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1. What is self-normalization?

Consider a population with mean µ and variance σ2. We would like to
test

H0 : µ = µ0, vs H1 : µ > µ0

Let X1,X2, · · · ,Xn be a random sample from the population and let

X̄ =
1
n

n∑
i=1

Xi.
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I Test statistics

z-statistic: σ is known

Zn =

√
n(X̄ − µ0)

σ

Student’s t-statistic: σ is unknown

Tn =

√
n(X̄ − µ0)

σ̂
,

where σ̂2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.



More generally, let Hn = Hn(θ, λ) be a statistic under consideration,
where θ contains parameters of interest and λ is a vector of some
unknown nuisance parameters.

I Self-normalized or Studenized statistic:

Ĥn = Hn(θ, λ̂),

where λ̂ is an estimator of λ.
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I Examples:

Student t-statistic

Hotelling’s T2 statistic

Studentized U-statistics

The largest eigenvalue of sample correlation matrices

The Wald t-ratio statistic in the unit root test

...



I The p-value of the test:

Assume that the p-value of the test is

P(Ĥn ≥ hn),

where hn is the observed value of Ĥn.

The true p-value is often unknown!
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Estimating p-value:

Assume that Hn and Ĥn converge to Z in distribution, where Z is a
continuous random variable. Then

sup
x
|P(Hn ≥ x)− P(Z ≥ x)| → 0,

sup
x
|P(Ĥn ≥ x)− P(Z ≥ x)| → 0.

I Estimated p-value:
P(Z ≥ hn).



How accurate is your estimated p-value? Are you sure you can use
your estimated p-value?

By the weak convergence,

P(Ĥn ≥ hn)− P(Z ≥ hn)→ 0

Is it true that
P(Ĥn ≥ hn)

P(Z ≥ hn)
→ 1 ?
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I A naive question:

Let 0 < an ≤ 1, 0 < bn ≤ 1. Suppose that

an − bn → 0 as n→∞

Is it true that
an/bn → 1 ?



The key to answer the question is in the Cramér moderate deviation:

Let Wn = Hn or Ĥn. Find the largest possible cn so that

P(Wn ≥ x)/P(Z ≥ x)→ 1

uniformly in x ∈ [0, cn].



2. The Cramér Moderate Deviation

Let X1,X2, · · · ,Xn be independent and identically distributed (i.i.d.)
random variables with EX1 = 0 and Var(X1) = σ2, Recall

Zn =

∑n
i=1 Xi√
nσ

and

Tn =

∑n
i=1 Xi√
n σ̂

,

where σ̂2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.



I Cramér moderate deviation for z-statistic

Cramér (1938):

If Eet0|X1| <∞ for t0 > 0, then for x ≥ 0 and x = o(n1/2)

P
(

Zn ≥ x
)
/
(
1− Φ(x)

)
= exp

{
x2λ(

x√
n

)
}(

1 + O(
1 + x√

n
)
)
,

where λ(t) is the Cramér’s series, and Φ(x) is the standard
normal distribution function.



Harald Cramér



Linnik (1961):

If Eet0
√
|X1| <∞ for t0 > 0, then

P
(

Zn ≥ x
)
/
(
1− Φ(x)

)
→ 1

uniformly in 0 ≤ x ≤ o(n1/6). Moreover,

P
(

Zn ≥ x
)
/
(
1− Φ(x)

)
= 1 + O(1)(1 + x3)/

√
n

for 0 ≤ x ≤ n1/6.

Remark: The condition Eet0
√
|X| <∞ is necessary and the

interval (0, o(n1/6)) is the largest possible.
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I Cramér moderate deviation for t-statistic

Shao (1999): If E|X1|3 <∞, then

P(Tn ≥ x)

1− Φ(x)
→ 1

uniformly in x ∈ [0, o(n1/6)).

Jing, Shao and Wang (2003): If E|X1|3 <∞, then

P(Tn ≥ x)

1− Φ(x)
= 1 + O(1)

(1 + x)3E|X1 − µ|3√
nσ3

for 0 ≤ x ≤ n1/6σ/(E|X1 − µ|3)1/3, where |O(1)| ≤ C.

Remark. Condition E|X1|3 <∞ is necessary.
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I Relationship between t-statistic and the self-normalized sum

Without loss of generality, assume µ = 0. Put

Sn =

n∑
i=1

Xi, V2
n =

n∑
i=1

X2
i .

• Self-normalized sum: Sn/Vn

It is easy to see that

Tn =
Sn

Vn

( n− 1
n− (Sn/Vn)2

)1/2

and hence

{Tn ≥ x} =
{ Sn

Vn
≥ x
( n

n + x2 − 1

)1/2}
.



3. Self-normalized Cramér Moderate Deviation for
Independent Random Variables

Let ξi, 1 ≤ i ≤ n be independent random variables with E(ξi) = 0 and
E|ξi|3 <∞. Without loss of generality, assume

n∑
i=1

Eξ2
i = 1.

Let

Sn =

n∑
i=1

ξi, V2
n =

n∑
i=1

ξ2
i .

Jing-Shao-Wang (2003):

P(Sn/Vn ≥ x)

1− Φ(x)
= 1 + O(1)(1 + x3)Ln

for 0 ≤ x < 1/L1/3
n , where Ln =

∑n
i=1 E|ξi|3.



I A more general result

Let (ξi, ηi), 1 ≤ i ≤ n be independent random vectors with

Eξi = 0, E|ξi|3 <∞, E|ηi|3 <∞,E exp(
ξ2

i
η2

i +c2
0Eη2

i
) <∞ for some

constant c0 ≥ 0. Without loss of generality, assume

n∑
i=1

Eξ2
i = 1 =

n∑
i=1

Eη2
i .

Let

Sn =

n∑
i=1

ξi, V2
n =

n∑
i=1

η2
i ,

We are interested in the Cram’er type moderate deviation for Sn/Vn.



Gao - Shao - Shi (2017):

P(Sn ≥ xVn + c)

1− Φ(x + c)
= ΨxeO(1)(δx+rx)

(
1 + O(1)(1 + x)Ln

)
,

where

Ψx = exp
(4

3
γ3x3

n∑
i=1

Eξ3
i − 2γ2x3

n∑
i=1

Eξη2
i

)
and γ = 1

2(1 + c
x), uniformly for |c| ≤ x/5 and for all x ≥ 0

satisfying

xLn ≤ c1, rx ≤ c1(1 + x2), max
i

rx,i ≤ 1/8,

x max
i

(E(|ξi|3 + |ηi|3))1/3 ≤ min(1/4, 1/c0)
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Notations:

Ln =

n∑
i=1

E(|ξi|3 + |ηi|3),

δx,i = f ((1 + x)ξi) + f ((1 + x)ηi),

where f (ξ) = E|ξ|3I{|ξ| > 1}+ E|ξ|4I{|ξ| ≤ 1}

rx,i = Ee
ξ2

i
η2

i +c2
0Eη2

i I{|(1 + x)ξi| > 1},

δx =
n∑

i=1

δx,i, rx =
n∑

i=1

rx,i

The result has been applied to establish self-normalized Cramér
moderate deviation for dependent random variables.
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4. Cramér Moderate Deviation for Self-Normalized
Processes

Let ξ1, ..., ξn be independent random variables with Eξi = 0 and
Eξ2

i <∞ satisfying
n∑

i=1

Eξ2
i = 1.

Let

Sn =

n∑
i=1

ξi, V2
n =

n∑
i=1

ξ2
i

and D1,D2 be measurable functions of {ξi, 1 ≤ i ≤ n}.

Consider the self-normalized process:

Tn =
Sn + D1

Vn(1 + D2)1/2 .
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Shao and Wenxin Zhou (2016):

There is an absolute constant C > 1 such that

eO(1)∆n,x
(
1− C Rn,x

)
≤ P(Tn ≥ x)

1− Φ(x)

and

P(Tn ≥ x) ≤
(
1− Φ(x)

)
eO(1)∆n,x(1 + C Rn,x

)
+P
(
|D1|/Vn > 1/(2x)

)
+ P

(
|D2| > 1/(2x2)

)
for all x > 1 satisfying

∆n,x ≤ (1 + x)2/C, x2 max
1≤i≤n

Eξ2
i ≤ 1,



where

∆n,x = x2
n∑

i=1

Eξ2
i I(x|ξi| > 1) + x3

n∑
i=1

E|ξi|3I(x|ξi| ≤ 1),

Rn,x = I−1
n,0

{
xE(|D1|+ x|D2|)e

∑n
j=1(xξj−x2ξ2

j /2)

+x
n∑

i=1

E(|ξi(D1 − D(i)
1 )|+ x|ξi(D2 − D(i)

2 )|)e
∑n

j 6=i(xξj−x2ξ2
j /2)

}
,

In,0 =

n∏
i=1

Eexξi−x2ξ2
i /2,

and D(i)
1 and D(i)

2 are any random variables that don’t depend on ξi.



I Studentized U-statistics

Let X,X1,X2, . . . ,Xn be i.i.d random variables, and let h(x, y) be a
symmetric kernel, i.e., h(x, y) = h(y, x). θ = Eh(X1,X2).

U-statistic (Hoeffding (1948)):

Un =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi,Xj)

The standardized U-statistic:
√

n
2σ1

(Un − θ).

where σ2
1 := Var(g(X)) > 0 and g(x) = E(h(x,X)).
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Studentized U-statistic:

Tn =

√
n

2 s1
(Un − θ),

where

s2
1 =

(n− 1)

(n− 2)2

n∑
i=1

 1
n− 1

∑
j6=i

h(Xi,Xj)− Un

2

.

Hoeffding’s decomposition: (assume θ = 0)

Tn =
Sn + D1

Vn(1 + D2)1/2 ,

where

Sn =
n∑

i=1

ξi, ξi = g(Xi)/(σ1
√

n), V2
n =

n∑
i=1

ξ2
i ,

D1 and D2 are small.
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Lai, Shao and Wang (2011):

Assume that σ1 > 0 and E|h(X1,X2)|3 <∞. If

h2(x1, x2) ≤ c0(σ2
1 + g2(x1) + g2(x2))

for some c0 > 0, then

P(Tn ≥ x)

1− Φ(x)
→ 1

holds uniformly in x ∈ [0, o(n1/6)).

Shao and Wenxin Zhou (2016):

P(Tn ≥ x)

1− Φ(x)
= 1 + O(1)

(1 + x)3
√

n

for x ∈ [0, o(n1/6)).
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5. Self-normalized Martingales

Let {(ξi,Fi), 1 ≤ i ≤ n} be a martingale difference. Put

Sn =

n∑
i=1

ξi, V2
n =

n∑
i=1

ξ2
i , U2

n =

n∑
i=1

E(ξ2
i | Fi−1).

Fan-Crama-Liu-Shao (2017+):
Assume that there are constants δn and εn such that

|U2
n − 1| ≤ δ2

n

and
n∑

i=1

E(|ξi|3|Fi−1) ≤ εn.

Then
P(Sn/Vn ≥ x)

1− Φ(x)
→ 1

uniformly for 0 ≤ x ≤ o(1/(εn + δn)).

Application to dependent random variables can be obtained.
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6. Self-normalized Quantile Estimator

Let X1, · · · ,Xn be a random sample from a population with
distribution function F and density function f , and let
Xn,1 ≤ Xn,2 ≤ . . . ≤ Xn,n be the order statistics. The pth quantile ξp is
defined by

F(ξp) = p.

I Aim: Estimate ξp.

Estimator: ξ̂p = Xn,k, with k = [np] + 1.



Asymptotic normality:

Wn :=

√
n f (ξp)(Xn,k − ξp)√

p(1− p)

d.−→ N(0, 1).

Studentized quantile:

Tn :=
Xn,k − ξp√

np(1− p)(Xn,k+m − Xn,k)/m
.

Limiting distribution:

Tn
d.−→ N(0, 1)

Γm/m
:= ζm,

where Γm denotes a Gamma distribution with m degrees of
freedom, N(0, 1) and Γm are independent.
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Berry-Esseen Bound

I Assumptions:

(i) f (ξp) > 0 and f ′ exists in some neighborhood of ξp,

(ii) there exists 0 < τ < 1 such that

sup
q∈(p−τ,p+τ)∩(0,1)

|f ′(ξq)|
f 3(ξq)

<
1

5τ f (ξp)

(iii) m < n(1− p)/2.



Berry-Esseen Bound

Gao - Shao - Shi (2017):

There exists an absolute constant C such that

sup
x
|P(Tn ≤ x)− P(ζm ≤ x)| ≤ C

(√p(1− p)

τ
√

n
+

p
√

m + 1√
np(1− p)

)



I A refined limiting distribution

Let

ζ∗m =
N(pm/σn,

√
1− p2m/σ2

n)

Γm/m
− pm
σn
.

where σ2
n = np(1− p).

Gao-Shao-Shi (2017):

sup
x

∣∣P(Tn ≤ x)− P(ζ∗m ≤ x)
∣∣

≤ C
(
σn + m
τn

+
|1− 2p|
σn

+
p2m + 1
σ2

n
+

p(1− p)

τ 2n

)
.

When 1 ≤ m = O(
√

n), the overall error is of order n−1/2.



Cramér-Type Moderate Deviation

Gao, Shao, Shi (2017):
Assume that 1 ≤ m = o(n2/5). Then

P(Tn ≥ x)

P(ζ∗m ≥ x)
−→ 1

for 0 ≤ x ≤ o(
√

n).



7. Cramér moderate deviation for Hotelling’s T2 statistics

Let d ≥ 2 and X be a d × 1 random vector with mean vector µ and
non-degenerate covariance matrix Σ. Let X1,X2, . . . ,Xn be a random
sample of n(n > d) independent observations of X.

Hotelling’s T2 statistic:

T2
n = (Sn − nµ)′V̄−1

n (Sn − nµ),

where

Sn =

n∑
i=1

Xi, X̄ = Sn/n, V̄n =

n∑
i=1

(Xi − X̄)(Xi − X̄)′.

T2
n has a limiting χ2-distribution with d degrees of freedom.
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I Dembo and Shao (2006): Assume µ = 0. For any xn →∞ and
xn = o(n), we have

ln P
(

T2
n ≥ xn

)
∼ −1

2
xn

I Liu and Shao (2013):

Suppose that E‖X‖3+δ <∞ for some δ > 0. Then

P
(

T2
n ≥ x

)
P
(
χ2(d) ≥ x

) → 1

uniformly for x ∈ [0, o(n1/3)).

Similar result holds for two-sample Hotelling T2 statistic
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Conjecture: If E|X|3 <∞, then

lim
n→∞

P(T2
n ≥ x)/P(χ2

d ≥ x) = 1

holds uniformly in 0 ≤ x ≤ o(n1/3); Moreover

P(T2
n ≥ x)/P(χ2

d ≥ x) = 1 + O(1)
(1 + x)3/2E|X|3

n1/2|Σ|3/2 .



I Conclusion:

Many limit theorems hold under self-normalization, which
require no moment assumptions or much less moment
assumptions than those under the regular standardization.
Self-normalized limit theory can provide theoretical justifications
for the use of many commonly used statistics in practice.




