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Basic notations

S = (Sk), k ≥ 0: a nearest-neighbor path starting from the origin

in Zd

ω = {ω(i, x), (i, x) ∈ N × Zd}: a family of real-valued random

variables appearing as the environment

Hω
n (S) =

∑n
i=1 ω(i, Si): the n-step energy of a path S for a fixed

environment ω

Pωn (S) = 1
Zω

n (β)
eβHω

n (S)P(S): the random polymer measure

partition function:

Zωn (β) =
∑

S

eβHω
n (S)P(S) = EPeβHω

n (S) (1)
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Basic Results

Wn = Zωn (β)/E(Zωn (β)) is a supermartingale,

W∞ = 0: termed as strong disorder, β > βc

W∞ > 0: termed as weak disorder, β < βc

βc = 0, for d = 1, 2

0 < βc <∞, for d ≥ 3

For more details see

[1] Hubert Lacoin(2010). New bounds for the free energy of di-

rected polymers in dimension 1 + 1 and 1 + 2. Comm. Math.

Phys., 294(2):471-503.
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Recent results

An intermediate disorder regime: proposed in

[2]T. Alberts, K. Khanin and J. Quastel, THE INTERMEDIATE DISOR-

DER REGIME FOR DIRECTED POLYMERS IN DIMENSION 1 + 1,

The Annals of Probability 2014, Vol. 42, No. 3, 1212-1256

[3]F. Caravenna, R. Sun, N. Zygouras, Polynomial chaos and scaling lim-

its of disordered systems, J. Eur. Math. Soc. 19, 1-65,2017
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Recent results

It says in [2]

Convergence of partition functions

Under scaling βn = βn−
1
4 , the partition function

e−nλ(βn− 1
4 )Zωn (βn−

1
4 )

D−→ Z√2β.

λ(·): log Laplace of the environment variables.

Z√2β: has explicit Wiener chaos decomposition.

G-L Rang
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Basic ideas

Using

ex ≈ 1 + x,

they have

modified function

Zωn (βn−
1
4 ) = EP

[
n∏

i=1

(1 + βn−
1
4ω(i, Si))

]
. (2)

Then expanding it as,

G-L Rang
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Basic ideas

Expanding modified function

Zωn (βn−
1
4 ) (3)

=EP

1 +
n∑

k=1

βkn−
k
4

∑
i∈Dn

k

k∏
j=1

ω(ij, Sij)


=1 +

n∑
k=1

βkn−
k
4

∑
i∈Dn

k

∑
x∈Zk

ω(i, x)pk(i, x).

where

Dn
k = {i = (i1, i2, . . . , ik) ∈ [n]k : 1 ≤ i1 < i2 < · · · < ik ≤ n}.

G-L Rang
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Basic ideas

U-statistics
Let Sn

k (pn
k) =

∑
i∈Dn

k

∑
x∈Zk ω(i, x)pk(i, x). Then, in [2]

Zωn (βn−
1
4 )

=1 +
n∑

k=1

βkn−
3k
4 Sn

k (n−
k
2 pn

k) (4)

D−→Z2β =
∑

k

Ik(pk).

pn
k, pk: k-order transition probability of random walk and density of Brow-

nian motion, respectively.

Ik: k-multiple Wiener-Ito integral with respect to space-time white noise.

G-L Rang
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Basic ideas

Four-parameter fields

Let Zω(m, y; k, x;β) = P[Πk
i=m+1(1 + βω(i, Si))1Sk=x|Sm = y]. Simi-

larly, we have Zω(m, y; k, x;β),Zω(k, x;β),Zω(k, x;β).

Theorem (AKQ 2014)
Assuming that the ω have six moments with mean zero and variance one,

the fields for 0 ≤ s < t ≤ 1, x, y ∈ R

(s, y; t, x) −→
√

n
2

Zω(ns, y
√

n; nt, x
√

n;βn−1/4)

converge weakly as n −→∞ to a random field Z√2β(s, y; t, x).

G-L Rang
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Basic ideas

Four-parameter fields

Let Zω(m, y; k, x;β) = P[Πk
i=m+1(1 + βω(i, Si))1Sk=x|Sm = y].

Theorem (continuued, AKQ 2014)
Z√2β(s, y; t, x) satisfies the following stochastic heat equation driven by

white noise

∂u(s, y; t, x)

∂t
=

1
2

∆u(s, y; t, x) +
√

2βu(s, y; t, x)Ẇ(t, x) (5)

u(s, y; s, y) = δ(t− s, x− y) (6)

G-L Rang
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Correlated environment

Environment
{ξi,j : i ∈ N, j ∈ Z}: i.i.d. with EQξi,j = 0 and EQξ

2
i,j = 1 for any i, j.

ω = {ω(n, x) : n ≥ 0, x ∈ Z}: a stationary field by

ω(n, x) =
∞∑

y=−∞

ψy−xξn,y, (7)

with ψj ∼ δ|j|−α and 1/2 < α < 1. Then, one has

E(ω(i, x)ω(j, y)) = δijγ(x− y),

where δij is Kronecker and γ(k) ∼ λ|k|1−2α for large integer k and λ =

δ2 Γ(2α−1)Γ(1−α)

Γ(α)
.

G-L Rang
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Correlated environment
Spectral measure of γ
Let G(dη) be the spectral measure of the correlation function γ, i.e.,

γ(k) =

∫ π

−π
eıkηG(dη), ∀k ∈ Z. (8)

For every N ∈ N, we define a new measure GN by

GN(A) = Nα−1/2G(N−1/2A), A ∈ B(R).

Then, limN→∞ GN = G0 ( locally finite measure). Furthermore, G0 has a

spectral density D−1|η|1−2H with D = 2Γ(2−2H) cos(1−H)π, which is

exactly the spectrum of fractional Brownian motion with Hurst parameter

H > 1/2.

G-L Rang
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Correlated environment

A central limit theorem
Let ω be given by (7), S be the symmetrical nearest- random walk on Z
started at the origin under probability measure P, and let % = H/2. Then

n−%β
n∑

i=1

∑
x∈Z

ω(i, x)P(Si = x)
D−→ N(0, σ2) (9)

with σ2 = 4β2Γ(1−H/2)

DH .

The proof consists of the computation of the variance and verification of

Lindeberg’s condition.

Remark
In the case of iid, the CLT holds with % = 1/4, σ2 = 2β2/

√
π.

G-L Rang
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Fractional Gaussian fields

A time-space fractional Brownian random field W = {W(t, x) :

t ≥ 0, x ∈ R} defined on some probability space (ΩH,FH,PH) is

a mean zero Gaussian field with covariance

EH(W(t, x)W(s, y)) =
1
2

(s ∧ t)(|x|2H + |y|2H − |x− y|2H),

H ∈ (0, 1): Hurst parameter.

Introduce the following Hilbert space:

LH = {f : ‖f‖2
H =

∫ 1

0

∫
R

∫
R

f(s, u)K(u, v)f(s, v)dsdudv <∞},

where K(u, v) = H(2H− 1)|u− v|2H−2.

G-L Rang
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Stochastic integral

For f ∈ LH, the stochastic integral
∫ 1

0

∫
R f(t, x)W(dtdx) := W(f)

is defined as usual with

EH

[∫ 1

0

∫
R

f(t, x)W(dtdx)

]2

=

∫ 1

0

∫
R2

f(s, u)K(u, v)f(s, v)dsdudv.

Symmetric tensor product of LH.

L⊗k
H = {f : ([0, 1]× R)k → R;∫
[0,1]k

∫
R2k

f(t1, x1, t2, x2, . . . , tk, xk)

k∏
i=1

K(xi, yi)f(t1, y1, t2, y2, . . . , tk, yk)dtdxdy <∞}

G-L Rang
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Stochastic integral

Multiple Ito integral Ik(f⊗k) = Hk(W(f)) for f ∈ LH, Hk, k-order

Hermite polynomial. Then define Ik(f) =
∫

([0,1]×R)k f(t, x)W⊗k(dtdx)

for general f ∈ L⊗k
H by density argument with

E(Ik(f)Ik(g)) = k! < f, g >H .

r-order contraction of two symmetry functions f and g by

f⊗r g(t1, x1; . . . ; tm+n−2r, xm+n−2r)

=Sym
{∫

[0,1]r

∫
R2r

f(t1, x1; . . . ; tn−r, xn−r; s1, u1; . . . ; sr, ur)

× g(t1, x1; . . . ; tm−r, xm−r; s1, u1; . . . ; sr, ur)Π
r
i=1K(ui, vi)

f(t1, x1; . . . ; tn−r, xn−r; τ1, v1; . . . ; τr, vr)

× g(t1, x1; . . . ; tm−r, xm−r; τ1, v1; . . . ; τr, vr)dsdτdudv
}
,

where Sym{·} means symmetrizing the arguments.
G-L Rang
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Recursive identities

In(f)Im(g) =
m∧n∑
r=0

r!

(
n
r

)(
m
r

)
In+m−2r(f⊗r g) (10)

for f ∈ L⊗m
H , g ∈ L⊗n

H . Especially, when m = 1, it is reduced to

In(f)I1(g) = In+1(f⊗ g) + nIn−1(f⊗1 g). (11)

(f⊗m
1 ⊗ f⊗(n−1)

2 )⊗1 f2

=
m

m + n− 1
f⊗(m−1)
1 ⊗ f⊗(n−1)

2 < f1, f2 >H

+
n− 1

m + n− 1
f⊗m
1 ⊗ f⊗(n−2)

2 ‖f2‖2
H.

G-L Rang
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Recursive identities

Furthermore, according to (11), we have

Im+n(f⊗m
1 ⊗ f⊗n

2 )

=Im+n−1(f⊗m
1 ⊗ f⊗(n−1)

2 )I1(f2)

−m < f1, f2 >H Im+n−2(f⊗(m−1)
1 ⊗ f⊗(n−1)

2 ) (12)

− (n− 1)‖f2‖2
HIm+n−2(f⊗m

1 ⊗ f⊗(n−2)
2 )

G-L Rang
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Chaos expansion

Proposition
Let W be the gaussian random field above with spatial parameter 1/2 <

H < 1. Let (ΩH,FH, PH) be the canonical probability space correspond-

ing to W. Then for any F ∈ L2(ΩH), it admits the following chaos expan-

sion:

F =
∞∑

k=0

Ik(fk),

where fk ∈ L⊗k
H , k = 0, 1, . . . , and the series converges in

L2(ΩH,FH, PH). Moreover,

EH[F2] =
∞∑

k=0

k!‖fk‖2
H.

G-L Rang
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Stochastic heat equations
Mild solution
We turn to stochastic heat equations (5) with multiplicative noise with

initial value u(s, x) = u(x), 0 ≤ s ≤ t ≤ 1, x ∈ R. Its solution is

formulated in the mild form, i.e.,

u(t, x; s) = Pt−su(x) + β

∫ t

s

∫
R

Pt−r(x− z)u(r, z)W(dr, dz), (13)

where Pt(x) = 1√
2πt

e−
x2
2t and Ptf(x) =

∫
R

1√
2πt

e−
(x−y)2

2t f(y)dy. If, fur-

thermore, let u(x) = δ(x − y), we get a four-parameter field u(t, x; s, y)

by

u(t, x; s, y) = Pt−s(x− y) + β

∫ t

s

∫
R

Pt−r(x− z)u(r, z; s, y)W(drdz).

G-L Rang
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Chaos expansion for solution

u(t, x; s, y)

=Pt−s(x− y)

+
∞∑

k=1

βk
∫

∆(s,t]k

∫
Rk

Πk
i=1Pti−ti−1(xi − xi−1)Pt−tk(x− xk)W(dtidxi)

=Pt−s(x− y) +
∞∑

k=1

βkIk( ˜Pk(t, x; s, y))

with ∆(s, t]k = {s < t1 < · · · < tk < t}, x0 = y, and

Pk(t, x; s, y; t1, . . . , tk; x1, . . . , xk) = Πk
i=1Pti−ti−1(xi − xi−1)Pt−tk(x− xk)

∆
= Pk(t, x; s, y; τ ; x)

G-L Rang
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The convergence of partition functions

Theorem 1

Let {u(t, x), (t, x) ∈ [0, 1] × R} be the solution to (5) with parameter

2β, initial data u(x) = δ(x). And let Zωn be the partition function (1) of

random polymer in the random environment {ω(n, x) : n ≥ 0, x ∈ Z}
with the representation (7). Then

e−nλ(βn−%)Zωn (βn−%, tn, x
√

n) −→ u(t, x) n −→∞,

in the sense of fdd.

G-L Rang
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Convergence of modified partition functions

Theorem 2
Let {u(t, x), (t, x) ∈ [0, 1] × R} be the solution to (5) with parameter
√

2β, initial data u(x) = δ(x). Then

Zωn (βn−%, tn, x
√

n) −→ u(t, x) as n −→∞.

G-L Rang
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Tightness

For 0 ≤ t ≤ 1, x ∈ R, define two-parameter fields by

zn(t, x) :=
√

nZωn (nt,
√

nx;βn−%).

Then, we have

zn(t, x) = pn(t, x) + n−
1
2β

∑
s∈[0,t]∩n−1Z

y∈n−1/2Z

pn(t− s, x− y)z̄n(s, y)ωn(s, y),

where ωn(s, y) = n−%ω(ns,
√

ny). z̄n(s, y) corresponding to Z̄ωn (k, x;β),

and Z̄ωn (k, x;β) = 1
2 [Zωn (k + 1, x;β) + Zωn (k− 1, x;β)].

G-L Rang
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Tightness

Theorem 3
Let ε > 0 be small enough. For any n ∈ N, t, s ∈ [ε, 1] and x, y ∈ R, for

some q > 1, there exist constant Cε > 0, 0 < ι < H, such that

E|zn(t, x)− zn(s, y)|2q ≤ Cε(|t− s|Hq + |x− y|ιq). (14)

Moreover, if 2q-order moment of ω is finite for q > 2
H , then the family of

process {zn}∞n=1 is tight in C([ε, 1],R).
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Convergence of U-statistics in correlated case

weighted U−statistics Sn
k by

Sn
k (f) = 2k/2

∑
i∈En

k

∑
x∈Zk

f̄n(
i
n
,

x√
n

)ω(i, x)1{i↔x}. (15)

where f̄n is the conditional expectation of f ∈ L2([0, 1]k×Rk) with respect

to the sigma algebra generated by

Rn
k

∆
=

{(
i− 1

n
,

i
n

]
×
(

x− 1√
n
,

x + 1√
n

]
: i ∈ Dn

k, i↔ x
}
.

f̄n(t, x) =
1
|R|

∫
R

fdtdx, (t, x) ∈ R ∈ Rn
k,
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Convergence of U-statistics in correlated case

Theorem 4
Let f ∈ Hk. Then, as n→∞,

n
−(H+1)k

2 Sn
k (f ) D−→

∫
[0,1]k

∫
Rk

f (t, x)W⊗k(dtdx) = Ik(f ), (16)

where W(dtdx) is fractional Gaussian noise (??) and Ik, k = 1, 2 . . . , is

k-multiple integral.

The proof is more complicated than that of the case i.i.d. environment

since the correlation exists between two disjoint spatial areas.
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The way to Theorem 4

k = 1: Show it is true for f = 1{t0≤t≤t1,x0≤x≤x1} for some 0 ≤ t0 <

t1 ≤ 1, x0 < x1. In this case,

Sn
1 (f ) = 21/2

∑
{i∈En

k ,nt0≤i≤nt1}

∑
{x∈Z,

√
nx0≤x≤

√
nx1}

ω(i, x)1{i↔x}

We take the method used in the proof of CLT in this talk.

k > 1: We show

n−
(H+1)k

2 Sn
k (g⊗k) −→ Ik(g⊗k) as n −→∞.

with

g(t, x) = 1{t0≤t≤t1,x0≤x≤x1}(t, x) ∈ LH

for ∀t0 ≤ t1, x0 ≤ x1 by induction.
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The way to Theorem 4

We show it holds for f ∈ Lk
H of the form f = g⊗k1

1 ⊗· · ·⊗g⊗ks
s with

g1, . . . , gs being indicators as k = 1 of some disjoint rectangles,

k1 + · · ·+ ks = k, k1 > 0, . . . , ks > 0, s = 2, . . . .

We need to show for s = 2

n−
(H+1)(m+l)

2 Sn
m+l(f⊗m ⊗ g⊗l)

−→Im+l−1(f⊗m ⊗ g⊗(l−1))I1(g)

−mIm+l−2(f⊗(m−1) ⊗ g⊗(l−1)) < f , g >H

−(l− 1)Im+l−2(f⊗m ⊗ g⊗(l−2))‖g‖2
H.
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The way to Theorem 4
Lemma

For all fixed k, n, Sn
k (f ) is linear in h with probability one, and, by the

definition of ω, for k1 6= k2, EQ(Sn
k1

(f1)Sn
k2

(f2)) = 0 for fi ∈ L⊗ki
H , i =

1, 2. Furthermore, for k1 = k2 = k, we have

EQ[(Sn
k (f ))2] ≤ Cλkn(1+H)k‖f‖2

Hk

for some generic positive constant C.

Based on the lemma and previous disscusion for general f ∈ Lk
H

n
−(H+1)k

2 Sn
k (f ) D−→

∫
[0,1]k

∫
Rk

f (t, x)W⊗k(dtdx) = Ik(f ),

is true.
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Convergence of Zωn (βn−%)

It is easy to get

Zωn (βn−%, tn, x
√

n) =1 +
n∑

k=1

βkn−k%
∑
i∈Dn

k

∑
x∈Zk

 k∏
j=1

ω(ij, xj)pk(i, x)


=1 +

n∑
k=1

2kβkn−
k(H+1)

2 Sn
k (n

k
2 pn

k)

−→1 +
∞∑

k=1

2kβkIk(pk(t, x, ·)),

where p(t, x) is Brownian motion density and the last expression is just

the chaos expansion of mild solution u(t, x) to stochastic heat equation (5)

driven by fractional Gaussian noise.

G-L Rang



Background Our framework Main results Our strategy Convergence of Z ω
n (βn−%) Back to partition fuction

Hermite expansion

Let

ω̃n(i, x) =
eβn−%ω(i,x)−λ(βn−%) − 1

βn−%
∆
= F(n)(ω(i, x)), (17)

where λ(·) is the Log-Laplace of ω(i, x). Thus, we get a mean zero sta-

tionary field ω̃n(i, x) (n-dependent), which is a non-linear functionals of

ω(i, x). The covariance of ω̃n(i, x) and ω̃n(i, y) is given by

EQ(ω̃n(i, x)ω̃n(i, y)) =
1

β2n−2%EQ{eβn−%(ωn(i,x)+ωn(i,y))−2λ(βn−%) − 1}

= γ(x− y)(1 + o(1)) := γ̃n(x− y).
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Hermite expansion
We can expand F(n)(z), z ∈ R, by

F(n)(z) =
1

βn−%

∞∑
k=1

(βn−%)kAk(z),

where Ak(z), k ∈ N, is the system of Appell polynomials related to the

distribution of ω with A0 = 1. Let ck, k ∈ N, be the expansion coefficients

of Fn with respect to Appell system Ak, k ∈ N. We remark that the Appell

rank, which is the least index k such that ck 6= 0, of F(n) is 1. Now by

(17), we have

e−nλ(βn−%)Zωn = e−nλ(βn−%)EQeβn−% ∑n
i=1 ω(i,Si) = EQ

n∏
i=1

(1 + βn−%ω̃n(i, Si)).

(18)
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Modified partition functions for ω̃n(i, x)

Zω̃n
n (βn−%) =EP

[
n∏

i=1

(1 + βn−%ω̃n(i, Si))

]

=EP

1 +
n∑

k=1

βkn−k%
∑
i∈Dn

k

k∏
j=1

ω̃n(ij, Sij)


=1 +

n∑
k=1

βkn−k%
∑
i∈Dn

k

∑
x∈Zk

 k∏
j=1

ω̃n(ij, xj)pk(i, x)

 ,
and the corresponding weighted U−statistics Sn

k by

Sn
k (f , ω̃n) = 2k/2

∑
i∈En

k

∑
x∈Zk

f̄n(
i
n
,

x√
n

)ω̃n(i, x)1{i↔x}.
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Modified partition functions for ω̃n(i, x)

Theorem 5

For f ∈ L⊗k
H , k ∈ N, ω̃n is defined by (17). Then

n
−k(H+1)

2 Sn
k (f , ω̃n)

D−→ Ik(f ), as n→∞.

Sketch of the proof: We only show it holding for k = 1 and f of the form

f (t, x) = 1{t0≤t≤t1,x0≤x≤x1} for some 0 ≤ t0 ≤ t1, x0 ≤ x1 ∈ R as before.

Sn
1 (f , ω̃n) = 21/2

∑
i∈En

k ,nt0≤i≤nt1

∑
x∈Z,

√
nx0≤x≤

√
nx1

ω̃n(i, x)1{i↔x}.

It is easy to show that

n−(H+1)EQ[(Sn
1 (f , ω̃n))

2]→ λ(t1 − t0)(x1 − x0)
2H

H(2H − 1)
= EH

(∫ 1

0

∫
R

f (t, x)W(dtdx)

)2

.
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Modified partition functions for ω̃n(i, x)

Sketch of the proof: By following Dobrushin’s lines (see[?]) to show the

normal asymptotics.

c(n)
1 =

1√
2π

∫
R

H1(x)
eβn−%x−β2n−2%/2 − 1

βn−%
e−

x2
2 dx = 1 6= 0.

We split n
−(H+1)

2 Sn
1 (f , ω̃n) as the sum of n

−(H+1)
2 Sn

1 (f ) andRω̃n
n .

Rω̃n
n = 21/2

∑
i∈En

k ,nt0≤i≤nt1

∑
x∈Z,

√
nx0≤x≤

√
nx1

∞∑
j=2

c(n)
j Hj(ω(i, x))1{i↔x}.
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Then, by gaussian property,

EQ[Rω̃n
n ]2 = 2

∑
i∈En

k ,nt0≤i≤nt1

EQ

 ∑
x∈Z,

√
nx0≤x≤

√
nx1

∞∑
j=2

c(n)
j Hj(ω(i, x))1{i↔x}

2

= 2
∑

i∈En
k ,nt0≤i≤nt1

∞∑
j=2

(c(n)
j )2EQ

 ∑
x∈Z,

√
nx0≤x≤

√
nx1

Hj(ω(i, x))1{i↔x}

2

=
∞∑

j=2

(c(n)
j )2j!M

[
Nγj(0) +

N−1∑
l=1

(N − l)γj(l)

]
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with M = bn(t1 − t0)c. The rhs of the above identity is bounded by

MN
∞∑

j=2

(c(n)
j )2j!

[
γj(0) +

N−1∑
l=1

γj(l)

]
∼ MN

∞∑
j=2

(c(n)
j )2j!

[
γj(0) +

N−1∑
l=1

γj(l)

]

≤CMN
∞∑

j=2

(c(n)
j )2j!N1+j(1−2α).

Whence we have

n−(H+1)EQ[Rω̃n
n ]2 ∼ C(t1−t0)(x1−x0)

2
∞∑

j=2

(c(n)
j )2j!n(j−1)(H−1)(x1−x0)

2j(H−1) −→ 0

and

n−
H+1

2 Sn
1 (h, ω̃n)

D−→ I1(h)

for h = 1{t0≤t≤t1,x0≤x≤x1} as n −→∞ by Slutsky’s theorem again.
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Thank You!
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