

Quasi-stationary distributions for one-dimensional minimal diffusion processes

QI Bo-Rui

Beijing Normal University

(based on a joint work with Professor Mao Y-H)

QI Bo-Rui (Beijing Normal University) QSDs for minimal diffusions

(ロ) (日) (日) (日) (日)

Contents

1 Stationarity and quasi-stationarity

2 1D (minimal) diffusion process

3 Known results

4 Our main results

- 0 is an entrance boundary and ∞ is an exit boundary
- 0 is an entrance boundary and ∞ is a regular boundary

1. Stationarity and quasi-stationarity

• Consider a Markov process X_t taking values in state space (E, \mathscr{E}) with lifetime ζ . Then the (quasi-)stationary distribution μ is defined as

$$\mathbb{P}_{\mu}[X_t \in A | t < \zeta] = \mu(A), \ A \in \mathscr{E}.$$

• If $\zeta = \infty$ a.e. then μ is defined as a stationary distribution. If $\zeta < \infty$ a.e. then μ is defined as a quasi-stationary distribution (QSD).

• Equivalently,

$$\sum_{i} \mu_i p_{ij}(t) = \mu_j e^{-\lambda t},$$

where

$$p_{ij}(t) = \mathbb{P}_i[X_t = j, t < \zeta].$$

(ロ) (日) (日) (日) (日)

From Branching process by Yaglom

• Yaglom (1947) considered the following limit problem $\forall i, j \ge 1$

$$\lim_{t \to \infty} \mathbb{P}_i[X_t = j | \tau_0 > t] = \lim_{t \to \infty} \frac{p_{ij}(t)}{\sum_{k \ge 1} p_{ik}(t)}$$

• Let $Z_0 = 1, Z_n = \sum_{k=1}^{Z_{n-1}} \xi_{n,k}$, with ξ , $\xi_{n,k}$ i.i.d. Denote

$$f(s) = \mathbb{E}s^{\xi}, \quad g(s) = \lim_{n \to \infty} \mathbb{E}[s^{Z_n} | Z_n > 0].$$

If $m \triangleq \mathbb{E}\xi < 1$, then g(s) exists and satisfies

$$g(f(s)) = mg(s) + 1 - m.$$

In particular,

$$\lim_{n} \mathbb{P}[Z_{n} = i | Z_{n} > 0] = b_{i} > 0, \quad \sum_{i \ge 1} b_{i} = 1.$$

A.M. Yaglom (1947). Certain limit theorems of the theory of branching processes. Dokl. Acad. Nauk SSSR 56,795-798(in Russian).

Branching process

• Futhermore, there exists a family of QSD's :

$$\tilde{g}(s) = 1 - (1 - g(s))^{\alpha}, \quad \alpha \in (0, 1].$$

• When $\alpha = 1$, $\widetilde{g}(s) = g(s)$.

<ロ> (四) (四) (日) (日) (日)

Birth-death process: regular case

- Let X_t be a birth-death process on $\mathbb{Z}_+ = \{0, 1, 2, \dots\} \cup \{-1\}.$
- Assume $\lim_{t\to\infty} \mathbb{P}_i [X_t = -1] = 1$ (absorbed at -1 eventually) and let τ_i be the hitting time to i.
- Doorn (1991) proved that
 - if $S \triangleq \mathbb{E}_{\infty} \tau_0 \triangleq \lim_{i \to \infty} \tau_0 = \infty$ and $\lambda \triangleq -\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}_i[X_t = i] > 0$, then there exist a family of QSDs,
 - if $S < \infty$, then $\exists ! \text{QSD}$.

• E. A. van Doorn (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Advances in Applied Probability, 23(4), 683-700.

Birth-death process: explosive case

- The assumption $\lim_{t\to\infty} \mathbb{P}_i [X_t = -1] = 1$ implies the process is not explosive.
- What happens for an explosive birth-death process?
- It's known the birth-death process is explosive when $R \triangleq \mathbb{E}_0 \tau_{\infty} = \lim_{i \to \infty} \mathbb{E}_0 \tau_i < \infty.$
- If $R < \infty$, the QSD for the minimal process (before explosion) can be considered.
- When $R < \infty$ and $S = \infty$, Gao and Mao (2015) proved \exists ! QSD for the minimal birth-death process.
- When $R < \infty$ and $S < \infty$, Gao, Mao and Zhang (2017) proved \exists ! QSD for the minimal birth-death process.
- Wu-Jun Gao and Yong-Hua Mao (2015). Quasi-stationary distribution for the birth-death process with exit boundary. *Journal of Mathematical Analysis and Applications* 427,114-125.
- Wu-Jun Gao, Yong-Hua Mao and Chi Zhang (2017). The birth-death processes with regular boundary: stationarity and quasi-stationarity. Preprint.

(日) (四) (王) (王) (王) (王)

Three main problems

For the general Markov process, the study of QSD on three problems:

- Existence and uniqueness of QSD
- QSD's attraction domian
- Convergence rate to the QSD

2. 1D (minimal) diffusion process

• Consider the stochastic differential equation (SDE) on $(0,\infty)$

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad x_0 = x > 0.$$

$$\tag{1}$$

where $(B_t; t \ge 0)$ is a standard one-dimensional Brownian motion, $\sigma \in C^2((0,\infty)), \sigma^2(x) > 0, x \in (0,\infty)$ and $b(x) \in C^1((0,\infty))$. • Define

$$\tau_y = \inf\{t > 0 : X_t = y\}, \quad \tau_\infty = \lim_{n \to \infty} \tau_n, \quad \tau_0 = \lim_{n \to \infty} \tau_{\frac{1}{n}}, \quad \zeta = \tau_0 \wedge \tau_\infty.$$

- Then SDE (1) has a unique solution $X^x(t)$ up to the explosion time ζ . We define $X^x(t)$ to be $\lim_{s\uparrow\zeta} X^x(s)$ for $t \ge \zeta$ on the set $\{\zeta < \infty\}$.
- $(X_t^x)_{t\geq 0}$ is called the minimal L-diffusion, where the differential operator L is defined by

$$L = a(x)\frac{d^2}{dx^2} + b(x)\frac{d}{dx}, \quad a(x) = \frac{1}{2}\sigma^2(x).$$
 (2)

Feller's boundary classification

Let

$$\Sigma(0) \triangleq \mathbb{E}_1 \tau_0 \triangleq \lim_{n \to \infty} \mathbb{E}_1 \tau_{\frac{1}{n}}, \quad N(0) \triangleq \mathbb{E}_0 \tau_1 \triangleq \lim_{n \to \infty} \mathbb{E}_{\frac{1}{n}} \tau_1.$$

Classification of boundary 0:

- Natural boundary: $\Sigma(0) = \infty$, $N(0) = \infty$
- Entrance boundary: $\Sigma(0) = \infty$, $N(0) < \infty$
- Exit boundary: $\Sigma(0) < \infty$, $N(0) = \infty$
- Regular boundary: $\Sigma(0) < \infty$, $N(0) < \infty$

Classification of boundary ∞ .

3. Known results

• Let X_t be a diffusion process on $(0, \infty)$ given by the unique solution to the SDE

$$X_t = B_t - \int_0^t \alpha(X_s) ds,$$

where $\alpha \in C^1(0,\infty)$.

- Assume $\Sigma(0) = \mathbb{E}_1 \tau_0 < \infty$ and ∞ to be a natural boundary.
- Collet et al. (1995) concluded that $\eta \triangleq -\lim_{t\to\infty} \frac{1}{t}\log\mathbb{P}_x[t<\tau_0]$ can only take two values. Based on their results, Zhang and He (2016) proved that when $\eta > 0$, there exist a family of QSDs.
- P. Collet, J. S. Martín, and S. Martínez (1995). Asymptotic laws for one-dimensional diffusions conditioned to nonabsorption. Annals of Probability, 23(3), 1300-1314.
- H. J. Zhang and G. M. He (2016). Existence and construction of quasi-stationary distributions for one-dimensional diffusions. *Journal of Mathematical Analysis and Applications*, 434(1), 171-181.

・ロト ・回ト ・ヨト ・ヨト

Diffusion process: ∞ an entrance boundary

• Let $\Sigma(0) = \mathbb{E}_1 \tau_0 < \infty$, ∞ be an entrance boundary and the drift parameter α satisfy the additional conditons

$$\lim_{x \to \infty} \alpha^2(x) - \alpha'(x) = \infty, \quad -\inf_{x \in (0,\infty)} \alpha^2(x) - \alpha'(x) < \infty,$$
$$\int_0^1 y e^{-\int_1^y \alpha(z) dz} dy < \infty.$$

- Cattiaux et al. (2009) got the following results:
 - there exists a unique QSD
 - any measure ρ with compact support in $(0, \infty)$ satisfies

$$\lim_{t \to \infty} \mathbb{P}_{\rho}(X_t \in A | t < \zeta) = \nu(A).$$

イロト イヨト イヨト イヨト

2016/07/16

12 / 27

- P. Cattiaux, P. Collet, A. Lambert, S. Martínez, S. Méléard, and J. S. Martín (2009). Quasi-stationary distributions and diffusion models in population dynamics. Annals of Probability, 37(5), 1926-1969.
- H. J. Zhang and G. M. He (2016). Domain of attraction of quasi-stationary distribution for one-dimensional diffusions. Frontiers of Mathematics in China, 11(2), 411-421.

Diffusion process: ∞ an entrance boundary

- Based on the work of Cauttiaux et al., various authors further studied the QSDs of one-dimensional diffusions with ∞ as an entrance boundary, such as Littin, Zhang and He.
- Let 0 be an exit boundary $(\mathbb{E}_1 \tau_0 < \infty, \mathbb{E}_0 \tau_1 = \infty)$ and ∞ be an entrance boundary $(\mathbb{E}_1 \tau_\infty = \infty, \mathbb{E}_\infty \tau_1 < \infty)$. (There isn't any additional condition on the drift parameter α .)
- Littin (2012) proved that
 - \exists ! QSD,
 - the unique QSD attracts initial distributions with compact support.

- Jorge Littin C. (2012). Uniqueness of quasistationary distributions and discrete spectra when ∞ is an entrance boundary and 0 is singular. Journal of Applied Probability, 49(3), 719-730.
- H. J. Zhang and G. M. He (2016). Domain of attraction of quasi-stationary distribution for one-dimensional diffusions. *Frontiers of Mathematics in China*, 11(2), 411-421.

イロン イヨン イヨン イヨン

Motivation

- All the diffusions considered above are absorbed at 0.
- What happens when diffusions explode eventually?
- This urges one to consider the minimal diffusion process.

(日) (四) (三) (三) (三)

Main results (1): ∞ an exit boundary

- It is known the diffusion process is explosive when $\Sigma(\infty) \triangleq \mathbb{E}_1 \tau_{\infty} < \infty$.
- Hypothesis (H-EE): 0 is an entrance boundary $(\mathbb{E}_0 \tau_1 < \infty, \mathbb{E}_1 \tau_0 = \infty)$ and ∞ is an exit boundary $(\mathbb{E}_{\infty} \tau_1 = \infty, \mathbb{E}_1 \tau_{\infty} < \infty)$.
- The generator L of the minimal diffusion process is given by

$$L = a(x)\frac{\mathrm{d}^2}{\mathrm{d}x^2} + b(x)\frac{\mathrm{d}}{\mathrm{d}x},$$

where
$$a(x) = \frac{1}{2}\sigma^2(x)$$
.
• $m(x) := \frac{1}{a(x)} \exp\left[\int_1^x \frac{b(y)}{a(y)} \mathrm{d}y\right]$.

Main results(1): ∞ an exit boundary

Theorem

Under hypothesis (H - EE), there exists a unique QSD for the minimal L-diffusion process, which is given by

$$\nu(\mathrm{d}x) = \frac{\psi_0(x)m(x)}{\int_0^\infty \psi_0(y)m(y)\mathrm{d}y}\mathrm{d}x,\tag{3}$$

where λ_0 is the minimal eigenvalue of generator -L and ψ_0 is the eigenfunction associated to λ_0 . Moreover, the QSD attracts all initial probability distributions μ on $(0, \infty)$, that is, for any Borel subset $A \subseteq (0, \infty)$

$$\lim_{t \to \infty} \mathbb{P}_{\mu}(X_t \in A | \zeta > t) = \nu(A).$$

(日) (日) (日) (日) (日)

Tools

- Duality
- Spectral theory
- Passage time between two states

Duality

۰

• Consider the the stochastic differential equation (SDE)

$$d\widetilde{X}_t = \sigma(\widetilde{X}_t)dB_t + (\sigma(\widetilde{X}_t)\sigma'(\widetilde{X}_t) - b(\widetilde{X}_t))dt, \quad \widetilde{x}_0 = x > 0.$$
(4)

- There exists a minimal \widetilde{L} -diffusion process $\left(\widetilde{X}_{t\wedge\widetilde{\tau}}\right)_{t\geq 0}$, where the lifetime $\widetilde{\zeta} = \widetilde{\tau}_0 \wedge \widetilde{\tau}_{\infty}$.
- $L = D_M D_S$ and $\widetilde{L} = D_{\widetilde{M}} D_{\widetilde{S}}$, where $\widetilde{M} = S$ and $\widetilde{S} = M$. More, L and \widetilde{L} have the same spectrum.

$$X_t = \begin{cases} 0: & entrance \ boundary \\ \infty: & exit \ boundary \end{cases} \iff \widetilde{X}_t = \begin{cases} 0: & exit \ boundary \\ \infty: & entrance \ boundary \end{cases}$$

Integrability of eigenfunction ψ_0

• From the above relation, we have

$$\widetilde{\psi}_0(x) = \int_0^x \psi_0(y) m(y) dy.$$

• Then $\int_0^\infty \psi_0(x) m(x) dx = \lim_{x \to \infty} \widetilde{\psi}_0(x).$

 $\text{Our aim}: \lim_{x \to \infty} \widetilde{\psi}_0(x) < \infty.$

• Use a spectral representation for $\widetilde{\psi}_0$.

Spectral representation for $\widetilde{\psi}_0(x)$

Theorem

Assume 0 is an exit boundary and ∞ is an entrance boundary. Let \widetilde{X}_t be the minimal \widetilde{L} -diffusion and $\widetilde{\tau}_{x,y} := \inf\{t > 0 : \widetilde{X}_t = y, \widetilde{X}_0 = x\}$. Then for any $0 < y < x < \infty$, $\widetilde{\psi}_0(x) = \widetilde{\psi}_0(y) \mathbb{E}e^{\widetilde{\lambda}_0 \widetilde{\tau}_{x,y}}$.

- Cheng and Mao (2015, 2017) proved that $\lim_{x\to\infty} \mathbb{E}e^{\widetilde{\lambda}_0\widetilde{\tau}_{x,y}} = \prod_{n=0}^{\infty} \frac{\widehat{\lambda}_{n,y}}{-\widetilde{\lambda}_0 + \widehat{\lambda}_{n,y}}$ and $\sum_{n=0}^{\infty} \widehat{\lambda}_{n,y}^{-1} < \infty$.
- By Mao (2006), we get $y_0 \in (0, \infty)$ satisfying $\widehat{\lambda}_{n,y_0} > \widetilde{\lambda}_0$ for all $n \in \mathbb{N}$. $\widehat{\lambda}_{n,y}, n \ge 1$ are the eigenvalues of \widetilde{X}_t absorbed at y from right.
- Then we have $\lim_{x\to\infty}\widetilde{\psi}_0(x) < \infty$.
- L. J. Cheng and Y. H. Mao (2015). Eigentime identity for one-dimensional diffusion processes[J]. Journal of Applied Probability, 52(1):224-237.
- L. J. Cheng and Y. H. Mao (2017). Passage time distribution for one-dimensional diffusion processes. Preprint.
- Y. H. Mao, (2006). On the empty essential spectrum for markov processes in dimension one. Acta Mathematica Sinica, English Series, 22(3), 807-812.

Attraction domain

• We have the relationship

$$\mathbb{P}_x(X_t \in (0, y], t < \zeta) = \mathbb{P}_y(\widetilde{X}_t \in [x, \infty), t < \widetilde{\zeta}) \quad x - a.s.$$

• Then we have

$$\lim_{t \to \infty} e^{\lambda_0 t} \mathbb{P}_x(X_t \in A, \zeta > t) = \nu(A)\psi_0(x) \left(\int_0^\infty \psi_0(y)m(y) \mathrm{d}y\right).$$

for all x > 0 and all Borel subsets $A \subseteq (0, \infty)$.

• By Zhang and He (2016), we get $e^{\lambda_0 t} \mathbb{P}_x(\zeta > t)$ is uniformly bounded in the variables t and x. Then $\lim_{t \to \infty} \mathbb{P}_{\rho}(X_t \in A | t < \zeta) = \nu(A)$ exists for any probability measure ρ on $(0, \infty)$.

(D) (A) (A)

Main results (2): ∞ a regular boundary

• Hypothesis (H-ER): 0 is an entrance boundary $(\mathbb{E}_0 \tau_1 < \infty, \mathbb{E}_1 \tau_0 = \infty)$ and ∞ is a regular boundary $(\mathbb{E}_{\infty} \tau_1 < \infty, \mathbb{E}_1 \tau_{\infty} < \infty)$.

Theorem

Under hypothesis (H - ER), there exists a unique QSD for the minimal L-diffusion process, which is given by

$$\nu(\mathrm{d}x) = \frac{\psi_0(x)m(x)}{\int_0^\infty \psi_0(y)m(y)\mathrm{d}y}\mathrm{d}x,\tag{5}$$

where λ_0 is the minimal eigenvalue of generator -L and ψ_0 is the eigenfunction associated to λ_0 .

Moreover, the QSD attracts all initial probability distributions μ on $(0, \infty)$, that is, for any Borel subset $A \subseteq (0, \infty)$,

$$\lim_{t \to \infty} \mathbb{P}_{\mu}(X_t \in A | \zeta > t) = \nu(A).$$

Regular boundary

QSD's spectral representation:

Theorem

Under hypothesis (H - ER), we have

$$\nu(dx) = \frac{\prod_{n=1}^{\infty} \frac{-\lambda_0 + \lambda_{n,x}}{\lambda_{n,x}} m(x) dx}{\int_0^{\infty} \prod_{n=1}^{\infty} \frac{-\lambda_0 + \lambda_{n,x}}{\lambda_{n,x}} m(x) dx},$$

where $\lambda_{n,x}$ is the eigenvalue of $-L|_{(0,x)}$ with state x as an absorbing boundary.

Tools

- Spectral theory
- Spectral representation of the moment generating function

Spectral theory

• According to Cheng and Mao (2015), we conclude that

Theorem

Under hypothesis (H - ER), -L has a purely discrete spectrum. The eigenvalues

$$0 < \lambda_0 < \lambda_1 < \dots < \lambda_n < \dots \tag{6}$$

are simple. Let ψ_n be an eigenfunction associated to λ_n , then the sequence $\{\psi_n : n \ge 0\}$ is an orthonormal basis of $L^2(m)$. ψ_0 can be chosen to be strictly positive on $(0, \infty)$.

- According to Hölder inequality, we can get $\psi_0(x) \in L^1(m)$
- This gives QSD and its attraction domain.
- L. J. Cheng and Y. H. Mao (2015). Eigentime identity for one-dimensional diffusion processes[J]. Journal of Applied Probability, 52(1):224-237.

イロン イヨン イヨン イヨン

Spectral representation for QSD

- Our aim : spectral representation for ψ_0 .
- By the iteration method, we get $\psi_0(x) = \psi_0(y) \mathbb{E}_x e^{\lambda_0 \tau_y}$, for all $0 < x < y < \infty$.
- Cheng and Mao (2017) proved that under hypothesis (H-ER)

$$\mathbb{E}_x e^{\lambda_0 \tau_y} = \frac{\prod\limits_{n=1}^{\infty} \frac{\lambda_{n,y}}{-\lambda_0 + \lambda_{n,y}}}{\prod\limits_{n=1}^{\infty} \frac{\lambda_{n,x}}{-\lambda_0 + \lambda_{n,x}}}, \quad \forall \ 0 < x < y < \infty,$$

where $\lambda_{n,x}$ is the eigenvalue of $-L|_{(0,x)}$ with state x as a absorbing boundary and $\lambda_0 = \lim_{x \to \infty} \lambda_{0,x}$.

• This gives the spectral representation for ψ_0 , moreover for QSD.

(日) (四) (王) (王) (王)

Thank you!