Directed Polymer in Random Environment with Correlation

Rang Guanglin
Wuhan University

13th Workshop on Markov Processes and Related Topics
—17-21, July, 2017

Contents

(1) Background

- Basic notations and results
- Recent results and ideas

2) Our framework

- Correlated environment
- Stochastic heat equations
(3) Main results

4 Our strategy

- Convergence of $\mathscr{Z}_{n}^{\omega}\left(\beta n^{-\varrho}\right)$
- Back to partition fuction

Basic notations

- $S=\left(S_{k}\right), k \geq 0$: a nearest-neighbor path starting from the origin in \mathbb{Z}^{d}
- $\omega=\left\{\omega(i, x),(i, x) \in \mathbb{N} \times \mathbb{Z}^{d}\right\}$: a family of real-valued random variables appearing as the environment
- $H_{n}^{\omega}(S)=\sum_{i=1}^{n} \omega\left(i, S_{i}\right)$: the n-step energy of a path S for a fixed
environment ω

- partition function:

G-L Rang

Basic notations

- $\mathrm{S}=\left(\mathrm{S}_{\mathrm{k}}\right), \mathrm{k} \geq 0$: a nearest-neighbor path starting from the origin in $\mathbb{Z}^{\text {d }}$
- $\omega=\left\{\omega(\mathrm{i}, \mathrm{x}),(\mathrm{i}, \mathrm{x}) \in \mathbb{N} \times \mathbb{Z}^{\mathrm{d}}\right\}$: a family of real-valued random variables appearing as the environment
- $H_{n}^{\omega}(S)=\sum_{i=1}^{\mathrm{n}} \omega\left(\mathrm{i}, \mathrm{S}_{\mathrm{i}}\right)$: the n -step energy of a path S for a fixed environment ω $\mathbb{T}_{n}^{\omega}(S)=\frac{1}{Z^{(\beta)}} \mathrm{e}^{\beta H_{n}^{\omega}(S)} \mathbb{P}(S)$: the random polymer measure
- partition function:

Basic notations

- $\mathrm{S}=\left(\mathrm{S}_{\mathrm{k}}\right), \mathrm{k} \geq 0$: a nearest-neighbor path starting from the origin in $\mathbb{Z}^{\text {d }}$
- $\omega=\left\{\omega(\mathrm{i}, \mathrm{x}),(\mathrm{i}, \mathrm{x}) \in \mathbb{N} \times \mathbb{Z}^{\mathrm{d}}\right\}$: a family of real-valued random variables appearing as the environment
- $H_{n}^{\omega}(S)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \omega\left(\mathrm{i}, \mathrm{S}_{\mathrm{i}}\right)$: the n -step energy of a path S for a fixed environment ω
$\mathbb{P}_{\mathrm{n}}^{\omega}(\mathrm{S})=\frac{1}{\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta)} \mathrm{e}^{\beta \mathrm{H}_{\mathrm{n}}^{\omega}(S)} \mathbb{P}(\mathrm{S})$: the random polymer measure
- partition function:

Basic notations

- $\mathrm{S}=\left(\mathrm{S}_{\mathrm{k}}\right), \mathrm{k} \geq 0$: a nearest-neighbor path starting from the origin in $\mathbb{Z}^{\text {d }}$
- $\omega=\left\{\omega(\mathrm{i}, \mathrm{x}),(\mathrm{i}, \mathrm{x}) \in \mathbb{N} \times \mathbb{Z}^{\mathrm{d}}\right\}$: a family of real-valued random variables appearing as the environment
- $H_{n}^{\omega}(S)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \omega\left(\mathrm{i}, \mathrm{S}_{\mathrm{i}}\right)$: the n -step energy of a path S for a fixed environment ω
$\mathbb{P}_{\mathrm{n}}^{\omega}(\mathrm{S})=\frac{1}{Z_{\mathrm{n}}^{\omega}(\beta)} \mathrm{e}^{\beta \mathrm{H}_{\mathrm{n}}^{\omega}(S)} \mathbb{P}(\mathrm{S})$: the random polymer measure
- partition function:

$$
\begin{equation*}
Z_{n}^{\omega}(\beta)=\sum_{\mathrm{S}} \mathrm{e}^{\beta \mathrm{H}_{\mathrm{n}}^{\omega}(\mathrm{S})} \mathbb{P}(\mathrm{S})=\mathbb{E}_{\mathbb{P}} \mathrm{e}^{\beta \mathrm{H}_{\mathrm{n}}^{\omega}(\mathrm{S})} \tag{1}
\end{equation*}
$$

Basic Results

- $\mathrm{W}_{\mathrm{n}}=\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta) / \mathbb{E}\left(\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta)\right)$ is a supermartingale,
- $\mathrm{W}_{\infty}=0$: termed as strong disorder, $\beta>\beta_{\mathrm{c}}$
- $\mathrm{W}_{\infty}>0$: termed as weak disorder, $\beta<\beta_{\mathrm{c}}$
- $\beta_{c}=0$, for $d=1,2$
- $0<\beta_{\mathrm{c}}<\infty$, for $\mathrm{d} \geq 3$
- For more details see
[1] Hubert Lacoin(2010). New bounds for the free energy of di-
rected polymers in dimension $1+1$ and $1+2$. Comm. Math.
Phys., 294(2):471-503.

Basic Results

- $\mathrm{W}_{\mathrm{n}}=\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta) / \mathbb{E}\left(\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta)\right)$ is a supermartingale,
- $\mathrm{W}_{\infty}=0$: termed as strong disorder, $\beta>\beta_{\mathrm{c}}$
- $\mathrm{W}_{\infty}>0$: termed as weak disorder, $\beta<\beta_{\mathrm{c}}$
- $\beta_{\mathrm{c}}=0$, for $\mathrm{d}=1,2$
- $0<\beta_{c}<\infty$, for $d \geq 3$
- For more details see
[1] Hubert Lacoin(2010). New bounds for the free energy of di-
rected polymers in dimension $1+1$ and $1+2$. Comm. Math.
Phys., 294(2):471-503.

Basic Results

- $\mathrm{W}_{\mathrm{n}}=\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta) / \mathbb{E}\left(\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta)\right)$ is a supermartingale,
- $\mathrm{W}_{\infty}=0$: termed as strong disorder, $\beta>\beta_{\mathrm{c}}$
- $\mathrm{W}_{\infty}>0$: termed as weak disorder, $\beta<\beta_{\mathrm{c}}$
- $\beta_{\mathrm{c}}=0$, for $\mathrm{d}=1,2$
- $0<\beta_{\mathrm{c}}<\infty$, for $\mathrm{d} \geq 3$
- For more details see
[1] Hubert Lacoin(2010). New bounds for the free energy of directed polymers in dimension $1+1$ and $1+2$. Comm. Math. Phvs., 294(2):471-503.

Basic Results

- $\mathrm{W}_{\mathrm{n}}=\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta) / \mathbb{E}\left(\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta)\right)$ is a supermartingale,
- $\mathrm{W}_{\infty}=0$: termed as strong disorder, $\beta>\beta_{\mathrm{c}}$
- $\mathrm{W}_{\infty}>0$: termed as weak disorder, $\beta<\beta_{\mathrm{c}}$
- $\beta_{\mathrm{c}}=0$, for $\mathrm{d}=1,2$
- $0<\beta_{\mathrm{c}}<\infty$, for $\mathrm{d} \geq 3$
- For more details see
[1] Hubert Lacoin(2010). New bounds for the free energy of di-
rected polymers in dimension $1+1$ and $1+2$. Comm. Math.
Phys., 294(2):471-503.

Basic Results

- $\mathrm{W}_{\mathrm{n}}=\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta) / \mathbb{E}\left(\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta)\right)$ is a supermartingale,
- $\mathrm{W}_{\infty}=0$: termed as strong disorder, $\beta>\beta_{\mathrm{c}}$
- $\mathrm{W}_{\infty}>0$: termed as weak disorder, $\beta<\beta_{\mathrm{c}}$
- $\beta_{\mathrm{c}}=0$, for $\mathrm{d}=1,2$
- $0<\beta_{\mathrm{c}}<\infty$, for $\mathrm{d} \geq 3$
- For more details see
[1] Hubert Lacoin(2010). New bounds for the free energy of di-
rected polymers in dimension $1+1$ and $1+2$. Comm. Math.
Phys., 294(2):471-503.

Basic Results

- $\mathrm{W}_{\mathrm{n}}=\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta) / \mathbb{E}\left(\mathrm{Z}_{\mathrm{n}}^{\omega}(\beta)\right)$ is a supermartingale,
- $\mathrm{W}_{\infty}=0$: termed as strong disorder, $\beta>\beta_{\mathrm{c}}$
- $\mathrm{W}_{\infty}>0$: termed as weak disorder, $\beta<\beta_{\mathrm{c}}$
- $\beta_{\mathrm{c}}=0$, for $\mathrm{d}=1,2$
- $0<\beta_{\mathrm{c}}<\infty$, for $\mathrm{d} \geq 3$
- For more details see
[1] Hubert Lacoin(2010). New bounds for the free energy of directed polymers in dimension $1+1$ and $1+2$. Comm. Math. Phys., 294(2):471-503.

Recent results

An intermediate disorder regime: proposed in
[2]T. Alberts, K. Khanin and J. Quastel, THE INTERMEDIATE DISORDER REGIME FOR DIRECTED POLYMERS IN DIMENSION $1+1$, The Annals of Probability 2014, Vol. 42, No. 3, 1212-1256
[3]F. Caravenna, R. Sun, N. Zygouras, Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. 19, 1-65,2017

Recent results

It says in [2]

Convergence of partition functions

- Under scaling $\beta_{\mathrm{n}}=\beta \mathrm{n}^{-\frac{1}{4}}$, the partition function

$$
\mathrm{e}^{-\mathrm{n} \lambda\left(\beta \mathrm{n}^{-\frac{1}{4}}\right)} \mathbf{Z}_{\mathrm{n}}^{\omega}\left(\beta \mathrm{n}^{-\frac{1}{4}}\right) \xrightarrow{\mathrm{D}} \mathrm{Z}_{\sqrt{2} \beta} .
$$

$\lambda(\cdot): \log$ Laplace of the environment variables.
$\mathrm{Z}_{\sqrt{2} \beta}$: has explicit Wiener chaos decomposition.

Basic ideas

Using

$$
\mathrm{e}^{\mathrm{x}} \approx 1+\mathrm{x},
$$

they have

modified function

$$
\begin{equation*}
\mathcal{Z}_{\mathrm{n}}^{\omega}\left(\beta \mathrm{n}^{-\frac{1}{4}}\right)=\mathbb{E}_{\mathbb{P}}\left[\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\beta \mathrm{n}^{-\frac{1}{4}} \omega\left(\mathrm{i}, \mathrm{~S}_{\mathrm{i}}\right)\right)\right] . \tag{2}
\end{equation*}
$$

Then expanding it as,

Basic ideas

Expanding modified function

$$
\begin{align*}
& \mathfrak{Z}_{\mathrm{n}}^{\omega}\left(\beta n^{-\frac{1}{4}}\right) \tag{3}\\
= & \mathbb{E}_{\mathbb{P}}\left[1+\sum_{\mathrm{k}=1}^{\mathrm{n}} \beta^{\mathrm{k}} \mathrm{n}^{-\frac{k}{4}} \sum_{i \in D_{k}^{n}} \prod_{j=1}^{\mathrm{k}} \omega\left(\mathrm{i}_{\mathrm{j}}, S_{\mathrm{i}_{\mathrm{j}}}\right)\right] \\
= & 1+\sum_{\mathrm{k}=1}^{\mathrm{n}} \beta^{\mathrm{k}} \mathrm{n}^{-\frac{k}{4}} \sum_{\mathbf{i} \in \mathrm{D}_{\mathrm{k}}^{\mathrm{n}}} \sum_{\mathbf{x} \in \mathbb{Z}^{k}} \omega(\mathbf{i}, \mathbf{x}) p_{\mathrm{k}}(\mathbf{i}, \mathbf{x})
\end{align*}
$$

where

$$
\mathrm{D}_{\mathrm{k}}^{\mathrm{n}}=\left\{\mathbf{i}=\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{k}}\right) \in[\mathrm{n}]^{\mathrm{k}}: 1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}\right\} .
$$

Basic ideas

U-statistics

Let $\mathcal{S}_{\mathrm{k}}^{\mathrm{n}}\left(\mathrm{p}_{\mathrm{k}}^{\mathrm{n}}\right)=\sum_{\mathbf{i} \in \mathrm{D}_{\mathrm{k}}^{\mathrm{n}}} \sum_{\mathbf{x} \in \mathbb{Z}^{k}} \omega(\mathbf{i}, \mathbf{x}) \mathrm{p}_{\mathrm{k}}(\mathbf{i}, \mathbf{x})$. Then, in [2]

$$
\begin{align*}
& \mathfrak{Z}_{\mathrm{n}}^{\omega}\left(\beta \mathrm{n}^{-\frac{1}{4}}\right) \\
&= 1+\sum_{\mathrm{k}=1}^{\mathrm{n}} \beta^{\mathrm{k}} \mathrm{n}^{-\frac{3 \mathrm{k}}{4}} \mathcal{S}_{\mathrm{k}}^{\mathrm{n}}\left(\mathrm{n}^{-\frac{\mathrm{k}}{2}} \mathrm{p}_{\mathrm{k}}^{\mathrm{n}}\right) \tag{4}\\
& \xrightarrow{\mathrm{D}} \mathrm{Z}_{2 \beta}=\sum_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}\left(\mathrm{p}_{\mathrm{k}}\right) .
\end{align*}
$$

$\mathrm{p}_{\mathrm{k}}^{\mathrm{n}}, \mathrm{p}_{\mathrm{k}}$: k-order transition probability of random walk and density of Brownian motion, respectively.
I_{k} : k-multiple Wiener-Ito integral with respect to space-time white noise.

Basic ideas

Four-parameter fields

Let $\mathfrak{Z}^{\omega}(\mathrm{m}, \mathrm{y} ; \mathrm{k}, \mathrm{x} ; \beta)=\mathbb{P}\left[\Pi_{\mathrm{i}=\mathrm{m}+1}^{\mathrm{k}}\left(1+\beta \omega\left(\mathrm{i}, \mathrm{S}_{\mathrm{i}}\right)\right) 1_{\mathrm{S}_{\mathrm{k}}=\mathrm{x}} \mid \mathrm{S}_{\mathrm{m}}=\mathrm{y}\right]$. Similarly, we have $Z^{\omega}(\mathrm{m}, \mathrm{y} ; \mathrm{k}, \mathrm{x} ; \beta), \mathfrak{Z}^{\omega}(\mathrm{k}, \mathrm{x} ; \beta), \mathrm{Z}^{\omega}(\mathrm{k}, \mathrm{x} ; \beta)$.

Theorem (AKQ 2014)

Assuming that the ω have six moments with mean zero and variance one, the fields for $0 \leq \mathrm{s}<\mathrm{t} \leq 1, \mathrm{x}, \mathrm{y} \in \mathrm{R}$

$$
(\mathrm{s}, \mathrm{y} ; \mathrm{t}, \mathrm{x}) \longrightarrow \frac{\sqrt{\mathrm{n}}}{2} \mathfrak{Z}^{\omega}\left(\mathrm{ns}, \mathrm{y} \sqrt{\mathrm{n}} ; \mathrm{nt}, \mathrm{x} \sqrt{\mathrm{n}} ; \beta \mathrm{n}^{-1 / 4}\right)
$$

converge weakly as $\mathrm{n} \longrightarrow \infty$ to a random field $\mathrm{Z}_{\sqrt{2} \beta}(\mathrm{~s}, \mathrm{y} ; \mathrm{t}, \mathrm{x})$.

Basic ideas

Four-parameter fields

Let $\mathfrak{Z}^{\omega}(\mathrm{m}, \mathrm{y} ; \mathrm{k}, \mathrm{x} ; \beta)=\mathbb{P}\left[\Pi_{\mathrm{i}=\mathrm{m}+1}^{\mathrm{k}}\left(1+\beta \omega\left(\mathrm{i}, \mathrm{S}_{\mathrm{i}}\right)\right) 1_{\mathrm{S}_{\mathrm{k}}=\mathrm{x}} \mid \mathrm{S}_{\mathrm{m}}=\mathrm{y}\right]$.

Theorem (continuued, AKQ 2014)

$\mathrm{Z}_{\sqrt{2} \beta}(\mathrm{~s}, \mathrm{y} ; \mathrm{t}, \mathrm{x})$ satisfies the following stochastic heat equation driven by white noise

$$
\begin{align*}
\frac{\partial \mathrm{u}(\mathrm{~s}, \mathrm{y} ; \mathrm{t}, \mathrm{x})}{\partial \mathrm{t}} & =\frac{1}{2} \Delta \mathrm{u}(\mathrm{~s}, \mathrm{y} ; \mathrm{t}, \mathrm{x})+\sqrt{2} \beta \mathrm{u}(\mathrm{~s}, \mathrm{y} ; \mathrm{t}, \mathrm{x}) \dot{\mathrm{W}}(\mathrm{t}, \mathrm{x}) \tag{5}\\
\mathrm{u}(\mathrm{~s}, \mathrm{y} ; \mathrm{s}, \mathrm{y}) & =\delta(\mathrm{t}-\mathrm{s}, \mathrm{x}-\mathrm{y}) \tag{6}
\end{align*}
$$

Correlated environment

Environment

$\left\{\xi_{\mathrm{i}, \mathrm{j}}: \mathrm{i} \in \mathbb{N}, \mathrm{j} \in \mathbb{Z}\right\}$: i.i.d. with $\mathbb{E}_{\mathbb{Q}} \xi_{\mathrm{i}, \mathrm{j}}=0$ and $\mathbb{E}_{\mathbb{Q}} \xi_{\mathrm{i}, \mathrm{j}}^{2}=1$ for any i, j.
$\omega=\{\omega(\mathrm{n}, \mathrm{x}): \mathrm{n} \geq 0, \mathrm{x} \in \mathbb{Z}\}:$ a stationary field by

$$
\begin{equation*}
\omega(\mathrm{n}, \mathrm{x})=\sum_{\mathrm{y}=-\infty}^{\infty} \psi_{\mathrm{y}-\mathrm{x}} \xi_{\mathrm{n}, \mathrm{y}} \tag{7}
\end{equation*}
$$

with $\psi_{\mathrm{j}} \sim \delta|\mathrm{j}|^{-\alpha}$ and $1 / 2<\alpha<1$. Then, one has

$$
\mathbb{E}(\omega(\mathrm{i}, \mathrm{x}) \omega(\mathrm{j}, \mathrm{y}))=\delta_{\mathrm{ij}} \gamma(\mathrm{x}-\mathrm{y})
$$

where δ_{ij} is Kronecker and $\gamma(\mathrm{k}) \sim \lambda|\mathrm{k}|^{1-2 \alpha}$ for large integer k and $\lambda=$ $\delta^{2} \frac{\Gamma(2 \alpha-1) \Gamma(1-\alpha)}{\Gamma(\alpha)}$.

Correlated environment

Spectral measure of γ

Let $\mathrm{G}(\mathrm{d} \eta)$ be the spectral measure of the correlation function γ, i.e.,

$$
\begin{equation*}
\gamma(\mathrm{k})=\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{e} \eta \eta} \mathrm{G}(\mathrm{~d} \eta), \quad \forall \mathrm{k} \in \mathbb{Z} \tag{8}
\end{equation*}
$$

For every $\mathrm{N} \in \mathbb{N}$, we define a new measure G_{N} by

$$
\mathrm{G}_{\mathrm{N}}(\mathrm{~A})=\mathrm{N}^{\alpha-1 / 2} \mathrm{G}\left(\mathrm{~N}^{-1 / 2} \mathrm{~A}\right), \quad \mathrm{A} \in \mathcal{B}(\mathbb{R})
$$

Then, $\lim _{\mathrm{N} \rightarrow \infty} \mathrm{G}_{\mathrm{N}}=\mathrm{G}_{0}$ (locally finite measure). Furthermore, G_{0} has a spectral density $\mathrm{D}^{-1}|\eta|^{1-2 \mathrm{H}}$ with $\mathrm{D}=2 \Gamma(2-2 \mathrm{H}) \cos (1-\mathrm{H}) \pi$, which is exactly the spectrum of fractional Brownian motion with Hurst parameter $\mathrm{H}>1 / 2$.

Correlated environment

A central limit theorem

Let ω be given by (7), S be the symmetrical nearest- random walk on \mathbb{Z} started at the origin under probability measure \mathbb{P}, and let $\varrho=\mathrm{H} / 2$. Then

$$
\begin{equation*}
\mathrm{n}^{-\varrho} \beta \sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{x} \in \mathbb{Z}} \omega(\mathrm{i}, \mathrm{x}) \mathbb{P}\left(\mathrm{S}_{\mathrm{i}}=\mathrm{x}\right) \xrightarrow{\mathcal{D}} \mathrm{N}\left(0, \sigma^{2}\right) \tag{9}
\end{equation*}
$$

with $\sigma^{2}=\frac{4 \beta^{2} \Gamma(1-\mathrm{H} / 2)}{\mathrm{DH}}$.

The proof consists of the computation of the variance and verification of Lindeberg's condition.

Remark

In the case of iid, the CLT holds with $\varrho=1 / 4, \sigma^{2}=2 \beta^{2} / \sqrt{\pi}$.

Fractional Gaussian fields

- A time-space fractional Brownian random field $W=\{W(t, x)$: $\mathrm{t} \geq 0, \mathrm{x} \in \mathbb{R}\}$ defined on some probability space $\left(\Omega_{\mathrm{H}}, \mathcal{F}_{\mathrm{H}}, \mathbb{P}_{\mathrm{H}}\right)$ is a mean zero Gaussian field with covariance

$$
\mathbb{E}_{\mathrm{H}}(\mathrm{~W}(\mathrm{t}, \mathrm{x}) \mathrm{W}(\mathrm{~s}, \mathrm{y}))=\frac{1}{2}(\mathrm{~s} \wedge \mathrm{t})\left(|\mathrm{x}|^{2 \mathrm{H}}+|\mathrm{y}|^{2 \mathrm{H}}-|\mathrm{x}-\mathrm{y}|^{2 \mathrm{H}}\right)
$$

$\mathrm{H} \in(0,1):$ Hurst parameter.

- Introduce the following Hilbert space:

where $\mathrm{K}(\mathrm{u}, \mathrm{v})=\mathrm{H}(2 \mathrm{H}-1)|\mathrm{u}-\mathrm{v}|^{2 \mathrm{H}-2}$

Fractional Gaussian fields

- A time-space fractional Brownian random field $W=\{W(t, x)$: $\mathrm{t} \geq 0, \mathrm{x} \in \mathbb{R}\}$ defined on some probability space $\left(\Omega_{\mathrm{H}}, \mathcal{F}_{\mathrm{H}}, \mathbb{P}_{\mathrm{H}}\right)$ is a mean zero Gaussian field with covariance

$$
\mathbb{E}_{\mathrm{H}}(\mathrm{~W}(\mathrm{t}, \mathrm{x}) \mathrm{W}(\mathrm{~s}, \mathrm{y}))=\frac{1}{2}(\mathrm{~s} \wedge \mathrm{t})\left(|\mathrm{x}|^{2 \mathrm{H}}+|\mathrm{y}|^{2 \mathrm{H}}-|\mathrm{x}-\mathrm{y}|^{2 \mathrm{H}}\right)
$$

$\mathrm{H} \in(0,1)$: Hurst parameter.

- Introduce the following Hilbert space:

$$
\mathcal{L}_{\mathrm{H}}=\left\{\mathrm{f}:\|\mathrm{f}\|_{\mathrm{H}}^{2}=\int_{0}^{1} \int_{\mathbb{R}} \int_{\mathbb{R}} \mathrm{f}(\mathrm{~s}, \mathrm{u}) \mathrm{K}(\mathrm{u}, \mathrm{v}) \mathrm{f}(\mathrm{~s}, \mathrm{v}) \text { dsdudv }<\infty\right\}
$$

where $\mathrm{K}(\mathrm{u}, \mathrm{v})=\mathrm{H}(2 \mathrm{H}-1)|\mathrm{u}-\mathrm{v}|^{2 \mathrm{H}-2}$.

Stochastic integral

- For $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}$, the stochastic integral $\int_{0}^{1} \int_{\mathbb{R}} \mathrm{f}(\mathrm{t}, \mathrm{x}) \mathrm{W}(\mathrm{dtdx}):=\mathrm{W}(\mathrm{f})$ is defined as usual with

$$
\mathbb{E}_{\mathrm{H}}\left[\int_{0}^{1} \int_{\mathbb{R}} \mathrm{f}(\mathrm{t}, \mathrm{x}) \mathrm{W}(\mathrm{dtdx})\right]^{2}=\int_{0}^{1} \int_{\mathbb{R}^{2}} \mathrm{f}(\mathrm{~s}, \mathrm{u}) \mathrm{K}(\mathrm{u}, \mathrm{v}) \mathrm{f}(\mathrm{~s}, \mathrm{v}) \mathrm{dsdudv} .
$$

- Symmetric tensor product of \mathcal{L}_{H}.

Stochastic integral

- For $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}$, the stochastic integral $\int_{0}^{1} \int_{\mathbb{R}} \mathrm{f}(\mathrm{t}, \mathrm{x}) \mathrm{W}(\mathrm{dtdx}):=\mathrm{W}(\mathrm{f})$ is defined as usual with

$$
\mathbb{E}_{\mathrm{H}}\left[\int_{0}^{1} \int_{\mathbb{R}} \mathrm{f}(\mathrm{t}, \mathrm{x}) \mathrm{W}(\mathrm{dtdx})\right]^{2}=\int_{0}^{1} \int_{\mathbb{R}^{2}} \mathrm{f}(\mathrm{~s}, \mathrm{u}) \mathrm{K}(\mathrm{u}, \mathrm{v}) \mathrm{f}(\mathrm{~s}, \mathrm{v}) \mathrm{dsdudv} .
$$

- Symmetric tensor product of \mathcal{L}_{H}.

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{k}}=\left\{\mathrm{f}:([0,1] \times \mathbb{R})^{\mathrm{k}} \rightarrow \mathbb{R}\right. \\
& \int_{[0,1]^{\mathrm{k}}} \int_{\mathbb{R}^{2 \mathrm{k}}} \mathrm{f}\left(\mathrm{t}_{1}, \mathrm{x}_{1}, \mathrm{t}_{2}, \mathrm{x}_{2}, \ldots, \mathrm{t}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}\right) \\
& \left.\prod_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{~K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \mathrm{f}\left(\mathrm{t}_{1}, \mathrm{y}_{1}, \mathrm{t}_{2}, \mathrm{y}_{2}, \ldots, \mathrm{t}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}\right) \mathrm{dtd} \mathbf{x} \mathrm{~d} \mathbf{y}<\infty\right\}
\end{aligned}
$$

Stochastic integral

- Multiple Ito integral $\mathrm{I}_{\mathrm{k}}\left(\mathrm{f}^{\otimes \mathrm{k}}\right)=\mathrm{H}_{\mathrm{k}}(\mathrm{W}(\mathrm{f}))$ for $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}, \mathrm{H}_{\mathrm{k}}$, k-order Hermite polynomial. Then define $\mathrm{I}_{\mathrm{k}}(\mathrm{f})=\int_{([0,1] \times \mathbb{R})^{\mathrm{k}}} \mathrm{f}(\mathbf{t}, \mathbf{x}) \mathrm{W}^{\otimes \mathrm{k}}(\mathrm{dtd} \mathbf{x})$ for general $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{k}}$ by density argument with

$$
\mathbb{E}\left(\mathrm{I}_{\mathrm{k}}(\mathrm{f}) \mathrm{I}_{\mathrm{k}}(\mathrm{~g})\right)=\mathrm{k}!<\mathrm{f}, \mathrm{~g}>_{\mathrm{H}} .
$$

- r-order contraction of two symmetry functions f and g by

$\mathrm{f}\left(\mathrm{t}_{1}, \mathrm{x}_{1} ; \ldots ; \mathrm{t}_{\mathrm{n}-\mathrm{r}}, \mathrm{x}_{\mathrm{n}-\mathrm{r}} ; \mathrm{s}_{1}, \mathrm{u}_{1}\right.$

Stochastic integral

- Multiple Ito integral $\mathrm{I}_{\mathrm{k}}\left(\mathrm{f}^{\otimes \mathrm{k}}\right)=\mathrm{H}_{\mathrm{k}}(\mathrm{W}(\mathrm{f}))$ for $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}, \mathrm{H}_{\mathrm{k}}$, k-order Hermite polynomial. Then define $\mathrm{I}_{\mathrm{k}}(\mathrm{f})=\int_{([0,1] \times \mathbb{R})^{\mathrm{k}}} \mathrm{f}(\mathbf{t}, \mathbf{x}) \mathrm{W}^{\otimes \mathrm{k}}(\mathrm{dtd} \mathbf{x})$ for general $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{k}}$ by density argument with

$$
\mathbb{E}\left(\mathrm{I}_{\mathrm{k}}(\mathrm{f}) \mathrm{I}_{\mathrm{k}}(\mathrm{~g})\right)=\mathrm{k}!<\mathrm{f}, \mathrm{~g}>_{\mathrm{H}} .
$$

- r-order contraction of two symmetry functions f and g by

$$
\begin{aligned}
& \mathrm{f} \otimes_{\mathrm{r}} \mathrm{~g}\left(\mathrm{t}_{1}, \mathrm{x}_{1} ; \ldots ; \mathrm{t}_{\mathrm{m}+\mathrm{n}-2 \mathrm{r}}, \mathrm{x}_{\mathrm{m}+\mathrm{n}-2 \mathrm{r}}\right) \\
& = \\
& =\operatorname{Sym}\left\{\int_{[0,1]^{\mathrm{r}}} \int_{\mathbb{R}^{2 \mathrm{r}}} \mathrm{f}\left(\mathrm{t}_{1}, \mathrm{x}_{1} ; \ldots ; \mathrm{t}_{\mathrm{n}-\mathrm{r}}, \mathrm{x}_{\mathrm{n}-\mathrm{r}} ; \mathrm{s}_{1}, \mathrm{u}_{1} ; \ldots ; \mathrm{s}_{\mathrm{r}}, \mathrm{u}_{\mathrm{r}}\right)\right. \\
& \quad \times \mathrm{g}\left(\mathrm{t}_{1}, \mathrm{x}_{1} ; \ldots ; \mathrm{t}_{\mathrm{m}-\mathrm{r}}, \mathrm{x}_{\mathrm{m}-\mathrm{r}} ; \mathrm{s}_{1}, \mathrm{u}_{1} ; \ldots ; \mathrm{s}_{\mathrm{r}}, \mathrm{u}_{\mathrm{r}}\right) \Pi_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{~K}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right) \\
& \\
& \\
& \mathrm{f}\left(\mathrm{t}_{1}, \mathrm{x}_{1} ; \ldots ; \mathrm{t}_{\mathrm{n}-\mathrm{r}}, \mathrm{x}_{\mathrm{n}-\mathrm{r}} ; \tau_{1}, \mathrm{v}_{1} ; \ldots ; \tau_{\mathrm{r}}, \mathrm{v}_{\mathrm{r}}\right) \\
& \quad \\
& \left.\quad \times \mathrm{g}\left(\mathrm{t}_{1}, \mathrm{x}_{1} ; \ldots ; \mathrm{t}_{\mathrm{m}-\mathrm{r}}, \mathrm{x}_{\mathrm{m}-\mathrm{r}} ; \tau_{1}, \mathrm{v}_{1} ; \ldots ; \tau_{\mathrm{r}}, \mathrm{v}_{\mathrm{r}}\right) \mathrm{d} \mathbf{d} \mathrm{~d} \tau \mathrm{~d} \mathbf{u d v}\right\},
\end{aligned}
$$

Recursive identities

$$
\begin{equation*}
\mathrm{I}_{\mathrm{n}}(\mathrm{f}) \mathrm{I}_{\mathrm{m}}(\mathrm{~g})=\sum_{\mathrm{r}=0}^{\mathrm{m} \wedge \mathrm{n}} \mathrm{r}!\binom{\mathrm{n}}{\mathrm{r}}\binom{\mathrm{~m}}{\mathrm{r}} \mathrm{I}_{\mathrm{n}+\mathrm{m}-2 \mathrm{r}}\left(\mathrm{f} \otimes_{\mathrm{r}} \mathrm{~g}\right) \tag{10}
\end{equation*}
$$

for $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{m}}, \mathrm{g} \in \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{n}}$. Especially, when $\mathrm{m}=1$, it is reduced to

$$
\begin{equation*}
\mathrm{I}_{\mathrm{n}}(\mathrm{f}) \mathrm{I}_{1}(\mathrm{~g})=\mathrm{I}_{\mathrm{n}+1}(\mathrm{f} \otimes \mathrm{~g})+\mathrm{nI} \mathrm{I}_{\mathrm{n}-1}\left(\mathrm{f} \otimes_{1} \mathrm{~g}\right) \tag{11}
\end{equation*}
$$

Recursive identities

$$
\begin{equation*}
\mathrm{I}_{\mathrm{n}}(\mathrm{f}) \mathrm{I}_{\mathrm{m}}(\mathrm{~g})=\sum_{\mathrm{r}=0}^{\mathrm{m} \wedge \mathrm{n}} \mathrm{r}!\binom{\mathrm{n}}{\mathrm{r}}\binom{\mathrm{~m}}{\mathrm{r}} \mathrm{I}_{\mathrm{n}+\mathrm{m}-2 \mathrm{r}}\left(\mathrm{f} \otimes_{\mathrm{r}} \mathrm{~g}\right) \tag{10}
\end{equation*}
$$

for $\mathrm{f} \in \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{m}}, \mathrm{g} \in \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{n}}$. Especially, when $\mathrm{m}=1$, it is reduced to

$$
\begin{equation*}
\mathrm{I}_{\mathrm{n}}(\mathrm{f}) \mathrm{I}_{1}(\mathrm{~g})=\mathrm{I}_{\mathrm{n}+1}(\mathrm{f} \otimes \mathrm{~g})+\mathrm{nI} \mathrm{I}_{\mathrm{n}-1}\left(\mathrm{f} \otimes_{1} \mathrm{~g}\right) \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& \left(f_{1}^{\otimes m} \otimes f_{2}^{\otimes(n-1)}\right) \otimes_{1} f_{2} \\
= & \frac{m}{m+n-1} f_{1}^{\otimes(m-1)} \otimes f_{2}^{\otimes(n-1)}<f_{1}, f_{2}>_{H} \\
& +\frac{n-1}{m+n-1} f_{1}^{\otimes m} \otimes f_{2}^{\otimes(n-2)}\left\|f_{2}\right\|_{H}^{2} .
\end{aligned}
$$

Recursive identities

- Furthermore, according to (11), we have

$$
\begin{align*}
& \mathrm{I}_{\mathrm{m}+\mathrm{n}}\left(\mathrm{f}_{1}^{\otimes \mathrm{m}} \otimes \mathrm{f}_{2}^{\otimes \mathrm{n}}\right) \\
& =\mathrm{I}_{\mathrm{m}+\mathrm{n}-1}\left(\mathrm{f}_{1}^{\otimes \mathrm{m}} \otimes \mathrm{f}_{2}^{\otimes(\mathrm{n}-1)}\right) \mathrm{I}_{1}\left(\mathrm{f}_{2}\right) \\
& \quad-\mathrm{m}<\mathrm{f}_{1}, \mathrm{f}_{2}>_{\mathrm{H}} \mathrm{I}_{\mathrm{m}+\mathrm{n}-2}\left(\mathrm{f}_{1}^{\otimes(\mathrm{m}-1)} \otimes \mathrm{f}_{2}^{\otimes(\mathrm{n}-1)}\right) \tag{12}\\
& \\
& \quad-(\mathrm{n}-1)\left\|\mathrm{f}_{2}\right\|_{\mathrm{H}}^{2} \mathrm{I}_{\mathrm{m}+\mathrm{n}-2}\left(\mathrm{f}_{1}^{\otimes \mathrm{m}} \otimes \mathrm{f}_{2}^{\otimes(\mathrm{n}-2)}\right)
\end{align*}
$$

Chaos expansion

Proposition

Let W be the gaussian random field above with spatial parameter $1 / 2<$ $\mathrm{H}<1$. Let $\left(\Omega_{\mathrm{H}}, \mathcal{F}_{\mathrm{H}}, \mathrm{P}_{\mathrm{H}}\right)$ be the canonical probability space corresponding to W . Then for any $\mathrm{F} \in \mathrm{L}^{2}\left(\Omega_{\mathrm{H}}\right)$, it admits the following chaos expansion:

$$
\mathrm{F}=\sum_{\mathrm{k}=0}^{\infty} \mathrm{I}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right),
$$

where $\mathrm{f}_{\mathrm{k}} \in \mathcal{L}_{\mathrm{H}}^{\otimes \mathrm{k}}, \mathrm{k}=0,1, \ldots$, and the series converges in $\mathrm{L}^{2}\left(\Omega_{\mathrm{H}}, \mathcal{F}_{\mathrm{H}}, \mathrm{P}_{\mathrm{H}}\right)$. Moreover,

$$
\mathbb{E}_{\mathrm{H}}\left[\mathrm{~F}^{2}\right]=\sum_{\mathrm{k}=0}^{\infty} \mathrm{k}!\left\|\mathrm{f}_{\mathrm{k}}\right\|_{\mathrm{H}}^{2}
$$

Stochastic heat equations

Mild solution

We turn to stochastic heat equations (5) with multiplicative noise with initial value $\mathrm{u}(\mathrm{s}, \mathrm{x})=\mathrm{u}(\mathrm{x}), 0 \leq \mathrm{s} \leq \mathrm{t} \leq 1, \mathrm{x} \in \mathbb{R}$. Its solution is formulated in the mild form, i.e.,

$$
\begin{equation*}
\mathrm{u}(\mathrm{t}, \mathrm{x} ; \mathrm{s})=\mathrm{P}_{\mathrm{t}-\mathrm{s}} \mathrm{u}(\mathrm{x})+\beta \int_{\mathrm{s}}^{\mathrm{t}} \int_{\mathbb{R}} \mathrm{P}_{\mathrm{t}-\mathrm{r}}(\mathrm{x}-\mathrm{z}) \mathrm{u}(\mathrm{r}, \mathrm{z}) \mathrm{W}(\mathrm{dr}, \mathrm{dz}) \tag{13}
\end{equation*}
$$

where $P_{t}(x)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$ and $P_{t} f(x)=\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}} f(y) d y$. If, furthermore, let $\mathrm{u}(\mathrm{x})=\delta(\mathrm{x}-\mathrm{y})$, we get a four-parameter field $\mathrm{u}(\mathrm{t}, \mathrm{x} ; \mathrm{s}, \mathrm{y})$ by

$$
\mathrm{u}(\mathrm{t}, \mathrm{x} ; \mathrm{s}, \mathrm{y})=\mathrm{P}_{\mathrm{t}-\mathrm{s}}(\mathrm{x}-\mathrm{y})+\beta \int_{\mathrm{s}}^{\mathrm{t}} \int_{\mathbb{R}} \mathrm{P}_{\mathrm{t}-\mathrm{r}}(\mathrm{x}-\mathrm{z}) \mathrm{u}(\mathrm{r}, \mathrm{z} ; \mathrm{s}, \mathrm{y}) \mathrm{W}(\mathrm{drdz})
$$

Chaos expansion for solution

$$
\begin{aligned}
& \mathrm{u}(\mathrm{t}, \mathrm{x} ; \mathrm{s}, \mathrm{y}) \\
= & \mathrm{P}_{\mathrm{t}-\mathrm{s}}(\mathrm{x}-\mathrm{y}) \\
+ & \sum_{\mathrm{k}=1}^{\infty} \beta^{\mathrm{k}} \int_{\Delta(\mathrm{s}, \mathrm{t}]^{\mathrm{k}}} \int_{\mathbb{R}^{\mathrm{k}}} \Pi_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}\right) \mathrm{P}_{\mathrm{t}-\mathrm{t}_{\mathrm{k}}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{k}}\right) \mathrm{W}\left(\mathrm{dt}_{\mathrm{i}} \mathrm{dx} \mathrm{x}_{\mathrm{i}}\right) \\
= & \left.\mathrm{P}_{\mathrm{t}-\mathrm{s}}(\mathrm{x}-\mathrm{y})+\sum_{\mathrm{k}=1}^{\infty} \beta^{\mathrm{k}} \mathrm{I}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{k}} \widetilde{\mathrm{t}, \mathrm{x} ; \mathrm{s}, \mathrm{y}}\right)\right)
\end{aligned}
$$

with $\Delta(\mathrm{s}, \mathrm{t}]^{\mathrm{k}}=\left\{\mathrm{s}<\mathrm{t}_{1}<\cdots<\mathrm{t}_{\mathrm{k}}<\mathrm{t}\right\}, \mathrm{x}_{0}=\mathrm{y}$, and

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{k}}\left(\mathrm{t}, \mathrm{x} ; \mathrm{s}, \mathrm{y} ; \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}} ; \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\prod_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}\right) \mathrm{P}_{\mathrm{t}-\mathrm{t}_{\mathrm{k}}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{k}}\right) \\
& \triangleq \mathrm{P}_{\mathrm{k}}(\mathrm{t}, \mathrm{x} ; \mathrm{s}, \mathrm{y} ; \tau ; \mathbf{x})
\end{aligned}
$$

The convergence of partition functions

Theorem 1

Let $\{\mathrm{u}(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{x}) \in[0,1] \times \mathbb{R}\}$ be the solution to (5) with parameter 2β, initial data $\mathrm{u}(\mathrm{x})=\delta(\mathrm{x})$. And let $\mathrm{Z}_{\mathrm{n}}^{\omega}$ be the partition function (1) of random polymer in the random environment $\{\omega(\mathrm{n}, \mathrm{x}): \mathrm{n} \geq 0, \mathrm{x} \in \mathbb{Z}\}$ with the representation (7). Then

$$
\mathrm{e}^{-\mathrm{n} \lambda\left(\beta \mathrm{n}^{-\varrho}\right)} \mathrm{Z}_{\mathrm{n}}^{\omega}\left(\beta \mathrm{n}^{-\varrho}, \mathrm{tn}, \mathrm{x} \sqrt{\mathrm{n}}\right) \longrightarrow \mathrm{u}(\mathrm{t}, \mathrm{x}) \quad \mathrm{n} \longrightarrow \infty
$$

in the sense of fdd.

Convergence of modified partition functions

Theorem 2

Let $\{u(t, x),(t, x) \in[0,1] \times \mathbb{R}\}$ be the solution to (5) with parameter
$\sqrt{2} \beta$, initial data $u(x)=\delta(x)$. Then

$$
\mathfrak{Z}_{\mathrm{n}}^{\omega}\left(\beta \mathrm{n}^{-\varrho}, \mathrm{tn}, \mathrm{x} \sqrt{\mathrm{n}}\right) \longrightarrow \mathrm{u}(\mathrm{t}, \mathrm{x}) \quad \text { as } \quad \mathrm{n} \longrightarrow \infty .
$$

Tightness

For $0 \leq \mathrm{t} \leq 1, \mathrm{x} \in \mathbb{R}$, define two-parameter fields by

$$
\mathrm{z}_{\mathrm{n}}(\mathrm{t}, \mathrm{x}):=\sqrt{\mathrm{n}} \mathcal{Z}_{\mathrm{n}}^{\omega}\left(\mathrm{nt}, \sqrt{\mathrm{n}} ; \beta \mathrm{n}^{-\varrho}\right) .
$$

Then, we have

$$
\mathrm{z}_{\mathrm{n}}(\mathrm{t}, \mathrm{x})=\mathrm{p}_{\mathrm{n}}(\mathrm{t}, \mathrm{x})+\mathrm{n}^{-\frac{1}{2}} \beta \sum_{\substack{\mathrm{s} \in[0, \mathrm{t}] \mathrm{n}^{-1} \mathbb{Z} \\ \mathrm{y} \in \mathrm{n}^{-1 / 2} \mathbb{Z}}} \mathrm{p}_{\mathrm{n}}(\mathrm{t}-\mathrm{s}, \mathrm{x}-\mathrm{y}) \overline{\mathrm{z}}_{\mathrm{n}}(\mathrm{~s}, \mathrm{y}) \omega_{\mathrm{n}}(\mathrm{~s}, \mathrm{y})
$$

where $\omega_{\mathrm{n}}(\mathrm{s}, \mathrm{y})=\mathrm{n}^{-\varrho} \omega(\mathrm{ns}, \sqrt{\mathrm{n}} \mathrm{y}) . \overline{\mathrm{z}}_{\mathrm{n}}(\mathrm{s}, \mathrm{y})$ corresponding to $\overline{\bar{Z}}_{\mathrm{n}}^{\omega}(\mathrm{k}, \mathrm{x} ; \beta)$, and $\overline{\mathfrak{Z}}_{\mathrm{n}}^{\omega}(\mathrm{k}, \mathrm{x} ; \beta)=\frac{1}{2}\left[\mathfrak{Z}_{\mathrm{n}}^{\omega}(\mathrm{k}+1, \mathrm{x} ; \beta)+\mathfrak{Z}_{\mathrm{n}}^{\omega}(\mathrm{k}-1, \mathrm{x} ; \beta)\right]$.

Tightness

Theorem 3

Let $\epsilon>0$ be small enough. For any $\mathrm{n} \in \mathbb{N}, \mathrm{t}, \mathrm{s} \in[\epsilon, 1]$ and $\mathrm{x}, \mathrm{y} \in \mathbb{R}$, for some $\mathrm{q}>1$, there exist constant $\mathrm{C}_{\epsilon}>0,0<\iota<\mathrm{H}$, such that

$$
\begin{equation*}
\mathbb{E}\left|z_{\mathrm{n}}(\mathrm{t}, \mathrm{x})-\mathrm{z}_{\mathrm{n}}(\mathrm{~s}, \mathrm{y})\right|^{2 \mathrm{q}} \leq \mathrm{C}_{\epsilon}\left(|\mathrm{t}-\mathrm{s}|^{\mathrm{Hq}}+|\mathrm{x}-\mathrm{y}|^{\iota \mathrm{q}}\right) . \tag{14}
\end{equation*}
$$

Moreover, if 2 q -order moment of ω is finite for $\mathrm{q}>\frac{2}{\mathrm{H}}$, then the family of process $\left\{z_{n}\right\}_{n=1}^{\infty}$ is tight in $C([\epsilon, 1], \mathbb{R})$.

Convergence of U-statistics in correlated case

weighted U -statistics $\mathcal{S}_{\mathrm{k}}^{\mathrm{n}}$ by

$$
\begin{equation*}
\mathcal{S}_{\mathrm{k}}^{\mathrm{n}}(\mathrm{f})=2^{\mathrm{k} / 2} \sum_{\mathbf{i} \in \mathrm{E}_{\mathrm{k}}^{\mathrm{n}}} \sum_{\mathbf{x} \in \mathbb{Z}^{k}} \overline{\mathrm{f}}_{\mathrm{n}}\left(\frac{\mathbf{i}}{\mathrm{n}}, \frac{\mathbf{x}}{\sqrt{\mathrm{n}}}\right) \omega(\mathbf{i}, \mathbf{x}) 1_{\{\mathbf{i} \leftrightarrow \mathbf{x}\}} . \tag{15}
\end{equation*}
$$

where $\overline{\mathrm{f}}_{\mathrm{n}}$ is the conditional expectation of $\mathrm{f} \in \mathrm{L}^{2}\left([0,1]^{\mathrm{k}} \times \mathbb{R}^{\mathrm{k}}\right)$ with respect to the sigma algebra generated by

$$
\begin{gathered}
\mathfrak{R}_{\mathrm{k}}^{\mathrm{n}} \triangleq\left\{\left(\frac{\mathbf{i}-1}{\mathrm{n}}, \frac{\mathbf{i}}{\mathrm{n}}\right] \times\left(\frac{\mathbf{x}-1}{\sqrt{\mathrm{n}}}, \frac{\mathbf{x}+1}{\sqrt{\mathrm{n}}}\right]: \mathbf{i} \in \mathrm{D}_{\mathrm{k}}^{\mathrm{n}}, \mathbf{i} \leftrightarrow \mathbf{x}\right\} . \\
\overline{\mathrm{f}}_{\mathrm{n}}(\mathbf{t}, \mathbf{x})=\frac{1}{|\mathrm{R}|} \int_{\mathrm{R}} \mathrm{fdtd} \mathbf{x}, \quad(\mathbf{t}, \mathbf{x}) \in \mathrm{R} \in \mathfrak{R}_{\mathrm{k}}^{\mathrm{n}},
\end{gathered}
$$

Convergence of U-statistics in correlated case

Theorem 4

Let $f \in \mathcal{H}^{k}$. Then, as $n \rightarrow \infty$,

$$
\begin{equation*}
n^{\frac{-(H+1) k}{2}} \mathcal{S}_{k}^{n}(f) \xrightarrow{D} \int_{[0,1]^{k}} \int_{\mathbb{R}^{k}} f(\mathbf{t}, \mathbf{x}) W^{\otimes k}(d \mathbf{t} d \mathbf{x})=I_{k}(f), \tag{16}
\end{equation*}
$$

where $W(d t d x)$ is fractional Gaussian noise (??) and $I_{k}, k=1,2 \ldots$, is k-multiple integral.

The proof is more complicated than that of the case i.i.d. environment since the correlation exists between two disjoint spatial areas.

The way to Theorem 4

- $k=1$: Show it is true for $f=1_{\left\{t_{0} \leq t \leq t_{1}, x_{0} \leq x \leq x_{1}\right\}}$ for some $0 \leq t_{0}<$ $t_{1} \leq 1, x_{0}<x_{1}$. In this case,

$$
\mathcal{S}_{1}^{n}(f)=2^{1 / 2} \sum_{\left\{i \in E_{k}^{n}, n t_{0} \leq i \leq n t_{1}\right\}} \sum_{\left\{x \in \mathbb{Z}, \sqrt{n} x_{0} \leq x \leq \sqrt{n} x_{1}\right\}} \omega(i, x) 1_{\{i \leftrightarrow x\}}
$$

We take the method used in the proof of CLT in this talk.

with

$$
g(t, x)=1_{\left\{t_{0} \leq t \leq t_{1}, x_{0} \leq x \leq x_{1}\right\}}(t, x) \in \mathcal{L}_{H}
$$

The way to Theorem 4

- $k=1$: Show it is true for $f=1_{\left\{t_{0} \leq t \leq t_{1}, x_{0} \leq x \leq x_{1}\right\}}$ for some $0 \leq t_{0}<$ $t_{1} \leq 1, x_{0}<x_{1}$. In this case,

$$
\mathcal{S}_{1}^{n}(f)=2^{1 / 2} \sum_{\left\{i \in E_{k}^{n}, n t_{0} \leq i \leq n t_{1}\right\}} \sum_{\left\{x \in \mathbb{Z}, \sqrt{n} x_{0} \leq x \leq \sqrt{n} x_{1}\right\}} \omega(i, x) 1_{\{i \leftrightarrow x\}}
$$

We take the method used in the proof of CLT in this talk.

- $k>1$: We show

$$
n^{-\frac{(H+1) k}{2}} \mathcal{S}_{k}^{n}\left(g^{\otimes k}\right) \longrightarrow I_{k}\left(g^{\otimes k}\right) \quad \text { as } \quad n \longrightarrow \infty
$$

with

$$
g(t, x)=1_{\left\{t_{0} \leq t \leq t_{1}, x_{0} \leq x \leq x_{1}\right\}}(t, x) \in \mathcal{L}_{H}
$$

for $\forall t_{0} \leq t_{1}, x_{0} \leq x_{1}$ by induction.

The way to Theorem 4

- We show it holds for $f \in \mathcal{L}_{H}^{k}$ of the form $f=g_{1}^{\otimes k_{1}} \otimes \cdots \otimes g_{s}^{\otimes k_{s}}$ with g_{1}, \ldots, g_{s} being indicators as $k=1$ of some disjoint rectangles, $k_{1}+\cdots+k_{s}=k, k_{1}>0, \ldots, k_{s}>0, s=2, \ldots$.
- We need to show for $s=2$

The way to Theorem 4

- We show it holds for $f \in \mathcal{L}_{H}^{k}$ of the form $f=g_{1}^{\otimes k_{1}} \otimes \cdots \otimes g_{s}^{\otimes k_{s}}$ with g_{1}, \ldots, g_{s} being indicators as $k=1$ of some disjoint rectangles, $k_{1}+\cdots+k_{s}=k, k_{1}>0, \ldots, k_{s}>0, s=2, \ldots$.
- We need to show for $s=2$

$$
\begin{aligned}
& n^{-\frac{(H+1)(m+l)}{2}} \mathcal{S}_{m+l}^{n}\left(f^{\otimes m} \otimes g^{\otimes l}\right) \\
\longrightarrow & I_{m+l-1}\left(f^{\otimes m} \otimes g^{\otimes(l-1)}\right) I_{1}(g) \\
- & m I_{m+l-2}\left(f^{\otimes(m-1)} \otimes g^{\otimes(l-1)}\right)<f, g>_{H} \\
- & (l-1) I_{m+l-2}\left(f^{\otimes m} \otimes g^{\otimes(l-2)}\right)\|g\|_{H}^{2} .
\end{aligned}
$$

The way to Theorem 4

Lemma

For all fixed $k, n, \mathcal{S}_{k}^{n}(f)$ is linear in h with probability one, and, by the definition of ω, for $k_{1} \neq k_{2}, \mathbb{E}_{\mathbb{Q}}\left(\mathcal{S}_{k_{1}}^{n}\left(f_{1}\right) \mathcal{S}_{k_{2}}^{n}\left(f_{2}\right)\right)=0$ for $f_{i} \in \mathcal{L}_{H}^{\otimes k_{i}}, i=$ 1,2. Furthermore, for $k_{1}=k_{2}=k$, we have

$$
\mathbb{E}_{\mathbb{Q}}\left[\left(\mathcal{S}_{k}^{n}(f)\right)^{2}\right] \leq C \lambda^{k} n^{(1+H) k}\|f\|_{\mathcal{H}^{k}}^{2}
$$

for some generic positive constant C.

- Based on the lemma and previous disscusion for general $f \in \mathcal{L}_{H}^{k}$

The way to Theorem 4

Lemma

For all fixed $k, n, \mathcal{S}_{k}^{n}(f)$ is linear in h with probability one, and, by the definition of ω, for $k_{1} \neq k_{2}, \mathbb{E}_{\mathbb{Q}}\left(\mathcal{S}_{k_{1}}^{n}\left(f_{1}\right) \mathcal{S}_{k_{2}}^{n}\left(f_{2}\right)\right)=0$ for $f_{i} \in \mathcal{L}_{H}^{\otimes k_{i}}, i=$ 1, 2. Furthermore, for $k_{1}=k_{2}=k$, we have

$$
\mathbb{E}_{\mathbb{Q}}\left[\left(\mathcal{S}_{k}^{n}(f)\right)^{2}\right] \leq C \lambda^{k} n^{(1+H) k}\|f\|_{\mathcal{H}^{k}}^{2}
$$

for some generic positive constant C.

- Based on the lemma and previous disscusion for general $f \in \mathcal{L}_{H}^{k}$

$$
n^{\frac{-(H+1) k}{2}} \mathcal{S}_{k}^{n}(f) \xrightarrow{D} \int_{[0,1]^{k}} \int_{\mathbb{R}^{k}} f(\mathbf{t}, \mathbf{x}) W^{\otimes k}(d \mathbf{t} d \mathbf{x})=I_{k}(f),
$$

is true.

Convergence of $\mathcal{Z}_{n}^{\omega}\left(\beta n^{-\varrho}\right)$

It is easy to get

$$
\begin{aligned}
\mathfrak{Z}_{n}^{\omega}\left(\beta n^{-\varrho}, t n, x \sqrt{n}\right) & =1+\sum_{k=1}^{n} \beta^{k} n^{-k \varrho} \sum_{\mathbf{i} \in D_{k}^{n}} \sum_{\mathbf{x} \in \mathbb{Z}^{k}}\left[\prod_{j=1}^{k} \omega\left(i_{j}, x_{j}\right) p_{k}(\mathbf{i}, \mathbf{x})\right] \\
& =1+\sum_{k=1}^{n} 2^{k} \beta^{k} n^{-\frac{k(H+1)}{2}} \mathcal{S}_{k}^{n}\left(n^{\frac{k}{2}} p_{k}^{n}\right) \\
& \longrightarrow 1+\sum_{k=1}^{\infty} 2^{k} \beta^{k} I_{k}\left(p_{k}(t, x, \cdot)\right),
\end{aligned}
$$

where $p(t, x)$ is Brownian motion density and the last expression is just the chaos expansion of mild solution $u(t, x)$ to stochastic heat equation (5) driven by fractional Gaussian noise.

Hermite expansion

Let

$$
\begin{equation*}
\tilde{\omega}_{n}(i, x)=\frac{e^{\beta n^{-\varrho} \omega(i, x)-\lambda\left(\beta n^{-\varrho}\right)}-1}{\beta n^{-\varrho}} \triangleq F^{(n)}(\omega(i, x)), \tag{17}
\end{equation*}
$$

where $\lambda(\cdot)$ is the Log-Laplace of $\omega(i, x)$. Thus, we get a mean zero stationary field $\tilde{\omega}_{n}(i, x)$ (n-dependent), which is a non-linear functionals of $\omega(i, x)$. The covariance of $\tilde{\omega}_{n}(i, x)$ and $\tilde{\omega}_{n}(i, y)$ is given by

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}}\left(\tilde{\omega}_{n}(i, x) \tilde{\omega}_{n}(i, y)\right) & =\frac{1}{\beta^{2} n^{-2 \varrho}} \mathbb{E}_{\mathbb{Q}}\left\{e^{\beta n^{-\varrho}\left(\omega_{n}(i, x)+\omega_{n}(i, y)\right)-2 \lambda\left(\beta n^{-\varrho}\right)}-1\right\} \\
& =\gamma(x-y)(1+o(1)):=\tilde{\gamma}_{n}(x-y) .
\end{aligned}
$$

Hermite expansion

We can expand $F^{(n)}(z), z \in \mathbb{R}$, by

$$
F^{(n)}(z)=\frac{1}{\beta n^{-\varrho}} \sum_{k=1}^{\infty}\left(\beta n^{-\varrho}\right)^{k} A_{k}(z),
$$

where $A_{k}(z), k \in \mathbb{N}$, is the system of Appell polynomials related to the distribution of ω with $A_{0}=1$. Let $c_{k}, k \in \mathbb{N}$, be the expansion coefficients of F^{n} with respect to Appell system $A_{k}, k \in \mathbb{N}$. We remark that the Appell rank, which is the least index k such that $c_{k} \neq 0$, of $F^{(n)}$ is 1 . Now by (17), we have $e^{-n \lambda\left(\beta n^{-e}\right)} \mathbb{Z}_{n}^{\omega}=e^{-n \lambda\left(\beta n^{-\varrho}\right)} \mathbb{E}_{\mathbb{Q}} e^{\beta n^{-e} \sum_{i=1}^{n} \omega\left(i, S_{i}\right)}=\mathbb{E}_{\mathbb{Q}} \prod_{i=1}^{n}\left(1+\beta n^{-\varrho} \tilde{\omega}_{n}\left(i, S_{i}\right)\right)$.

Modified partition functions for $\tilde{\omega}_{n}(i, x)$

$$
\begin{aligned}
\mathfrak{Z}_{n}^{\tilde{\omega}_{n}}\left(\beta n^{-\varrho}\right) & =\mathbb{E}_{\mathbb{P}}\left[\prod_{i=1}^{n}\left(1+\beta n^{-\varrho} \tilde{\omega}_{n}\left(i, S_{i}\right)\right)\right] \\
& =\mathbb{E}_{\mathbb{P}}\left[1+\sum_{k=1}^{n} \beta^{k} n^{-k \varrho} \sum_{\mathbf{i} \in D_{k}^{n}} \prod_{j=1}^{k} \tilde{\omega}_{n}\left(i_{j}, S_{i_{j}}\right)\right] \\
& =1+\sum_{k=1}^{n} \beta^{k} n^{-k \varrho} \sum_{\mathbf{i} \in D_{k}^{n}} \sum_{\mathbf{x} \in \mathbb{Z}^{k}}\left[\prod_{j=1}^{k} \tilde{\omega}_{n}\left(i_{j}, x_{j}\right) p_{k}(\mathbf{i}, \mathbf{x})\right],
\end{aligned}
$$

and the corresponding weighted $U-$ statistics \mathcal{S}_{k}^{n} by

$$
\mathcal{S}_{k}^{n}\left(f, \tilde{\omega}_{n}\right)=2^{k / 2} \sum_{\mathbf{i} \in E_{k}^{n}} \sum_{\mathbf{x} \in \mathbb{Z}^{k}} \bar{f}_{n}\left(\frac{\mathbf{i}}{n}, \frac{\mathbf{x}}{\sqrt{n}}\right) \tilde{\omega}_{n}(\mathbf{i}, \mathbf{x}) 1_{\{\mathbf{i} \leftrightarrow \mathbf{x}\}} .
$$

Modified partition functions for $\tilde{\omega}_{n}(i, x)$

Theorem 5

For $f \in \mathcal{L}_{H}^{\otimes k}, k \in \mathbb{N}, \tilde{\omega}_{n}$ is defined by (17). Then

$$
n^{\frac{-k(H+1)}{2}} \mathcal{S}_{k}^{n}\left(f, \tilde{\omega}_{n}\right) \xrightarrow{D} I_{k}(f), \quad \text { as } \quad n \rightarrow \infty .
$$

Sketch of the proof: We only show it holding for $k=1$ and f of the form $f(t, x)=1_{\left\{t_{0} \leq t \leq t_{1}, x_{0} \leq x \leq x_{1}\right\}}$ for some $0 \leq t_{0} \leq t_{1}, x_{0} \leq x_{1} \in \mathbb{R}$ as before.

$$
\mathcal{S}_{1}^{n}\left(f, \tilde{\omega}_{n}\right)=2^{1 / 2} \sum_{i \in E_{k}^{n}, n t_{0} \leq i \leq n t_{1}} \sum_{x \in \mathbb{Z}, \sqrt{n} x_{0} \leq x \leq \sqrt{n} x_{1}} \tilde{\omega}_{n}(i, x) 1_{\{i \leftrightarrow x\}}
$$

It is easy to show that
$n^{-(H+1)} \mathbb{E}_{\mathbb{Q}}\left[\left(\mathcal{S}_{1}^{n}\left(f, \tilde{\omega}_{n}\right)\right)^{2}\right] \rightarrow \frac{\lambda\left(t_{1}-t_{0}\right)\left(x_{1}-x_{0}\right)^{2 H}}{H(2 H-1)}=\mathbb{E}_{H}\left(\int_{0}^{1} \int_{R} f(t, x) W(d t a\right.$

Modified partition functions for $\tilde{\omega}_{n}(i, x)$

Sketch of the proof: By following Dobrushin's lines (see[?]) to show the normal asymptotics.

$$
c_{1}^{(n)}=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} H_{1}(x) \frac{e^{\beta n^{-\varrho} x-\beta^{2} n^{-2 \varrho} / 2}-1}{\beta n^{-\varrho}} e^{-\frac{x^{2}}{2}} d x=1 \neq 0 .
$$

We split $n \frac{-(H+1)}{2} \mathcal{S}_{1}^{n}\left(f, \tilde{\omega}_{n}\right)$ as the sum of $n \frac{-(H+1)}{2} \mathcal{S}_{1}^{n}(f)$ and $\mathcal{R}_{n}^{\tilde{\omega}_{n}}$.

$$
\mathcal{R}_{n}^{\tilde{\omega}_{n}}=2^{1 / 2} \sum_{i \in E_{k}^{n}, n t_{0} \leq i \leq n t_{1}} \sum_{x \in \mathbb{Z}, \sqrt{n} x_{0} \leq x \leq \sqrt{n} x_{1}} \sum_{j=2}^{\infty} c_{j}^{(n)} H_{j}(\omega(i, x)) 1_{\{i \leftrightarrow x\}}
$$

Then, by gaussian property,

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}}\left[\mathcal{R}_{n}^{\tilde{m}_{n}}\right]^{2} & =2 \sum_{i \in E_{k}^{n}, n n_{0} \leq i \leq n t_{1}} \mathbb{E}_{\mathbb{Q}}\left[\sum_{x \in \mathbb{Z}, \sqrt{n x_{0}} \leq x \leq \sqrt{n x_{1}}} \sum_{j=2}^{\infty} c_{j}^{(n)} H_{j}(\omega(i, x)) 1_{\{i \leftrightarrow x\}}\right]^{2} \\
& =2 \sum_{i \in E_{k}^{n}, n_{0} \leq i \leq n_{1}} \sum_{j=2}^{\infty}\left(c_{j}^{(n)}\right)^{2} \mathbb{E}_{\mathbb{Q}}\left[\sum_{x \in \mathbb{Z}, \sqrt{n x_{0}} \leq x \leq \sqrt{n x_{1}}} H_{j}(\omega(i, x)) 1_{\{i \leftrightarrow x\}}\right]^{2} \\
& =\sum_{j=2}^{\infty}\left(c_{j}^{(n)}\right)^{2} j!M\left[N \gamma^{j}(0)+\sum_{l=1}^{N-1}(N-l) \gamma^{j}(l)\right]
\end{aligned}
$$

with $M=\left\lfloor n\left(t_{1}-t_{0}\right)\right\rfloor$. The rhs of the above identity is bounded by

$$
\begin{aligned}
& M N \sum_{j=2}^{\infty}\left(c_{j}^{(n)}\right)^{2} j!\left[\gamma^{j}(0)+\sum_{l=1}^{N-1} \gamma^{j}(l)\right] \sim M N \sum_{j=2}^{\infty}\left(c_{j}^{(n)}\right)^{2} j!\left[\gamma^{j}(0)+\sum_{l=1}^{N-1} \gamma^{j}(l)\right] \\
\leq & C M N \sum_{j=2}^{\infty}\left(c_{j}^{(n)}\right)^{2} j!N^{1+j(1-2 \alpha)} .
\end{aligned}
$$

Whence we have
$n^{-(H+1)} \mathbb{E}_{\mathbb{Q}}\left[\mathcal{R}_{n}^{\tilde{\omega}_{n}}\right]^{2} \sim C\left(t_{1}-t_{0}\right)\left(x_{1}-x_{0}\right)^{2} \sum_{j=2}^{\infty}\left(c_{j}^{(n)}\right)^{2} j!n^{(j-1)(H-1)}\left(x_{1}-x_{0}\right)^{2 j(H-1)}$
and

$$
n^{-\frac{H+1}{2}} \mathcal{S}_{1}^{n}\left(h, \tilde{\omega}_{n}\right) \xrightarrow{D} I_{1}(h)
$$

for $h=1_{\left\{t_{0} \leq t \leq t_{1}, x_{0} \leq x \leq x_{1}\right\}}$ as $n \longrightarrow \infty$ by Slutsky's theorem again.

Thank You!

G-L Rang

