Spectral Radii of Truncated Circular Unitary Matrices

Yongcheng Qi

University of Minnesota Duluth
http://www.d.umn.edu/~yqi/
yqi@d.umn.edu

The 13th International Workshop on Markov Processes and Related Topics
July 17-July 21, 2017
Wuhan, Hubei Province, China
Outline

1. Introduction
2. Truncation of the circular unitary ensemble
3. Main results
4. Determinantal point process
Introduction

Truncation of the circular unitary ensemble

Main results

Determinantal point process
Random Matrix Theory

- Early study of RMT motivated by analysis of high-dimensional data: Wishart’s (1928)
 Large covariance matrices whose statistical properties are mainly determined by eigenvalues and eigenvectors from the point view of a principal components analysis.

- More applications
 Heavy-nuclei atoms (Wigner, 1955), number theory (Mezzadri and Snaith, 2005), quantum mechanics (Mehta, 2005), condensed matter physics (Forrester, 2010), wireless communications (Couillet and Debbah, 2011).
Tracy-Widom laws by Tracy and Widom (1994, 1996)
- The largest eigenvalues of the three Hermitian matrices
 (Gaussian orthogonal ensemble, Gaussian unitary
 ensemble and Gaussian symplectic ensemble) converge to
 some special distributions that are now known as the
 Tracy-Widom laws.

The Tracy-Widom laws have found their applications in the
study of problems such as
- the longest increasing subsequence; Baik et al. (1999)
- combinatorics, growth processes, random tilings and the
determinantal point processes; Tracy and Widom (2002),
and Johansson (2007)
- the largest eigenvalues in the high-dimensional statistics;
Some recent research focuses on the universality of the largest eigenvalues of matrices with non-Gaussian entries – see, for example, Tao and Vu (2011), Erdős et al. (2012)
Consider a non-Hermitian matrix \mathbf{M} with eigenvalues z_1, \cdots, z_n:

- The largest absolute values of the eigenvalues $\max_{1 \leq j \leq n} |z_j|$ is refereed to as the spectral radius of \mathbf{M}.

The spectral radii of the real, complex and symplectic Ginibre ensembles are investigated by Rider (2003, 2004) and Rider and Sinclair (2014)

- the spectral radius for the complex Ginibre ensemble converges to the Gumbel distribution.

This indicates that non-Hermitian matrices exhibit quite different behaviors from Hermitian matrices in terms of the limiting distribution for the largest absolute values of the eigenvalues.
Jiang and Qi (2017) studies the largest radii of three rotation-invariant and non-Hermitian random matrices:

– the spherical ensemble,

– the truncation of circular unitary ensemble, and

– the product of independent complex Ginibre ensembles.

The spectral radii converge to the Gumbel distribution and some new distributions.
Outline

1. Introduction

2. Truncation of the circular unitary ensemble

3. Main results

4. Determinantal point process
The circular unitary ensemble

- The circular unitary ensemble is an $n \times n$ random matrix with Haar measure on the unitary group, and it is also called Haar-invariant unitary matrix.

- Let U be an $n \times n$ circular unitary matrix.

The n eigenvalues of the circular unitary matrix U are distributed over $\{z \in \mathbb{C} : |z| = 1\}$, where \mathbb{C} is the complex plane, and their joint density function is given by

$$\frac{1}{n!(2\pi)^n} \cdot \prod_{1 \leq j < k \leq p} |Z_j - Z_k|^2;$$

see, e.g., Hiai and Petz (2000).
Truncation

For \(n > p \geq 1 \), write

\[
U = \begin{pmatrix} A & C^* \\ B & D \end{pmatrix}
\]

where \(A \), as a truncation of \(U \), is a \(p \times p \) submatrix.

Let \(z_1, \cdots, z_p \) be the eigenvalues of \(A \). Then their density function is

\[
C \cdot \prod_{1 \leq j < k \leq p} |z_j - z_k|^2 \prod_{j=1}^{p} (1 - |z_j|^2)^{n-p-1}
\]

(1)

where \(C \) is a normalizing constant. See, e.g., Zyczkowski and Sommers (2000).
Empirical distribution for truncation ensemble

Assume $p = p_n$ depends on n and set $c = \lim_{n \to \infty} \frac{p}{n}$.

- The empirical distribution of z_i’s converges to the distribution with density proportional to $\frac{1}{(1-|z|^2)^2}$ for $|z| \leq c$ if $c \in (0, 1)$. Życzkowski and Sommers (2000)

- The empirical distribution goes to the circular law and the arc law as $c = 0$ and $c = 1$, respectively. Dong et al. (2012).
See also Diaconis and Evans (2001) and Jiang (2009, 2010) and references therein for more results.
Spectral radius for truncation ensemble

The spectral radius \(\max_{1 \leq j \leq p} |z_j| \) for the truncated circular unitary ensemble converges to the Gumbel distribution when the dimension of the truncated truncated circular unitary matrix is of the same order as the dimension of the original circular unitary matrix.

– Jiang and Qi (2017)
Theorem 1

Assume that \(z_1, \ldots, z_p \) have density as in (1) and there exist constants \(h_1, h_2 \in (0, 1) \) such that \(h_1 < \frac{p_n}{n} < h_2 \) for all \(n \geq 2 \). Then \(\max_{1 \leq j \leq p} |z_j| - A_n / B_n \) converges weakly to the Gumbel distribution \(\Lambda(x) = \exp(-e^{-x}), \, x \in \mathbb{R}, \) where

\[
A_n = c_n + \frac{1}{2} (1 - c_n^2)^{1/2} (n - 1)^{-1/2} a_n, \\
B_n = \frac{1}{2} (1 - c_n^2)^{1/2} (n - 1)^{-1/2} b_n,
\]

\[
c_n = \left(\frac{p_n - 1}{n - 1} \right)^{1/2}, \quad b_n = b\left(\frac{nc_n^2}{1 - c_n^2} \right), \quad a_n = a\left(\frac{nc_n^2}{1 - c_n^2} \right)
\]

with

\[
a(y) = (\log y)^{1/2} - (\log y)^{-1/2} \log(\sqrt{2\pi} \log y), \quad b(y) = (\log y)^{-1/2}
\]

for \(y > 3 \).
Outline

1. Introduction
2. Truncation of the circular unitary ensemble
3. Main results
4. Determinantal point process
We consider heavily truncated and lightly truncated circular unitary ensembles and investigate the limiting distribution of the spectral radii for those truncated circular unitary ensembles. Our results complement that in Jiang and Qi (2017).

Consider the $p_n \times p_n$ submatrix A, truncated from a $n \times n$ circular unitary matrix U.

Denote the p_n eigenvalues as z_1, \ldots, z_{p_n} with the joint density function given by (1).
Spectral Radii of Truncated Circular Unitary Matrices

Introduction

\[p_n \to \infty \text{ and } \frac{p_n}{n} \to 0 \text{ as } n \to \infty; \]
\[\frac{n - p_n}{(\log n)^3} \to \infty \text{ and } \frac{n - p_n}{n} \to 0 \text{ as } n \to \infty; \]
\[n - p_n \to \infty \text{ and } \frac{n - p_n}{\log n} \to 0 \text{ as } n \to \infty; \]
\[n - p_n = k \geq 1 \text{ is fixed integer.} \]
Theorem 2

Under condition (2) or (3), $(\max_{1 \leq j \leq p} |z_j| - A_n)/B_n$ converges weakly to the Gumbel distribution $\Lambda(x) = \exp(-e^{-x})$, $x \in \mathbb{R}$, where A_n and B_n are defined as in Theorem 1.
Theorem 3

Under condition (4), \((\max_{1 \leq j \leq p} |z_j| - A_n) / B_n \) converges weakly to the Gumbel distribution \(\Lambda(x) = \exp(-e^{-x}) \), \(x \in \mathbb{R} \), where

\[
A_n = (1 - a_n/n)^{1/2} \quad \text{and} \quad B_n = a_n/(2nk_n),
\]

where \(a_n \) is given by

\[
1/(k_n - 1)! \int_0^{a_n} t^{k_n-1} e^{-t} dt = \frac{k_n}{n}.
\]

where \(k_n = n - p_n \).
Theorem 4

Under condition (5), \(\frac{2n^{1+1/k}}{((k+1)!)^{1/k}} (\max_{1 \leq j \leq p} |z_j| - 1) \) converges weakly to the reverse Weibull distribution \(W_k(x) \) defined as

\[
W_k(x) = \begin{cases}
\exp(-(-x)^k), & x \leq 0; \\
1, & x > 0.
\end{cases}
\]

Gap:
It is obvious that the case when \(k_n = n - p_n \) is of order between \(\log n \) and \((\log n)^3 \) has not been covered in Theorems 1 to 4.

We conjecture that \(\max_{1 \leq j \leq p_n} |z_j| \), after properly normalized, converges in distribution to the Gumbel distribution in this case.
Outline

1. Introduction
2. Truncation of the circular unitary ensemble
3. Main results
4. Determinantal point process
Independence of radius

Lemma 5

Assume the density function of \((Z_1, \cdots, Z_n) \in \mathbb{C}^n\) is proportional to \(\prod_{1 \leq j < k \leq n} |z_j - z_k|^2 \cdot \prod_{j=1}^{n} \varphi(|z_j|)\), where \(\varphi(x) \geq 0\) for all \(x \geq 0\). Let \(Y_1, \cdots, Y_n\) be independent r.v.'s such that the density of \(Y_j\) is proportional to \(y^{2j-1} \varphi(y) I(y \geq 0)\) for each \(1 \leq j \leq n\). Then,

\[
g(|Z_1|, \cdots, |Z_n|) \overset{d}{=} g(Y_1, \cdots, Y_n)
\]

for any symmetric function \(g(y_1, \cdots, y_n)\).

We have

\[
\max_{1 \leq j \leq n} |z_j| \overset{d}{=} \max_{1 \leq j \leq n} Y_j.
\]
Thank you!
Thank you!

