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Introduction

Random Matrix Theory

Early study of RMT motivated by analysis of
high-dimensional data: Wishart’s (1928)

Large covariance matrices whose statistical properties are
mainly determined by eigenvalues and eigenvectors from
the point view of a principal components analysis.

More applications

Heavy-nuclei atoms (Wigner, 1955), number theory
(Mezzadri and Snaith, 2005), quantum mechanics (Mehta,
2005), condensed matter physics (Forrester, 2010),
wireless communications (Couillet and Debbah, 2011).
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Introduction

Tracy-Widom laws by Tracy and Widom (1994, 1996)

– The largest eigenvalues of the three Hermitian matrices
(Gaussian orthogonal ensemble, Gaussian unitary
ensemble and Gaussian symplectic ensemble) converge to
some special distributions that are now known as the
Tracy-Widom laws.

The Tracy-Widom laws have found their applications in the
study of problems such as

– the longest increasing subsequence; Baik et al. (1999)

– combinatorics, growth processes, random tilings and the
determinantal point processes; Tracy and Widom (2002),
and Johansson (2007)

– the largest eigenvalues in the high-dimensional statistics;
Johnstone (2001, 2008), Jiang (2009)
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Some recent research focuses on the universality of the
largest eigenvalues of matrices with non-Gaussian entries

– see, for example, Tao and Vu (2011), Erdős et al. (2012)
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Introduction

Consider a non-Hermitian matrix M with eigenvalues
z1, · · · , zn:

– The largest absolute values of the eigenvalues
max1≤j≤n |zj | is refereed to as the spectral radius of M.

The spectral radii of the real, complex and symplectic
Ginibre ensembles are investigated by Rider (2003, 2004)
and Rider and Sinclair (2014)

– the spectral radius for the complex Ginibre ensemble
converges to the Gumbel distribution.

This indicates that non-Hermitian matrices exhibit
quite different behaviors from Hermitian matrices in
terms of the limiting distribution for the largest
absolute values of the eigenvalues
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Jiang and Qi (2017) studies the largest radii of three
rotation-invariant and non-Hermitian random matrices:

– the spherical ensemble,

– the truncation of circular unitary ensemble, and

– the product of independent complex Ginibre ensembles.

The spectral radii converge to the Gumbel distribution and
some new distributions.
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Truncation of the circular unitary ensemble

The circular unitary ensemble
The circular unitary ensemble is an n × n random matrix
with Haar measure on the unitary group, and it is also
called Haar-invariant unitary matrix.

Let U be an n × n circular unitary matrix.

The n eigenvalues of the circular unitary matrix U are
distributed over {z ∈ C : |z| = 1} , where C is the complex
plane, and their joint density function is given by

1
n!(2π)n ·

∏
1≤j<k≤p

|zj − zk |2;

see, e.g., Hiai and Petz (2000).
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Truncation of the circular unitary ensemble

Truncation

For n > p ≥ 1, write

U =

(
A C∗

B D

)
where A, as a truncation of U, is a p × p submatrix.

Let z1, · · · , zp be the eigenvalues of A. Then their density
function is

C ·
∏

1≤j<k≤p

|zj − zk |2
p∏

j=1

(1− |zj |2)n−p−1 (1)

where C is a normalizing constant. See, e.g., Zyczkowski
and Sommers (2000).
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Truncation of the circular unitary ensemble

Empirical distribution for truncation ensemble

Assume p = pn depends on n and set c = limn→∞
p
n .

The empirical distribution of zi ’s converges to the
distribution with density proportional to 1

(1−|z|2)2 for |z| ≤ c

if c ∈ (0,1). Życzkowski and Sommers (2000)

The empirical distribution goes to the circular law and the
arc law as c = 0 and c = 1, respectively. Dong et al.
(2012).
See also Diaconis and Evans (2001) and Jiang (2009,
2010) and references therein for more results.
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Truncation of the circular unitary ensemble

Spectral radius for truncation ensemble

The spectral radius max1≤j≤p |zj | for the truncated circular
unitary ensemble converges to the Gumbel distribution
when the dimension of the truncated truncated circular
unitary matrix is of the same order as the dimension of the
original circular unitary matrix.

– Jiang and Qi (2017)
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Truncation of the circular unitary ensemble

Theorem 1
Assume that z1, · · · , zp have density as in (1) and there exist
constants h1,h2 ∈ (0,1) such that h1 <

pn
n < h2 for all n ≥ 2.

Then (max1≤j≤p |zj | − An)/Bn converges weakly to the Gumbel
distribution Λ(x) = exp(−e−x ), x ∈ R, where
An = cn + 1

2(1− c2
n)1/2(n − 1)−1/2an,

Bn = 1
2(1− c2

n)1/2(n − 1)−1/2bn,

cn =
(pn − 1

n − 1

)1/2
, bn = b

( nc2
n

1− c2
n

)
, an = a

( nc2
n

1− c2
n

)
with

a(y) = (log y)1/2 − (log y)−1/2 log(
√

2π log y), b(y) = (log y)−1/2

for y > 3.
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Introduction

We consider heavily truncated and lightly truncated circular
unitary ensembles and investigate the limiting distribution
of the spectral radii for those truncated circular unitary
ensembles. Our results complement that in Jiang and Qi
(2017).

Consider the pn × pn submatrix A, truncated from a n × n
circular unitary matrix U

Denote the pn eigenvalues as z1, · · · , zpn with the joint
density function given by (1).
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pn →∞ and
pn

n
→ 0 as n→∞; (2)

n − pn

(log n)3 →∞ and
n − pn

n
→ 0 as n→∞; (3)

n − pn →∞ and
n − pn

log n
→ 0 as n→∞; (4)

n − pn = k ≥ 1 is fixed integer. (5)
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Theorem 2
Under condition (2) or (3), (max1≤j≤p |zj | − An)/Bn converges
weakly to the Gumbel distribution Λ(x) = exp(−e−x ), x ∈ R,
where An and Bn are defined as in Theorem 1.
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Theorem 3
Under condition (4), (max1≤j≤p |zj | − An)/Bn converges weakly
to the Gumbel distribution Λ(x) = exp(−e−x ), x ∈ R, where
An = (1− an/n)1/2 and Bn = an/(2nkn), where an is given by

1
(kn − 1)!

∫ an

0
tkn−1e−tdt =

kn

n
.

where kn = n − pn.
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Theorem 4

Under condition (5), 2n1+1/k

((k+1)!)1/k (max1≤j≤p |zj | − 1) converges
weakly to the reverse Weibull distribution Wk (x) defined as

Wk (x) =

{
exp(−(−x)k ), x ≤ 0;
1, x > 0.

Gap:
It is obvious that the case when kn = n− pn is of order between
log n and (log n)3 has not been covered in Theorems 1 to 4.

We conjecture that max1≤j≤pn |zj |, after properly normalized,
converges in distribution to the Gumbel distribution in this case.
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Determinantal point process

Independence of radius

Lemma 5
Assume the density function of (Z1, · · · ,Zn) ∈ Cn is
proportional to

∏
1≤j<k≤n |zj − zk |2 ·

∏n
j=1 ϕ(|zj |), where

ϕ(x) ≥ 0 for all x ≥ 0. Let Y1, · · · ,Yn be independent r.v.’s such
that the density of Yj is proportional to y2j−1ϕ(y)I(y ≥ 0) for
each 1 ≤ j ≤ n. Then,

g(|Z1|, · · · , |Zn|)
d
= g(Y1, · · · ,Yn)

for any symmetric function g(y1, · · · , yn).

We have
max
1≤j≤n

|zj |
d
= max

1≤j≤n
Yj .
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