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Introduction

Let {Xn, n ≥ 1} be a discrete-time Markov chain (DTMC)
with transition matrix P = (P(i , j)) on the countable state
space E = {0, 1, 2, · · · }.
. Suppose that Xn is irreducible, positive recurrent with the
unique invariant probability vector πT = (π(0), π(1), · · · ).
. Usually it is not easy to compute πT since the transition
matrix is in�nite-dimensional.

. We consider numerical computation of πT .
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. The technique of augmented truncation approximation is a
powerful tool for numerically computing the invariant
probability vector πT .

. The scheme of an augmented truncation approximation is
speci�ed as follows.

� First we let (n)P be the (n + 1)× (n + 1) northwest corner
truncation of P .

� Then we augment the truncated elements of P to (n)P to

form a stochastic matrix (n)P̃ on the state space

(n)E = {0, 1, · · · , n}, whose stationary probability vector is
assumed to exist, and is denoted by (n)π

T .
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In order to use (n)π
T to approximate πT , we need to

. (i) establish the convergence of (n)π
T to πT .

. (ii) provide theoretically guaranteed bounds on the
di�erence between (n)π

T and πT .

To perform the algebraic operations between the resulting
matrices and original matrices, we extend (n)P̃ and (n)π

T from

(n)E to E.

We still adopt the same notations of (n)P̃ and (n)π
T .
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Let νi ,n(·) be a probability distribution on (n)E, which depends
on n and i . De�ne

(n)P̃(i , j) =

P(i , j) +
∑
m>n

P(i ,m)νi ,n(j), if i ∈ E, 0 ≤ j ≤ n,

0, if i ∈ E, j > n,

and (n)π
T = ((n)π(0), · · · , (n)π(n), 0, · · · ).

When νi ,n(·) = νn(·) only depends on n, we have the linear
augmentation.

For any 0 ≤ k ≤ n, let νn(k) = 1 and νn(j) = 0 for any j 6= k ,
then we have the special (k + 1)th column augmentation,
whose transition matrix and invariant probability vector are
denoted by (n)P̃k and (n)π

T
k , respectively.
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For a vector V ≥ e, e is a column vector of ones, we are
interested in �nding the upper bound H(n,V ) in V -norm as
follows

‖(n)πT − πT‖V ≤ H(n,V ), (1)

where ‖µT‖V = supg :|g |≤V |µTg | =
∑

i∈E |µ(i)|V (i) denotes

the V -norm for the row vector µT .

When V ≡ e, the V -norm becomes the total variation norm.

The bound (1) enables us to compute the steady performance
measure πTV , since

|(n)πTV − πTV | ≤ ‖(n)πT − πT‖V .
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For convergence in total variation norm:

. Seneta (1980): convergence holds i� {(n)πT , n ≥ 1} is tight;

. Gibson and Seneta (1987): convergence holds for
upper-Hessenberg matrix and Markov matrix.

. Liu and Zhao (1995): the censored MC is the best.

. Tweedie (1998): addressed the two issues well for the �rst
and the last column augmentation when P is a Markov matrix
or P is geometrically ergodic and monotone. We call his
method as the ergodicity method .

. L. (2010): investigated an arbitrary augmentation and
truncation bounds for polynomially ergodic and monotone
MCs.
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. Block-monotone DTMCs

� Li and Zhao (2000): the last-column-block-augmented
truncation (LCBA) is the best in a certain sense.
� Masuyama (2015): developed error bounds for the LCBA for
geometrically ergodic chains.

Convergence in V -norm:

. Tweedie (1998): also V -norm bounds for monotone and
geometrically ergodic MCs.

. L. Tang and Zhao (2015): the best augmentation in total
variation norm is not necessarily best in V -norm.

. Masuyama (2016): adopted the perturbation method to
investigate the error bounds in V -norm for the LCBA
truncation under drift conditions for continuous-time
matrix-analytic models.
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A Lot of literature on perturbation bounds in V -norm:

. Katashov (1986, 1996), Mouhoubi and Aissani (2010)

. Mitrophanov (2004, 2006), Heidergott etal. (2010)

. L (2012, 2015, 2017),

. · · ·
We will present several types of truncation bounds through the

perturbation method in this talk.

In the long run, we are motivated to develop theoretically
guaranteed augmented truncation approximation algorithms
for computing the invariant probability vectors for
high-dimensional Markov chains.
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Bounds in terms of Poisson's equation

Poisson's equation

The bound is based on Poisson's equation:

(I − P)g̃ = ḡ , (2)

where ḡ = g − πTge. The forcing function g satis�es that
πT |g | <∞. g̃ is the solution to Poisson's equation.

Let ∆ = (n)P̃ − P , from (2), we can obtain the identity

(n)π
T∆g̃ =(n) π

T [(I − P)g̃ ] = ((n)π
T − πT )g .

This identity enables us to estimate the augmented truncation
bounds if we can bound g̃ well.
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Bounds in terms of Poisson's equation

D (V , λ, b,C ): Suppose that there exist a �nite set C ,
positive constants b <∞, λ < 1 and �nite column vectors
V ≥ e such that

PV ≤ λV + bIC .

To investigate the convergence of the augmented truncation,
de�ne

∆n(i ,V ) =
∑
j>n

P(i , j)(V (n) + V (j)),
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Bounds in terms of Poisson's equation

Theorem 1 Suppose that D (V , λ, b,C ) holds for a
non-decreasing function V and an atom C = {α}. Then for
an arbitrary augmentation

‖(n)πT − πT‖V ≤ H1(n,V ),

where

H1(n,V ) = κ1

n∑
i=0

(n)π(i)∆n(i ,V ),

and

κ1 =
1 + πTV

1− λ
≤ 1− λ + b

(1− λ)2
.

Moreover, H1(n,V )→ 0 as n→∞, and

‖(n)πT − πT‖V → 0, n→∞.
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Bounds in terms of Poisson's equation

Remarksµ

. (i) The drift condition D (V , λ, b,C ) for an atom C implies
|g̃ | ≤ (1 + πTV )V for a function g such that |g | ≤ cV .

. (ii) The condition that V is increasing is a key to deal with
an arbitrary augmentation.

. (iii) The results can hold in a more general setting, e.g.

� under f -modulated drift condition PV ≤ V − f + bIC ;

� under a small set instead of an atom.
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Bounds in terms of Poisson's equation

Based on Theorem 1, we can give theoretically guaranteed
upper bounds on the truncation size for a given ε as follows.

. M(a) Find V , λ, b, C such that D (V , λ, b,C ) holds.

. M(b) Calculate κ1.

. M(c) For a given n calculate (n)π
T and assess whether

H1(n,V ) ≤ ε. (3)

. M(d) If (3) is not satis�ed, increase the value of n and
repeat M(c) until (3) is satis�ed.
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Bounds in terms of the residual matrix

Residual matrix

De�ne a suitable residual matrix T by

U = P − hφT ,

h and φT are respectively non-negative bounded column
vector and non-negative row vector such that T is
nonnegative. For a matrix B , de�ne its V -norm by

‖B‖V = sup
i∈E

∑
j |B(i , j)|V (j)

V (i)
.

U(V , λ): Suppose that there exist a �nite vector V , V ≥ e

and a positive constant λ, λ < 1 such that ‖P‖V <∞ and
‖U‖V ≤ λ.
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Bounds in terms of the residual matrix

Theorem 2 If U(V , λ) holds for a non-decreasing function
V and φTV <∞, then for an arbitrary augmentation

‖(n)πT − πT‖V ≤ H2(n,V ),

where

H2(n,V ) = κ2

n∑
i=0

(n)π(i)∆n(i ,V )

and

κ2 =
1 + πTV

1− λ
≤ 1− λ + (φTV )(πTh)

(1− λ)2
.

Moreover, H2(n,V )→ 0 as n→∞, and

‖(n)πT − πT‖V → 0, n→∞.
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Bounds in terms of the residual matrix

Remarks:

. 1. A starting point of the proof is

(n)π
T − πT =(n) π

T∆
∞∑
k=0

Uk(I − Π).

. 2. The results hold in a more general setting, e.g. for
U = Pm − hφT for some m ≥ 1.

. 3. There are various choices of the vectors h and φT such
that T is nonnegative.
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Bounds in terms of the residual matrix

� Let φT = (P(0, 0),P(0, 1), · · · ) denote the �rst row of P
and let h = (1, 0, 0, · · · )T , then the matrix U = P − hφT is
obtained by setting the elements in the �rst row of P to zeros
and keeping the other elements unchanged.

� Let φT = (1, 0, 0, · · · ) and h = (P(0, 0),P(1, 0), · · · )T .
Then the matrix U = P − hφT is obtained by setting the
elements in the �rst column of P to zeros and keeping the
other elements unchanged.

. 4. Actually, if D(V , λ, b,C ) holds for an atom C , then we
can take appropriate h and φT such that U(V , λ) holds for
the same V and λ.
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Bounds in terms of the norm ergodicity coe�cient

Ergodicity coe�cient

De�ne the set M0 = {µ : ‖µ‖V <∞,µTe = 0}. Let V ≥ e,
the V -norm ergodicity coe�cient Λ(B) of a matrix B = (bij)
is de�ned by

Λ(B) = sup{‖µTB‖V : ‖µT‖V ≤ 1,µ ∈ M0}.

The explicit representation of Λ(B) is given by

Λ(B) = sup
i ,j∈E

∑
k∈E |bik − bjk |V (k)

V (i) + V (j)
.

Let V ≡ e, then Λ(B) becomes the classical ergodicity
coe�cient τ(B).
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Bounds in terms of the norm ergodicity coe�cient

Theorem 3 Suppose that V is a non-decreasing function,
πTV <∞, ‖P‖V <∞, and Λ(P) ≤ ρ < 1. Then for an
arbitrary augmentation

‖(n)πT − πT‖V ≤ H3(n,V ),

where

H3(n,V ) = κ3

n∑
i=0

(n)π(i)∆n(i ,V ).

and

κ3 =
1

1− ρ
.

Moreover, if D (V , λ, b,C ) holds, then πTV <∞,
‖P‖V <∞, H3(n,V )→ 0 as n→∞, and

‖(n)πT − πT‖V → 0, n→∞.

.
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Bounds in terms of the norm ergodicity coe�cient

Remarks:

. 1. A starting point of the proof is

‖(n)πT − πT‖V = ‖(n)πT∆(
∞∑
t=0

P t − Π)‖V

≤ ‖(n)πT∆‖V ·
∞∑
t=0

Λ(P t).

. 2. The results hold under more general assumptions, e.g.

Λ(Pm) ≤ ρm < 1 for some positive integer m.
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Comparison with Tweedie's results

Tweedie (1998)µµµergodicity method

Suppose that (i) P is aperiodic, (ii) P is monotone, and (iii) P
satis�es D(V , λ, b,C ) for C = {0} and a non-decreasing V .

He used the triangle inequality

‖(n)πT − πT‖V ≤ ‖(n)P̃k(i , ·)−(n) π
T‖V + ‖Pk(i , ·)− πT‖V

+ ‖(n)P̃k(i , ·)− Pk(i , ·)‖V

for any i ∈ E and any integer k ≥ 1 and derived

‖(n)πn
T − πT‖V ≤

4λkb

1− λ
+ D

n∑
i=0

(n)πn(i)∆n(i ,V ),

where D =
∑k−1

s=0
(λ + b)s .
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Comparison with Tweedie's results

Example-1 Consider a M/G/1 queue with transition matrix

P =


c0 a1 a2 a3 ...
a−1 a0 a1 a2 ...
0 a−1 a0 a1 ...
0 0 a−1 a0 ...
...

...
...

...
. . .

 .

Let a−1 = (1− a), aj = (1− a)aj+1, j ≥ 0 with a = 0.25.

Let V (i) = 2i , i ≥ 0 and C = {0}. Then we can calculate
λ = 3

4
, b = 3

8
, πTV = 4

3
, and the di�erence

T (n,V ) = |(n)πT
n V − πTV |.

27 / 38



Introduction Three types of bounds Illustrating the bounds through examples Extensions to CTMCs

Comparison with Tweedie's results

The (Poisson-equation type) bound is given by

H2(n,V ) =
28

3

n∑
i=0

(n)πn(i)∆n(i ,V ).

Choosing ε = 0.01 and applying the procedures M∗(a)-M∗(d)
in page 530 of Tweedie (1998) obtains

‖(n)πT
n − πT‖V

≤ F2(n,V ) := 0.0257 +
283

4

n∑
i=0

(n)πn(i)∆n(i ,V ).

n F2(n,V ) H2(n,V ) (n)π
T
n V T (n,V )

10 0.2946 0.0355 1.3256 0.0077
14 0.0796 0.0071 1.3318 0.0015
18 0.0363 0.0014 1.3330 0.0003
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Comparison of three types of bounds

Now we make a comparison of the three types of bounds in
Sections 2 to 4 through two speci�c examples.

Example-2 For the M/G/1 queue in Example-1,

H1(n,V )

= H2(n,V ) =
28

3

n∑
i=0

(n)π(i)∆n(i ,V )

< H3(n,V ) = 16
n∑

i=0

(n)π(i)∆n(i ,V ).
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Comparison of three types of bounds

Example-3. Consider a single-birth process, taken from
(M.F. Chen 1999), with transition probabilities

P00 = P01 =
1

2
; Pi ,i+1 =

1

2
,Pij =

1

2i
, i ≥ 1, j ≤ i − 1.

Let V (i) = i + 1 for i ≥ 1 and V (0) = 2, and consider the
last-column augmentation.

H1(n,V ) = 6(1 + πTV ) · [(n)πn(n)(V (n) + V (n + 1) +
16

3
)],

H2(n,V ) = 3(1 + πTV ) · [(n)πn(n)(V (n) + V (n + 1))],

H3(n,V ) =
70

23
· [(n)πn(n)(V (n) + V (n + 1))].
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Comparison of three types of bounds

Obviously,

H1(n,V ) > H2(n,V ) > H3(n,V ).

Furthermore, since πTV can not be obtained directly, we
calculate the value of (n)π

T
n V as an approximation.

The following table lists the values of the bounds Hi(n,V ),
i = 1, 2, 3 and (n)π

T
n V .

n H1(n,V ) H2(n,V ) H3(n,V ) (n)π
T
n V

13 0.5933 0.1949 0.0282 2.7774
15 0.2070 0.0693 0.0100 2.7778
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Let {X (t), t ≥ 0} be a CTMC on E = {0, 1, 2, · · · } with the
generator Q = Q(i , j), which is positive recurrent with the
invariant probability vector πT .

De�ne the augmented truncation of Q as follows:

(n)Q̃(i , j) =


Q(i , j) +

∑
m>n,m 6=i

Q(i ,m)νi ,n(j), i ∈ E, 0 ≤ j ≤ n,

Q(i , i), i = j ≥ n + 1,

0, otherwise,

where νi ,n(·) is a probability vector on (n)E that depends on n

and i . Let (n)π
T be the invariant probability vector of (n)Q̃.
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. If Q is bounded, i.e, supi∈EQ(i) <∞, using the technique
of uniformization and similar arguments in L (2012), most of
the results in Sections 2-4 can be extended to CTMCs.

. Uniformization is invalid when Q is unbounded. Theorems 2
and 3 cannot be extended to CTMCs. However, Theorem 1
can be done as follows .

. For CTMCs, Poisson's equation is given by

Qg̃ = −ḡ .

where ḡ = g − πTge. We have the following identity

(n)π
T∆g̃ = −(n)π

T (Qg̃) = ((n)π
T − πT )g .
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D′(V , λ, b,C ): Suppose that there exist a �nite set C ,
positive constants λ, b, �nite column vectors V ≥ e such that

QV ≤ −λV + bIC .

Theorem 4 If D' (V , λ, b,C ) holds for C = {i0} and a
non-decreasing function V , then for an arbitrary augmentation

‖(n)πT − πT‖V ≤ H4(n,V ), (4)

where

H4(n,V ) = κ4

n∑
i=0

(n)π(i)∆n(i ,V )

and

κ4 =
1 + πTV

λ
≤ λ + b

λ2
.
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Remarks

. 1. The corresponding bound under f -modulated drift
condition can be derived, which improves Theorem 2.1 in
Masuyama (2017) by relaxing the condition πTV <∞ and
drops the factor πTV in his bound.

. 2. Theorem 4 parallels to Theorem 1 for DTMCs. However,
we cannot expect that the upper bound always converges to
zero as n tends to ∞ for CTMCs, which will be clari�ed by the
subsequent example.
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Example-4 Consider a special continuous-time birth-death
process with the same birth and death rates: b0 = 1, and
bi = ai = iγ, i ≥ 1, where γ > 1. We can compute that
π(n) = π(0)

nγ
. Performing the last column augmentation, we

have

(n)πn(n) =
π(n)∑n

i=0
π(i)

=
1

nγ(
∑n

i=1

1

iγ
+ 1)

.

Applying Theorem 4 obtains

n∑
i=0

(n)πn(i)∆n(i ,V ) =
1∑n

i=1

1

iγ
+ 1

(V (j) + V (n)).

For any V ≥ e, H4(n,V ) does not converge to zero.
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Thank you for your attention!
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