. Since X is strongly Feller and

limt→0 supx ExAt = 0, u is continuous. It suffices to prove that
lim inf |x |→∞ u(x) > 0.
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Let D = V (0, 1, 2M + 1). The function u is regular F -harmonic in DR ,
R ≥ 1. Then uR is regular F̂R -harmonic in D for XR .

Moreover, F̂R
satisfies the upper bound from the Harnack inequality, hence

c−1uR(y) ≤ uR(x) ≤ cuR(y) for all x , y ∈ V (0, 2, 2M) .

Therefore, for all R ≥ 1,

c−1u(y) ≤ u(x) ≤ cu(y) for all x , y ∈ V (0, 2R, 2RM) , (1)

Assume limn→∞ u(xn) = 0 for a sequence |xn| → ∞. Then there exists an
increasing sequence (kn)n≥1 such that xn ∈ Vn := V (0, 2kn , 2knM) for
every n ≥ 1. Since X hits infinitely many sets Vn Px -a.s., for Px -a.e. ω
there exists a subsequence (nl = nl(ω)) and a sequence of times
(tl = tl(ω)), tl(ω)→∞, such that Xtl (ω) ∈ Vnl .
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Results for subordinate Brownian motion

Proof of the main theorem, cont.

Therefore it follows from (1) that

c−1u(Xtl (ω)) ≤ u(xnl ) ≤ cu(Xtl (ω)),

which implies that liml→∞ u(Xtl (ω)) = 0. But this is a contradiction with
lim
t→∞

u(Xt) = 1 Px -a.s. Therefore, u is bounded away from zero. By

Proposition 1, supx∈Rd Ex [AF
∞] <∞.

The idea of the proof comes from the paper I. Ben-Ari and R. G. Pinsky,
Absolute continuity/singularity and relative entropy properties for
probability measures induced by diffusions on infinite time intervals,
Stochastic Process. Appl. 115 (2005), 179–206, where it was used for a
similar result for diffusions.
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Results for subordinate Brownian motion

Two remarks

F (x , y) ≤ C
Φ(|x − y |)β

1 + Φ(|x |)β + Φ(|y |)β
, for all x , y ∈ Rd .

There exists F satisfying the above condition such that Ex [A∞] =∞. Of
course, in this case it cannot hold that Px(A∞ <∞) = 1.

On the other hand, this condition is almost necessary for the validity of
the main theorem.

Theorem 7: For all γ and β satisfying 0 < γ < 1 < β, there exists a
symmetric F such that

0 ≤ F (x , y) ≤ Φ(|x − y |)β

1 + Φ(|x |)γ + Φ(|y |)γ
, for all x , y ∈ Rd ,

Px(AF
∞ <∞) = 1 for all x ∈ Rd , but Ex [AF

∞] =∞.
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Applications to absolute continuity/singularity

1 General result

2 Results for subordinate Brownian motion

3 Applications to absolute continuity/singularity
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Applications to absolute continuity/singularity

Lévy system

X = (Ω,M,Mt , θt ,Xt ,Px) a symmetric (wrt Lebesgue measure) right
Markov process on Rd , Ω = D([0,∞),Rd), Xt = ω(t), M = σ(∪t≥0Mt).

(N,H) a Lévy system of X : For a Borel function F on Rd × Rd vanishing
on the diagonal

Ex

∑
s≤t

F (Xs−,Xs) = Ex

∫ t

0

∫
Rd

F (Xs−, y)N(Xs−, dy) dHs
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Applications to absolute continuity/singularity

Two families of functions

Two families of functions (Chen, Song, PTRF 2003, Song JTP 2006)
J(X ): bounded, symmetric F : Rd × Rd → R,

lim
t→0

sup
x∈Rd

Ex

∫ t

0

∫
Rd

|F (Xs−, y)|N(Xs−, dy) dHs = 0 .

I2(X ): bounded, symmetric F : Rd × Rd → R, for all t > 0 and x ∈ Rd ,

Ex

∑
s≤t

F 2(Xs−,Xs) = Ex

∫ t

0

∫
Rd

F 2(Xs−, y)N(Xs−, dy) dHs <∞ .

J(X ) ⊂ I2(X ); if infx ,y F (x , y) > −1 and F ∈ I2(X ), then
log(1 + F ) ∈ I2(X ).
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Applications to absolute continuity/singularity

MAF and quadratic variations

If F ∈ J(X ), then

AF
t :=

∑
s≤t

F (Xs−,Xs)−
∫ t

0

∫
Rd

F (Xs−, y)N(Xs−, dy) dHs

is well-defined (pure jump) martingale additive functional with quadratic
and predictable quadratic variation

[AF ]t =
∑
s≤t

(∆AF
s )2 =

∑
s≤t

F 2(Xs−,Xs)

〈AF 〉t =

∫ t

0

∫
Rd

F 2(Xs−, y)N(Xs−, dy) dHs

If F ∈ I2(X ), one defines AF
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Applications to absolute continuity/singularity

Purely discontinuous Girsanov transform

Assume infx ,y F (x , y) > −1 and let LFt := E(AF )t > 0 be the
Doleans-Dade exponential of AF :

E(AF )t = exp(AF
t )
∏
s≤t

(1 + F (Xs−,Xs)) exp(−F (Xs−,Xs))

= exp
(
AF
t +

∑
s≤t

(log(1 + F )− F ) (Xs−,Xs)
)

There exists a family (P̃x)x∈Rd of probability measures on M such that

d P̃x |Mt
= LFt dPx |Mt

.

In particular, P̃x |Mt
∼ Px |Mt

, for all t > 0.

Under P̃x X is again a right Markov process with a Lévy system
((1 + F )N,H). Notation: X̃ = (X̃t ,M,Mt , P̃x) – purely discontinuous
Girsanov transform of X .
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((1 + F )N,H). Notation: X̃ = (X̃t ,M,Mt , P̃x) – purely discontinuous
Girsanov transform of X .
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Applications to absolute continuity/singularity

Relative entropy of probability measures

Recall that the relative entropy of two probability measures µ and ν is
defined by

H(ν;µ) :=

∫
dν

dµ
log

dν

dµ
dµ =

∫
log

dν

dµ
dν ≤ ∞

if ν � µ and +∞ otherwise.
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Applications to absolute continuity/singularity

Theorem 8: X conservative symmetric right Markov process on Rd ,
F ∈ I2(X ) and infx ,y F (x , y) > −1.

(a) Px ⊥ P̃x iff [AF ]∞ =
∑

t>0 F
2(Xt−,Xt) =∞ Px a.s. or P̃x a.s.

(b1) P̃x � Px iff [AF ]∞ <∞ P̃x a.s.

(b2) Px � P̃x iff [AF ]∞ <∞ Px a.s.

(c1) H(P̃x ;Px) = Ẽx
∑

t>0(log(1 + F )− F
1+F )(Xt−,Xt) and is finite iff

Ẽx [AF ]∞ <∞.

(c2) H(Px ; P̃x) = Ex
∑

t>0(F − log(1 + F ))(Xt−,Xt) and is finite iff
Ex [AF ]∞ <∞.
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Applications to absolute continuity/singularity

F ∈ I2(X ) and infx ,y F (x , y) > −1.

Corollary 9: Assume X has strictly positive transition densities under Px

for all x ∈ Rd . If Px � P̃x (respectively Px ⊥ P̃x) for some x ∈ Rd , then
this is true for all x ∈ Rd . Analogously if densities exist under P̃x .

Corollary 10: If the invariant σ-field I := {Λ ∈M : θ−1
t Λ = Λ ∀t ≥ 0} is

trivial under both Px and P̃x then either Px ⊥ P̃x or Px ∼ P̃x .
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Applications to absolute continuity/singularity

Theorem 11: Suppose that X is the subordinate Brownian motion via the
subordinator whose Laplace exponent is a complete Bernstein function and
satisfies the weak scaling condition.

(a) Let F ∈ I2(X ) and infx ,y∈Rd F (x , y) > −1. Then either P̃x ⊥ Px or

P̃x ∼ Px . If P̃x ∼ Px , and if there exist C > 0 and β > 1/2 such that

0 ≤ F (x , y) ≤ C
Φ(|x − y |)β

1 + Φ(|x |)β + Φ(|y |)β
, for all x , y ∈ Rd ,

then H(Px ; P̃x) <∞.

(b) For each γ and β satisfying 0 < γ < 1/2 < β there exists F ∈ I2(X )
satisfying

F (x , y) ≤ Φ(|x − y |)β

1 + Φ(|x |)γ + Φ(|y |)γ
, for all x , y ∈ Rd ,

such that Px � P̃x and H(Px ; P̃x) =∞.
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