Spine decomposition and L log L criterion for superprocesses with non-local branching mechanisms

Yan-Xia Ren

Peking University

the 13th Workshop on Markov Processes and Related Topics, Wuhan July 17–21, 2017

Based on a joint paper with Renming Song and Ting Yang

(日) (日) (日) (日) (日) (日) (日)

Outline

Outline

2 Model: Superprocesses with nonlocal branching mechanism

3 Assumptions

- 4 Spine decomposition
- 5 Llog L criterion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Llog L criterion for Galton-Watson processes

 $\{Z_n, n \ge 1\}$: a Galton-Watson process. L: the number of offspring of an arbitrary individual. $\{p_n, n \ge 1\}$: the distribution of *L*.

$$m := \sum_{n=1}^{\infty} n p_n.$$

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

The L log L criterion for Galton-Watson processes

 $\begin{aligned} & \{Z_n, n \geq 1\}: \quad \text{a Galton-Watson process.} \\ & L: \quad \text{the number of offspring of an arbitrary individual.} \\ & \{p_n, n \geq 1\}: \quad \text{the distribution of } L. \end{aligned}$

Set

$$m:=\sum_{n=1}^{\infty}np_n.$$

m is the mean number of children given by one particle. Suppose m > 1 (supercritical).

It is known that $EZ_n = m^n$ and $\left\{\frac{Z_n}{m^n}; n \ge 1\right\}$ is a martingale and thus

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

The L log L criterion for Galton-Watson processes

 $\{Z_n, n \ge 1\}$: a Galton-Watson process. L: the number of offspring of an arbitrary individual. $\{p_n, n \ge 1\}$: the distribution of *L*.

Set

$$m:=\sum_{n=1}^{\infty}np_n.$$

m is the mean number of children given by one particle. Suppose m > 1 (supercritical).

It is known that $EZ_n = m^n$ and $\left\{\frac{Z_n}{m^n}; n \ge 1\right\}$ is a martingale and thus

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

イロト イポト イヨト イヨト

3

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

Question: When is *W* nondegenerate? or equivalently, when does m^n gives the right growth rate of Z_n ?

In 1966, Kesten and Stigum proved that W is nondegenerate if and only if

$$(L\log L) \qquad E(L\log^+ L)) = \sum_{n=1}^{\infty} p_n(n\log n) < \infty. \tag{1}$$

Moreover, if (1) is satisfied,

 $W_t \rightarrow W$ a.s. and in L^1

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

When is W nondegenerate? or equivalently, when does Question: m^n gives the right growth rate of Z_n ?

$$(L\log L) \qquad E(L\log^+ L)) = \sum_{n=1}^{\infty} p_n(n\log n) < \infty. \tag{1}$$

$$\lim_{n\to\infty}\frac{Z_n}{m^n}=W<\infty.$$

Question: When is W nondegenerate? or equivalently, when does m^n gives the right growth rate of Z_n ?

In 1966, Kesten and Stigum proved that W is nondegenerate if and only if

$$(L\log L) \qquad E(L\log^+ L)) = \sum_{n=1}^{\infty} p_n(n\log n) < \infty.$$
 (1)

Moreover, if (1) is satisfied,

 $W_t \rightarrow W$ a.s. and in L^1

In 1995, Lyons, Pemantle and Peres used a martingale change of measure method to give a probabilistic proof of the *L* log *L* criterion of Kesten and Stigum. The main technique is **a spine decomposition** under a martingale change of measure.

Later this method were extended to multitype branching processes (see Kurtz-Lyons-Pemantle- Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walks. See, for example, Hu-Shi(2009); Aidekon-Shi(2011, 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

In 1995, Lyons, Pemantle and Peres used a martingale change of measure method to give a probabilistic proof of the *L* log *L* criterion of Kesten and Stigum. The main technique is **a spine decomposition** under a martingale change of measure.

Later this method were extended to multitype branching processes (see Kurtz-Lyons-Pemantle- Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walks. See, for example, Hu-Shi(2009); Aidekon-Shi(2011, 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

In 1995, Lyons, Pemantle and Peres used a martingale change of measure method to give a probabilistic proof of the *L* log *L* criterion of Kesten and Stigum. The main technique is **a spine decomposition** under a martingale change of measure.

Later this method were extended to multitype branching processes (see Kurtz-Lyons-Pemantle- Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walks. See, for example, Hu-Shi(2009); Aidekon-Shi(2011, 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

In 1995, Lyons, Pemantle and Peres used a martingale change of measure method to give a probabilistic proof of the $L \log L$ criterion of Kesten and Stigum. The main technique is **a spine decomposition** under a martingale change of measure.

Later this method were extended to multitype branching processes (see Kurtz-Lyons-Pemantle- Peres(1997); Lyons(1997); Biggins-Kyprianou (2004)).

This technique was also used to study properties for branching random walks. See, for example, Hu-Shi(2009); Aidekon-Shi(2011, 2014); Faraud-Hu-Shi(2011, 2012); Gantert-Hu-Shi(2014).

Chen, R. and Yang (to appear in JTP) proved the SLLN for more general branching Hunt processes with **local branching mechanism** (including the *L* log *L* criterion).

Recently, two papers discussed spine decomposition and *L* log *L* criterion for superprocesses with **nonlocal** branching mechanisms. :

 Chen, R. and Song (2017+): for supercritical multitype superdiffusions
 Kyprianou and Palau (2017+); Kyprianou, Palau and R. (2017+): for super Markov chains.

I would like to talk about the spine decomposition and the *L* log *L* criterion for supercritical **superprocesses** with **general nonlocal** branching mechanisms.

Chen, R. and Yang (to appear in JTP) proved the SLLN for more general branching Hunt processes with **local branching mechanism** (including the *L* log *L* criterion).

Recently, two papers discussed spine decomposition and $L \log L$ criterion for superprocesses with **nonlocal** branching mechanisms. :

Chen, R. and Song (2017+): for supercritical multitype superdiffusions Kyprianou and Palau (2017+); Kyprianou, Palau and R. (2017+): for super Markov chains.

I would like to talk about the spine decomposition and the *L* log *L* criterion for supercritical **superprocesses** with **general nonlocal** branching mechanisms.

Chen, R. and Yang (to appear in JTP) proved the SLLN for more general branching Hunt processes with **local branching mechanism** (including the *L* log *L* criterion).

Recently, two papers discussed spine decomposition and $L \log L$ criterion for superprocesses with **nonlocal** branching mechanisms. :

Chen, R. and Song (2017+): for supercritical multitype superdiffusions Kyprianou and Palau (2017+); Kyprianou, Palau and R. (2017+): for super Markov chains.

I would like to talk about the spine decomposition and the $L \log L$ criterion for supercritical **superprocesses** with **general nonlocal** branching mechanisms.

Spine decomposition

Outline

2 Model: Superprocesses with nonlocal branching mechanism

3 Assumptions

- 4 Spine decomposition
- 5 Llog L criterion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

E: a locally compact separable metric space. *m*: a σ -finite measure on (*E*, $\mathcal{B}(E)$) with full support.

The superprocess $X = \{X_t : t \ge 0\}$ is determined by two objects:

(i) a spatial motion $\xi = \{\xi_t, \Pi_x\}$ on *E*, which is an *m*-symmetric Hunt process on *E*.

(ii) a non-local branching mechanism ψ given by

 $\psi(x,f) = \phi^{L}(x,f(x)) + \phi^{NL}(x,f) \quad \text{for } x \in E, \ f \in \mathcal{B}^{+}_{b}(E).$ (2)

Here ϕ^L is called the **local branching mechanism** given by

$$\phi^{L}(x,\lambda) = a(x)\lambda + b(x)\lambda^{2} + \int_{(0,+\infty)} \left(e^{-\lambda\theta} - 1 + \lambda\theta\right) \Pi^{L}(x,d\theta)$$

for $x \in E$, $\lambda \ge 0$, where $a(x) \in \mathcal{B}_b(E)$, $b(x) \in \mathcal{B}_b^+(E)$ and

Superprocesses

E: a locally compact separable metric space. *m*: a σ -finite measure on $(E, \mathcal{B}(E))$ with full support.

The superprocess $X = \{X_t : t \ge 0\}$ is determined by two objects:

(i) a spatial motion $\xi = \{\xi_t, \Pi_x\}$ on *E*, which is an *m*-symmetric Hunt process on *E*.

(ii) a non-local branching mechanism ψ given by

$$\psi(x,f) = \phi^{L}(x,f(x)) + \phi^{NL}(x,f) \quad \text{for } x \in E, \ f \in \mathcal{B}^{+}_{b}(E).$$
(2)

Here ϕ^{L} is called the **local branching mechanism** given by

$$\phi^{L}(x,\lambda) = a(x)\lambda + b(x)\lambda^{2} + \int_{(0,+\infty)} \left(e^{-\lambda\theta} - 1 + \lambda\theta\right) \Pi^{L}(x,d\theta)$$

for $x \in E$, $\lambda \ge 0$, where $a(x) \in \mathcal{B}_b(E)$, $b(x) \in \mathcal{B}_b^+(E)$ and

$$(\theta \wedge \theta^2) \Pi^L(x, d\theta)$$
 is a bounded kernel from *E* to $(0, +\infty)$.

 ϕ^{NL} in (2) is called the **non-local branching mechanism** given by

$$\phi^{\mathsf{NL}}(x,f) = -c(x)\pi(x,f) - \int_{(0,+\infty)} \left(1 - e^{-\theta\pi(x,f)}\right) \Pi^{\mathsf{NL}}(x,d\theta),$$

where $c(x) \in \mathcal{B}^+(E)$, $\pi(x, dy)$ is a probability kernel on E with $\pi(x, \{x\}) = 0$ and $\theta \Pi^{NL}(x, d\theta)$ is a bounded kernel from E to $(0, +\infty)$.

(日) (日) (日) (日) (日) (日) (日)

We refer to the process X as a (P_t, ϕ^L, ϕ^{NL}) -superprocess.

$$(\theta \wedge \theta^2) \Pi^L(x, d\theta)$$
 is a bounded kernel from *E* to $(0, +\infty)$.

 ϕ^{NL} in (2) is called the **non-local branching mechanism** given by

$$\phi^{\mathsf{NL}}(x,f) = -c(x)\pi(x,f) - \int_{(0,+\infty)} \left(1 - e^{-\theta\pi(x,f)}\right) \Pi^{\mathsf{NL}}(x,d\theta),$$

where $c(x) \in \mathcal{B}^+(E)$, $\pi(x, dy)$ is a probability kernel on E with $\pi(x, \{x\}) = 0$ and $\theta \Pi^{NL}(x, d\theta)$ is a bounded kernel from E to $(0, +\infty)$.

(日) (日) (日) (日) (日) (日) (日)

We refer to the process *X* as a (P_t , ϕ^L , ϕ^{NL})-superprocess.

Superprocesses

To be more specific, X is an $\mathcal{M}(E)$ -valued Markov process such that for every $f \in \mathcal{B}_b^+(E)$ and every $\mu \in \mathcal{M}(E)$,

$$P_{\mu}\left(\boldsymbol{e}^{-\langle \boldsymbol{f},\boldsymbol{X}_{t}\rangle}\right) = \boldsymbol{e}^{-\langle \boldsymbol{u}_{\boldsymbol{f}}(\cdot,\boldsymbol{t}),\mu\rangle} \quad \text{for } \boldsymbol{t} \ge \boldsymbol{0}, \tag{3}$$

where $u_f(x, t) := -\log P_{\delta_x} \left(e^{-\langle f, X_t \rangle} \right)$ is the unique non-negative locally bounded solution to the integral equation

$$u_{f}(x,t) = P_{t}f(x) - \Pi_{x} \left[\int_{0}^{t} \psi(\xi_{s}, u_{f}^{t-s}) ds \right]$$

$$= P_{t}f(x) - \Pi_{x} \left[\int_{0}^{t} \phi^{L}(\xi_{s}, u_{f}(t-s, \xi_{s})) ds \right]$$

$$-\Pi_{x} \left[\int_{0}^{t} \phi^{NL}(\xi_{s}, u_{f}^{t-s}) ds \right].$$
(4)

The (P_t, ϕ^L, ϕ^{NL}) -superprocess can be realized as right process in $\mathcal{M}(E)$.

 \mathcal{W}_0^+ : the space of right continuous paths from $[0, +\infty)$ to $\mathcal{M}(E)$ having the zero measure as a trap.

We assume X is the coordinate process in W_0^+ . $(\mathcal{F}_{\infty}, (\mathcal{F}_t)_{t\geq 0})$ is the natural filtration on W_0^+ generated by the coordinate process.

```
We assume (1)

A := \{x \in E : \phi^{NL}(x, 1) > 0\} \neq \emptyset.
(2) \xi admits a transition density p(t, x, y) with respect to the measure
```

The (P_t, ϕ^L, ϕ^{NL}) -superprocess can be realized as right process in $\mathcal{M}(E)$.

 \mathcal{W}_0^+ : the space of right continuous paths from $[0, +\infty)$ to $\mathcal{M}(E)$ having the zero measure as a trap.

We assume X is the coordinate process in W_0^+ . $(\mathcal{F}_{\infty}, (\mathcal{F}_t)_{t\geq 0})$ is the natural filtration on W_0^+ generated by the coordinate process.

We assume (1)

$$\mathsf{A} := \{ x \in \mathsf{E} : \phi^{\mathsf{NL}}(x, 1) > 0 \} \neq \emptyset.$$

(2) ξ admits a transition density p(t, x, y) with respect to the measure m,

First moment

We define for $x \in E$,

$$\gamma(\mathbf{x}) := \mathbf{c}(\mathbf{x}) + \int_{(0,+\infty)} \theta \Pi^{NL}(\mathbf{x}, d\theta) \quad \text{and} \quad \gamma(\mathbf{x}, d\mathbf{y}) := \gamma(\mathbf{x}) \pi(\mathbf{x}, d\mathbf{y}).$$
(5)

Proposition 1 For every $\mu \in \mathcal{M}(E)$ and $f \in \mathcal{B}_b(E)$,

 $\mathbf{P}_{\mu}\left(\langle f, X_t \rangle\right) = \langle \mathfrak{P}_t f, \mu \rangle,$

where $\mathfrak{P}_t f(x)$ is the unique locally bounded solution to the following integral equation:

$$\mathfrak{P}_{t}f(x) = P_{t}f(x) - \Pi_{x} \left[\int_{0}^{t} a(\xi_{s})\mathfrak{P}_{t-s}f(\xi_{s})ds \right] + \Pi_{x} \left[\int_{0}^{t} \gamma(\xi_{s},\mathfrak{P}_{t-s}f)ds \right].$$
(6)

First moment

We define for $x \in E$,

$$\gamma(\mathbf{x}) := \mathbf{c}(\mathbf{x}) + \int_{(0,+\infty)} \theta \Pi^{NL}(\mathbf{x}, d\theta) \quad \text{and} \quad \gamma(\mathbf{x}, d\mathbf{y}) := \gamma(\mathbf{x}) \pi(\mathbf{x}, d\mathbf{y}).$$
(5)

Proposition 1 For every $\mu \in \mathcal{M}(E)$ and $f \in \mathcal{B}_b(E)$,

 $\mathbf{P}_{\mu}\left(\langle f, X_t \rangle\right) = \langle \mathfrak{P}_t f, \mu \rangle,$

where $\mathfrak{P}_t f(x)$ is the unique locally bounded solution to the following integral equation:

$$\mathfrak{P}_t f(x) = P_t f(x) - \Pi_x \left[\int_0^t a(\xi_s) \mathfrak{P}_{t-s} f(\xi_s) ds \right] + \Pi_x \left[\int_0^t \gamma(\xi_s, \mathfrak{P}_{t-s} f) ds \right].$$
(6)

しゃくほ さんちょく ちょうくし

Outline

2 Model: Superprocesses with nonlocal branching mechanism

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3 Assumptions

- Spine decomposition
- 5 Llog L criterion

Assumption 0. For any $x \in E$ such that b(x) > 0, there is a measure \mathbb{N}_x such that for all t > 0 and $f \in \mathcal{B}_b^+(E)$,

$$\mathbb{N}_{x}\left(1-e^{-\langle f, X_{t}\rangle}\right)=-\log P_{\delta_{x}}\left(e^{-\langle f, X_{t}\rangle}\right).$$
(7)

This measure \mathbb{N}_x is called the *Kuznetsov measure* or the *excursion law* for the (P_t, ϕ^L, ϕ^{NL}) -superprocess.

Assumption 1. $\int_E \pi(x, \cdot) m(dx) \in \mathbf{K}(\xi)$.

Let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form of ξ . Define a bilinear form $(\mathcal{Q}, \mathcal{F})$ by $\mathcal{Q}(u, v) := \mathcal{E}(u, v) + \int_{\mathcal{E}} a(x)u(x)v(x)m(dx) - \int_{\mathcal{E}} \int_{\mathcal{E}} u(y)v(x)\gamma(x, dy)m(dx)$

for $\forall u, v \in \mathcal{F}$.

Assumption 0. For any $x \in E$ such that b(x) > 0, there is a measure \mathbb{N}_x such that for all t > 0 and $f \in \mathcal{B}_b^+(E)$,

$$\mathbb{N}_{x}\left(1-e^{-\langle f, X_{t}\rangle}\right)=-\log P_{\delta_{x}}\left(e^{-\langle f, X_{t}\rangle}\right).$$
(7)

This measure \mathbb{N}_x is called the *Kuznetsov measure* or the *excursion law* for the (P_t, ϕ^L, ϕ^{NL}) -superprocess.

Assumption 1. $\int_E \pi(x, \cdot) m(dx) \in \mathbf{K}(\xi)$.

Let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form of ξ . Define a bilinear form $(\mathcal{Q}, \mathcal{F})$ by $\mathcal{Q}(u, v) := \mathcal{E}(u, v) + \int_{\mathcal{E}} a(x)u(x)v(x)m(dx) - \int_{\mathcal{E}} \int_{\mathcal{E}} u(y)v(x)\gamma(x, dy)m(dx)$ **Assumption 0.** For any $x \in E$ such that b(x) > 0, there is a measure \mathbb{N}_x such that for all t > 0 and $f \in \mathcal{B}_b^+(E)$,

$$\mathbb{N}_{x}\left(1-e^{-\langle f, X_{t}\rangle}\right)=-\log P_{\delta_{x}}\left(e^{-\langle f, X_{t}\rangle}\right).$$
(7)

This measure \mathbb{N}_x is called the *Kuznetsov measure* or the *excursion law* for the (P_t, ϕ^L, ϕ^{NL}) -superprocess.

Assumption 1. $\int_E \pi(x, \cdot) m(dx) \in \mathbf{K}(\xi)$.

Let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form of ξ . Define a bilinear form $(\mathcal{Q}, \mathcal{F})$ by $\mathcal{Q}(u, v) := \mathcal{E}(u, v) + \int_{E} a(x)u(x)v(x)m(dx) - \int_{E} \int_{E} u(y)v(x)\gamma(x, dy)m(dx)$ for $\forall u, v \in \mathcal{F}$. Under Assumption 1, for the closed form $(\mathcal{Q}, \mathcal{F})$ on $L^2(E, m)$, there are unique strongly continuous semigroups $\{T_t : t \ge 0\}$ and $\{\hat{T}_t : t \ge 0\}$ on $L^2(E, m)$ such that $\|T_t\|_{L^2(E,m)} \le e^{\beta_0 t}$, $\|\hat{T}_t\|_{L^2(E,m)} \le e^{\beta_0 t}$ ($\beta_0 > 0$ is a constant), and

$$(T_t f, g) = (f, \widehat{T}_t g) \quad \forall f, g \in L^2(E, m).$$
 (8)

Assumption 2. There exist $\lambda_1 \in (-\infty, +\infty)$ and positive functions $h, \hat{h} \in \mathcal{F}$ with *h* being bounded continuous, $\|h\|_{L^2(E,m)} = 1$ and $(h, \hat{h}) = 1$ such that

$$\mathcal{Q}(h, v) = \lambda_1(h, v), \quad \mathcal{Q}(v, \widehat{h}) = \lambda_1(v, \widehat{h}) \quad \forall v \in \mathcal{F}.$$
 (9)

This equation implies that

$$T_t h = e^{-\lambda_1 t} h$$
 and $\widehat{T}_t \widehat{h} = e^{-\lambda_1 t} \widehat{h}$ in $L^2(E, m)$.

・ロト・西ト・山田・山田・山下

Under Assumption 1, for the closed form $(\mathcal{Q}, \mathcal{F})$ on $L^2(E, m)$, there are unique strongly continuous semigroups $\{T_t : t \ge 0\}$ and $\{\widehat{T}_t : t \ge 0\}$ on $L^2(E, m)$ such that $\|T_t\|_{L^2(E,m)} \le e^{\beta_0 t}$, $\|\widehat{T}_t\|_{L^2(E,m)} \le e^{\beta_0 t}$ ($\beta_0 > 0$ is a constant), and

$$(T_t f, g) = (f, \widehat{T}_t g) \quad \forall f, g \in L^2(E, m).$$
(8)

Assumption 2. There exist $\lambda_1 \in (-\infty, +\infty)$ and positive functions $h, \hat{h} \in \mathcal{F}$ with h being bounded continuous, $\|h\|_{L^2(E,m)} = 1$ and $(h, \hat{h}) = 1$ such that

$$\mathcal{Q}(h, v) = \lambda_1(h, v), \quad \mathcal{Q}(v, \widehat{h}) = \lambda_1(v, \widehat{h}) \quad \forall v \in \mathcal{F}.$$
 (9)

This equation implies that

$$T_t h = e^{-\lambda_1 t} h$$
 and $\widehat{T}_t \widehat{h} = e^{-\lambda_1 t} \widehat{h}$ in $L^2(E, m)$.

Martingle

Theorem 1 For every $\mu \in \mathcal{M}(E)$, $W_t^h(X) := e^{\lambda_1 t} \langle h, X_t \rangle$ is a non-negative P_μ -martingale with respect to $\{\mathcal{F}_t : t \ge 0\}$.

Question 1 Let $W^h_{\infty}(X)$ be the limit of $W^h_t(X)$. When $W^h_{\infty}(X)$ is non-degenerate?

We can define a new probability measure Q_{μ} for every $\mu \in \mathcal{M}(E)^0$ by the following formula:

$$\left. d \mathrm{Q}_\mu
ight|_{\mathcal{F}_t} := rac{1}{\langle h, \mu
angle} \left. W^h_t(X) d \mathrm{P}_\mu
ight|_{\mathcal{F}_t} \hspace{0.5cm} ext{for all } t \geq 0.$$

To answer Question 1, our first step is to establish a **spine** decomposition of X under Q_{μ} .

Martingle

Theorem 1 For every $\mu \in \mathcal{M}(E)$, $W_t^h(X) := e^{\lambda_1 t} \langle h, X_t \rangle$ is a non-negative P_{μ} -martingale with respect to $\{\mathcal{F}_t : t \ge 0\}$.

Question 1 Let $W^h_{\infty}(X)$ be the limit of $W^h_t(X)$. When $W^h_{\infty}(X)$ is non-degenerate?

We can define a new probability measure Q_{μ} for every $\mu \in \mathcal{M}(E)^0$ by the following formula:

$$\left. d \mathrm{Q}_\mu
ight|_{\mathcal{F}_t} := rac{1}{\langle h, \mu
angle} \left. W^h_t(X) d \mathrm{P}_\mu
ight|_{\mathcal{F}_t} \hspace{0.5cm} ext{ for all } t \geq 0.$$

To answer Question 1, our first step is to establish a **spine** decomposition of X under Q_{μ} .

Martingle

Theorem 1 For every $\mu \in \mathcal{M}(E)$, $W_t^h(X) := e^{\lambda_1 t} \langle h, X_t \rangle$ is a non-negative P_μ -martingale with respect to $\{\mathcal{F}_t : t \ge 0\}$.

Question 1 Let $W^h_{\infty}(X)$ be the limit of $W^h_t(X)$. When $W^h_{\infty}(X)$ is non-degenerate?

We can define a new probability measure Q_{μ} for every $\mu \in \mathcal{M}(E)^0$ by the following formula:

$$\left. d \mathrm{Q}_\mu
ight|_{\mathcal{F}_t} := rac{1}{\langle h, \mu
angle} \left. W^h_t(X) d \mathrm{P}_\mu
ight|_{\mathcal{F}_t} \quad ext{ for all } t \geq 0.$$

To answer Question 1, our first step is to establish a **spine** decomposition of *X* under Q_{μ} .

Outline

2 Model: Superprocesses with nonlocal branching mechanism

3 Assumptions

5 L log L criterion

The spine: Concatenation process

Put

$$q(x) := \gamma(x, h) / h(x) \quad \text{for } x \in E.$$
 (10)

Define

$$H_t = \exp\left(\lambda_1 t - \int_0^t a(\xi_s) ds + \int_0^t q(\xi_s) ds\right) rac{h(\xi_t)}{h(\xi_0)}.$$

 $\{H_t, t \ge 0\}$ is a positive local martingale and thus a supermartingale.

Step 1 Define

$$d\Pi_x^h = H_t \, d\Pi_x$$
 on $\mathcal{H}_t \cap \{t < \zeta\}$ for $x \in E$,

The process ξ under { $\Pi_x^h, x \in E$ } will be denoted as ξ^h , which is a conservative and recurrent \tilde{m} -symmetric right Markov process on E with $\tilde{m}(dy) := h(y)^2 m(dy)$.

The spine: Concatenation process

Put

$$q(x) := \gamma(x, h) / h(x) \quad \text{for } x \in E.$$
 (10)

Define

$$H_t = \exp\left(\lambda_1 t - \int_0^t a(\xi_s) ds + \int_0^t q(\xi_s) ds\right) rac{h(\xi_t)}{h(\xi_0)}.$$

 $\{H_t, t \ge 0\}$ is a positive local martingale and thus a supermartingale.

Step 1 Define

 $d\Pi_x^h = H_t d\Pi_x$ on $\mathcal{H}_t \cap \{t < \zeta\}$ for $x \in E$,

The process ξ under { $\Pi_x^h, x \in E$ } will be denoted as ξ^h , which is a conservative and recurrent \widetilde{m} -symmetric right Markov process on E with $\widetilde{m}(dy) := h(y)^2 m(dy)$.

(日) (日) (日) (日) (日) (日) (日)

Concatenation process

Step 2 For every $x \in E$, there is a unique (up to equivalence in law) right process $((\widehat{\xi}_t)_{t>0}; \widehat{\Pi}_x^h)$ on *E* with lifetime $\widehat{\zeta}$ such that

$$\widehat{\Pi}^h_x\left(\widehat{\xi}_t\in \boldsymbol{B}\right)=\Pi^h_x\left[\boldsymbol{e}_q(t);\xi^h_t\in \boldsymbol{B}\right]\quad\forall\boldsymbol{B}\in\mathcal{B}(\boldsymbol{E}).$$

 $\hat{\xi}$ is called the $e_a(t)$ -subprocess of ξ^h . Here

$$oldsymbol{e}_q(t):=\exp\left(-\int_0^t q(\xi_s)ds
ight) \quad orall t\geq 0,$$

Now we define

$$\pi^h(x, dy) := rac{h(y)\pi(x, dy)}{\pi(x, h)} \quad ext{ for } x \in E.$$
 (11)

Obviously, $\pi^h(x, dy)$ is a probability kernel on *E*.

Step 3 Let $\tilde{\xi} := (\tilde{\Omega}, \tilde{\mathcal{G}}, \tilde{\mathcal{G}}_t, \tilde{\theta}_t, \tilde{\xi}_t, \tilde{\Pi}_x, \tilde{\zeta})$ be the right process constructed from $\hat{\xi}$ and $\kappa(\omega, dy) := \pi^h(\hat{\xi}_{\hat{\zeta}(\omega)-}(\omega), dy)$:

The process $\tilde{\xi}$ evolves as the process ξ^h until time $\hat{\zeta}$, it is then revived by means of the kernel $\kappa(\omega, dy)$ and evolves again as ξ^h and so on...

We will call ξ a *concatenation* process (cf. Ikeda, Nagasawa and Watanabe (1966)).

 $\widetilde{\xi}$ serves as the spine in the decomposition described below.

・ロト・日本・山下・山下・山下・山下

Now we define

$$\pi^h(x,dy) := rac{h(y)\pi(x,dy)}{\pi(x,h)} \quad ext{ for } x \in E.$$

Obviously, $\pi^h(x, dy)$ is a probability kernel on *E*.

Step 3 Let $\tilde{\xi} := (\tilde{\Omega}, \tilde{\mathcal{G}}, \tilde{\mathcal{G}}_t, \tilde{\theta}_t, \tilde{\xi}_t, \tilde{\Pi}_x, \tilde{\zeta})$ be the right process constructed from $\hat{\xi}$ and $\kappa(\omega, dy) := \pi^h(\hat{\xi}_{\hat{\zeta}(\omega)-}(\omega), dy)$:

The process $\tilde{\xi}$ evolves as the process ξ^h until time $\hat{\zeta}$, it is then revived by means of the kernel $\kappa(\omega, dy)$ and evolves again as ξ^h and so on...

We will call $\tilde{\xi}$ a *concatenation* process (cf. Ikeda, Nagasawa and Watanabe (1966)).

 $\tilde{\xi}$ serves as the spine in the decomposition described below.

・ロト・日本・山下・山下・山下・山下

Now we define

$$\pi^h(x, dy) := rac{h(y)\pi(x, dy)}{\pi(x, h)} \quad ext{ for } x \in E.$$
 (11)

Obviously, $\pi^h(x, dy)$ is a probability kernel on *E*.

Step 3 Let $\tilde{\xi} := (\tilde{\Omega}, \tilde{\mathcal{G}}, \tilde{\mathcal{G}}_t, \tilde{\theta}_t, \tilde{\xi}_t, \tilde{\Pi}_x, \tilde{\zeta})$ be the right process constructed from $\hat{\xi}$ and $\kappa(\omega, dy) := \pi^h(\hat{\xi}_{\hat{\zeta}(\omega)-}(\omega), dy)$:

The process $\tilde{\xi}$ evolves as the process ξ^h until time $\hat{\zeta}$, it is then revived by means of the kernel $\kappa(\omega, dy)$ and evolves again as ξ^h and so on...

We will call $\tilde{\xi}$ a *concatenation* process (cf. Ikeda, Nagasawa and Watanabe (1966)).

 $\overline{\xi}$ serves as the spine in the decomposition described below.

・ロト・(理ト・(ヨト・(国)) のへの

(日) (四) (日) (日) (日)

500

Spine decomposition

Let \widetilde{P}_t be the transition semigroup of $\widetilde{\xi}$.

Proposition 2 For every $f \in \mathcal{B}_b^+(E)$, $t \ge 0$ and $x \in E$,

$$\widetilde{P}_t f(x) = \frac{e^{\lambda_1 t}}{h(x)} \mathfrak{P}_t(fh)(x).$$
(12)

Moreover, for each t > 0 and $x \in E$, $\tilde{\xi}$ has a transition density $\tilde{p}(t, x, y)$ with respect to the probability measure

$$\rho(dy) := h(y)\widehat{h}(y)m(dy). \tag{13}$$

Let \widetilde{P}_t be the transition semigroup of $\widetilde{\xi}$.

Proposition 2 For every $f \in \mathcal{B}_b^+(E)$, $t \ge 0$ and $x \in E$,

$$\widetilde{P}_t f(x) = \frac{e^{\lambda_1 t}}{h(x)} \mathfrak{P}_t(fh)(x).$$
(12)

Moreover, for each t > 0 and $x \in E$, $\tilde{\xi}$ has a transition density $\tilde{p}(t, x, y)$ with respect to the probability measure

$$\rho(dy) := h(y)\widehat{h}(y)m(dy). \tag{13}$$

・ロト・日本・日本・日本・日本

For every $\mu \in \mathcal{M}(E)$ and $\mathbf{x} \in E$, there is a probability space with probability measure $\mathbb{P}_{\mu,x}$ that carries the following processes.

(i) $((\tilde{\xi}_t)_{t\geq 0}; \mathbb{P}_{\mu,x})$ is equal in law to $\tilde{\xi}$, a copy of the concatenation process starting from x;

(ii) $(n; \mathbb{P}_{\mu,x})$ is a random measure such that, given $\tilde{\xi}$ starting from x, n is a Poisson random measure which issues $\mathcal{M}(E)$ -valued processes $X^{n,t} := (X_s^{n,t})_{s\geq 0}$ at space-time points $(\tilde{\xi}_t, t)$ with rate

 $d\mathbb{N}_{\widetilde{\xi}_t} imes 2b(\widetilde{\xi}_t)dt.$

Let D^n denote the almost surely countable set of immigration times. Given $\tilde{\xi}$, the processes $\{X^{n,t} : t \in D^n\}$ are mutually independent.

・ロマ・西マ・山田・山田・ 日・ うらう

Spine decomposition

(iii) (m; $\mathbb{P}_{\mu,x}$) is a random measure such that, given $\tilde{\xi}$ starting from x, m is a Poisson random measure which issues $\mathcal{M}(E)$ -valued processes $X^{m,t} := (X_s^{m,t})_{s\geq 0}$ at space-time points ($\tilde{\xi}_t$, t) with initial mass θ at rate

$$heta \Pi^{L}(\widetilde{\xi}_{t}, d heta) imes d \mathbb{P}_{ heta \delta_{\widetilde{\xi}_{t}}} imes dt.$$

Let D^m denote the almost surely countable set of immigration times. Given $\tilde{\xi}$, the processes $\{X^{m,t} : t \in D^m\}$ are mutually independent, also independent of *n* and $\{X^{n,t} : t \in D^n\}$.

(iv) {($(X_s^{r,i})_{s\geq 0}$; $\mathbb{P}_{\mu,x}$), $i \geq 1$ } is a family of $\mathcal{M}(E)$ -valued processes such that, given $\tilde{\xi}$ starting from x (including its revival times { $\tau_i : i \geq 1$ }), $X^{r,i} := (X_s^{r,i})_{s\geq 0}$ is equal in law to ($(X_s)_{s\geq 0}, \mathbb{P}_{\pi_i}$) where \mathbb{P}_{π_i} denotes the law of the (P_t, ϕ^L, ϕ^{NL})-superprocess starting from $\Theta_i \pi(\tilde{\xi}_{\tau_i-}, \cdot)$ and Θ_i is a [0, + ∞)-valued random variable with distribution $\eta(\tilde{\xi}_{\tau_i-}, d\theta)$ given by

$$\eta(\mathbf{x}, d\theta) := \begin{pmatrix} \frac{c(\mathbf{x})}{\gamma(\mathbf{x})} \mathbf{1}_{\mathcal{A}}(\mathbf{x}) + \mathbf{1}_{E \setminus \mathcal{A}}(\mathbf{x}) \end{pmatrix} \delta_0(d\theta) \\ + \frac{1}{\gamma(\mathbf{x})} \mathbf{1}_{\mathcal{A}}(\mathbf{x}) \mathbf{1}_{(0, +\infty)}(\theta) \theta \Pi^{NL}(\mathbf{x}, d\theta).$$
(14)

Moreover, given $\tilde{\xi}$ starting from x (including $\{\tau_i : i \ge 1\}$), $\{\Theta_i : i \ge 1\}$ are mutually independent, $\{X^{r,i} : i \ge 1\}$ are mutually independent, also independent of $\{X^{n,t} : t \in D^n\}$ and $\{X^{m,t} : t \in D^m\}$.

Recall that

(iv) {(($X_{s}^{r,i}$)_{s\geq0}; \mathbb{P}_{\mu,x}), $i \geq 1$ } is a family of $\mathcal{M}(E)$ -valued processes such that, given $\tilde{\xi}$ starting from x (including its revival times { $\tau_i : i \geq 1$ }), $X^{r,i} := (X_s^{r,i})_{s\geq0}$ is equal in law to ((X_s)_{s\geq0}, P_{\pi_i}) where P_{π_i} denotes the law of the (P_t, ϕ^L, ϕ^{NL})-superprocess starting from $\Theta_i \pi(\tilde{\xi}_{\tau_i-}, \cdot)$ and Θ_i is a [0, + ∞)-valued random variable with distribution $\eta(\tilde{\xi}_{\tau_i-}, d\theta)$ given by

$$\eta(\mathbf{x}, d\theta) := \begin{pmatrix} \frac{c(\mathbf{x})}{\gamma(\mathbf{x})} \mathbf{1}_{\mathcal{A}}(\mathbf{x}) + \mathbf{1}_{E \setminus \mathcal{A}}(\mathbf{x}) \end{pmatrix} \delta_0(d\theta) \\ + \frac{1}{\gamma(\mathbf{x})} \mathbf{1}_{\mathcal{A}}(\mathbf{x}) \mathbf{1}_{(0, +\infty)}(\theta) \theta \Pi^{NL}(\mathbf{x}, d\theta).$$
(14)

Moreover, given $\tilde{\xi}$ starting from *x* (including $\{\tau_i : i \ge 1\}$), $\{\Theta_i : i \ge 1\}$ are mutually independent, $\{X^{r,i} : i \ge 1\}$ are mutually independent, also independent of $\{X^{n,t} : t \in D^n\}$ and $\{X^{m,t} : t \in D^m\}$.

Recall that

$$\boldsymbol{\mathsf{A}}:=\{\boldsymbol{x}\in\boldsymbol{\mathsf{E}}:\ \psi^{NL}(\boldsymbol{x},1)>\boldsymbol{0}\}.$$

(v) $((X_t)_{t\geq 0}; \mathbb{P}_{\mu,x})$ is equal in law to $((X_t)_{t\geq 0}; \mathbb{P}_{\mu})$, a copy of the (P_t, ϕ^L, ϕ^{NL}) -superprocess starting from μ . Moreover $((X_t)_{t\geq 0}; \mathbb{P}_{\mu,x})$ is independent of $\tilde{\xi}$, n, m and all the immigration processes.

We denote by
$$I_t^c := \sum_{s \in D_t^n} X_{t-s}^{n,s}, \quad I_t^d := \sum_{s \in D_t^m} X_{t-s}^{m,s} \text{ and } I_t^r := \sum_{\tau_l \le t} X_{t-\tau_l}^{r,i}$$

the continuous immigration, the discontinuous immigration and the revival-caused immigration, respectively. We define Γ_t by

$$\Gamma_t := X_t + I_t^c + I_t^d + I_t^r, \qquad \forall t \ge 0.$$

The process $\tilde{\xi}$ is called the *spine* process, and the process $I_t := I_t^c + I_t^d + I_t^r$ is called the *immigration* process.

(v) $((X_t)_{t\geq 0}; \mathbb{P}_{\mu,x})$ is equal in law to $((X_t)_{t\geq 0}; \mathbb{P}_{\mu})$, a copy of the (P_t, ϕ^L, ϕ^{NL}) -superprocess starting from μ . Moreover $((X_t)_{t\geq 0}; \mathbb{P}_{\mu,x})$ is independent of $\tilde{\xi}$, n, m and all the immigration processes.

We denote by

$$I_t^c := \sum_{s \in D_t^n} X_{t-s}^{n,s}, \quad I_t^d := \sum_{s \in D_t^m} X_{t-s}^{m,s} \quad \text{and} \quad I_t^r := \sum_{\tau_t \le t} X_{t-\tau_t}^{r,i}$$

the continuous immigration, the discontinuous immigration and the revival-caused immigration, respectively. We define Γ_t by

$$\Gamma_t := X_t + l_t^c + l_t^d + l_t^r, \qquad \forall t \ge 0.$$

The process $\tilde{\xi}$ is called the *spine* process, and the process $I_t := I_t^c + I_t^d + I_t^r$ is called the *immigration* process.

(日) (日) (日) (日) (日) (日) (日)

Spine decomposition

For any $\mu \in \mathcal{M}(E)$ and any measure ν on $(E, \mathcal{B}(E))$ with $0 < \langle h, \nu \rangle < +\infty$, we randomize the law $\mathbb{P}_{\mu,x}$ by replacing the deterministic choice of *x* with an *E*-valued random variable having distribution $h(x)\nu(dx)/\langle h, \nu \rangle$. We denote the resulting law by $\mathbb{P}_{\mu,\nu}$. That is to say,

$$\mathbb{P}_{\mu,\nu}(\cdot) := \frac{1}{\langle h,\nu\rangle} \int_E \mathbb{P}_{\mu,x}(\cdot)h(x)\nu(dx).$$

Clearly $\mathbb{P}_{\mu,\delta_x} = \mathbb{P}_{\mu,x}$.

For simplicity we also write \mathbb{P}_{μ} for $\mathbb{P}_{\mu,\mu}$.

Theorem 2 Suppose that Assumptions 0-2 hold. For every $\mu \in \mathcal{M}(E)^0$, the process $((\Gamma_t)_{t \ge 0}; \mathbb{P}_{\mu})$ is Markovian and has the same law as $((X_t)_{t \ge 0}; Q_{\mu})$.

Remark (1) In the case of purely local branching mechanism, the revival-caused immigration does not occur. To be more specific, in that case the spine runs as a copy of the *h*-transformed process ξ^h while only continuous and discontinuous immigration occur along the spine. The concatenating procedure and the revival-caused immigration are consequences of non-local branching.

(2) Similar phenomenon has been observed in Kyprianou and Palau (2017+) for multitype continuous-state branching processes and in Chen, R. and Song (2017+) for multitype superdiffusions.

Theorem 2 Suppose that Assumptions 0-2 hold. For every $\mu \in \mathcal{M}(E)^0$, the process $((\Gamma_t)_{t \ge 0}; \mathbb{P}_{\mu})$ is Markovian and has the same law as $((X_t)_{t \ge 0}; Q_{\mu})$.

Remark (1) In the case of purely local branching mechanism, the revival-caused immigration does not occur. To be more specific, in that case the spine runs as a copy of the *h*-transformed process ξ^h while only continuous and discontinuous immigration occur along the spine. The concatenating procedure and the revival-caused immigration are consequences of non-local branching.

(2) Similar phenomenon has been observed in Kyprianou and Palau (2017+) for multitype continuous-state branching processes and in Chen, R. and Song (2017+) for multitype superdiffusions.

Outline

Motivation

2 Model: Superprocesses with nonlocal branching mechanism

3 Assumptions

4 Spine decomposition

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Llog L criterion

Assumption 3.

(i) $a(x), \gamma(x) \in L^2(E, m)$. (ii) $x \mapsto \pi(x, h)/h$ is bounded from above on *A*.

Assumption 4.

$$\lim_{t \to +\infty} \sup_{x \in E} \operatorname{essup}_{y \in E} |\widetilde{p}(t, x, y) - 1| = 0.$$

Llog L criterion

Assumption 3.

(i) *a*(*x*), *γ*(*x*) ∈ *L*²(*E*, *m*).
 (ii) *x* ↦ *π*(*x*, *h*)/*h* is bounded from above on *A*.

Assumption 4.

$$\lim_{t\to+\infty}\sup_{x\in E}\mathrm{essup}_{y\in E}|\widetilde{p}(t,x,y)-1|=0.$$

Llog L criterion

Theorem 3 Suppose that Assumptions 0-4 hold and $\lambda_1 < 0$ (supercritical case). Then as $t \to \infty$,

$$W^h_t(X) o W^h_\infty(X) \quad ext{ in } L^1(\mathrm{P}_\mu)$$

if and only if

$$(\int_{(0,+\infty)} rh(\cdot) \log^+(rh(\cdot)) \Pi^L(\cdot, dr), \hat{h}) < \infty$$

and

$$\int_{(0,+\infty)} r\pi(\cdot,h) \log^+(r\pi(\cdot,h)) \Pi^{NL}(\cdot,dr), 1_A \widehat{h}) < \infty,$$

References

[1]. Aidekon, E. and Shi, Z. (2010): Weak convergence for the minimal position in a branching random walk: a simple proof, *Periodica Mathematica Hungarica*, **61**, 43-54.

[2]. Aidekon, E. and Shi, Z. (2014): The Seneta-Heyde scaling for the branching random walk, *Ann. Probab.*, bf 42, 959-993.

[3]. Biggins, J. D. and Kyprianou, A. E. (2004): *Measure change in multitype branching*, Adv. in Appl. Probab., **36**, 544-581.

[4]. Dawson, D. A., Gorostiza, L. G. and Li, Z. (2002): Nonlocal branching superprocesses and some related models, *Acta Appl. Math.*, **74**, 93-112.

[5]. Gantert, N., Hu, Y. and Shi, Z. (2011): Asymptotics for the survival probability in a killed branching random walk, *Annales de l'Institut Henri Poincare*, **47**, 111-129.

References

[6]. Faraud, G., Hu, Y. and Shi, Z. (2012): Almost sure convergence for stochastically biased random walks on trees, *Probability Theory and Related Fields*, **154**, 621-660.

[7]. Hu, Y. and Shi, Z. (2009): Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees, *Ann. Probab.*, **37**, 742-781.

[8]. Kurtz, T. G., Lyons, R., Pemantle, R. and Peres, Y. (1997): *A* conceptual proof of the Kesten-Sigum theorem for multitype branching processes. In Classical and Modern Branching processes (K. B. Athreya and P. Jagers, eds), **84**, 181-186, Springer-Verlag, New York.

[9]. Kyprianou, A. E. and Palau, S.(2016): Extinction properties of multi-type continuous-state branching processes, preprint.

References

[10]. Lyons, R. (1997): A simple path to Biggins' martingale convergence for branching random walk, In Classical and modern branching processes, 217-221. IMA Vol. Math. Appl., 84, Springer, New York,

[11]. Lyons, R., Pemantle, R. and Peres, Y. (1995): *Conceptual proofs of L* log *L criteria for mean behavior of branching processes*, Ann. Probab., **23**, 1125-1138.

[12]. Liu, R., Ren, Y.-X. and Song R. (2009): *L* log *L* criterion for a class of super-diffusions, *J. Appl. Probab.*, **46**, 479-496.

[13]. Liu, R., Ren, Y.-X. and Song R. (2011): *L* log *L* criterion for supercritical branching Hunt processes

J. Theor. Probab., 24, 170–193.

[14]. Chen Z.-Q. Ren, Y.-X. and Yang, T. (2016+): Law of large numbers for branching symmetric Hunt processes with measure-valued branching rates. To appear in *J. Theor. Probab.* DOI:10.1007/s10959-016-0671-y

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ