The $M^{X} / M / c$ queue with catastrophes and state-dependent control at idle time

Li Junping
Joint work with Zhang Lina

Central South University

13th Workshop on Markov Process and Related Topics July 17-21, 2017, Wuhan

Contents

(1) Background

Contents

(1) Background
(2) Preliminary

Contents

(1) Background
(2) Preliminary
(3) Conclusions

Contents

(1) Background
(2) Preliminary
(3) Conclusions

4 References

Contents

(1) Background
(2) Preliminary
(3) Conclusions

4 References
(5) Acknowledgements

Background

- Generalized $M / M / 1$ with disasters:
- $B M A P / S M / 1$ queue with Markovian input of disasters. Dudin A and Karolik A. (2001, Performance Evaluation)
-The $M / M / 1$ queue with mass exodus and mass arrives when empty. Chen A Y, Renshaw E. (1997, J Appl Prob.)
- BD-processes with catastrophes. Di Crescenzo A, Giorno V, Nobile A G and Ricciardi L M. (SPL, 2008)

Background

- $M_{t} / M_{t} / N$ Queue with Catastrophes. Zeifman A and Korotysheva A. (2012, Stochastic Models)
-The $M / M / c$ Queue With Mass Exodus and Mass Arrivals When Empty. Zhang L, Li J. (2015, JAP.)

Background

The model considered in this talk.

- The $M^{X} / M / c$ queue with catastrophes and control at idle time
- State space: $\mathbf{E}=\{0,1,2, \cdots\}$
-Definition of Q-matrix $Q=\left(q_{i j} ; i, j \in \mathbf{E}\right)$:

$$
\begin{equation*}
Q=Q^{*}+Q_{s}+Q_{d} \tag{1.1}
\end{equation*}
$$

where $Q^{*}=\left(q_{i j}^{*} ; i, j \in \mathbf{E}\right), Q_{s}=\left(q_{i j}^{(s)} ; i, j \in \mathbf{E}\right)$ and
$Q_{d}=\left(q_{i j}^{(d)} ; i, j \in \mathbf{E}\right)$ are all conservative Q-matrices which are given as follows

$$
\begin{align*}
& q_{i j}^{*}= \begin{cases}\min (i, c) b_{0}, & \text { if } i \geq 1, j=i-1, \\
b_{1}-[\min (i, c)-1] b_{0}, & \text { if } i \geq 1, j=i, \\
b_{j-i+1}, & \text { if } i \geq 1, j \geq i+1, \\
0, & \text { otherwise },\end{cases} \tag{1.2}\\
& q_{i j}^{(s)}= \begin{cases}-h, & \text { if } i=0, j=0, \\
h_{j}, & \text { if } i=0, j \geq 1, \\
0, & \text { otherwise },\end{cases} \\
& q_{i j}^{(d)}= \begin{cases}\beta, & \text { if } i \geq 1, j=0, \\
-\beta, & \text { if } i \geq 1, j=i, \\
0, & \text { otherwise },\end{cases} \tag{1.3}
\end{align*}
$$

Background

Here $\beta \geq 0, h_{j} \geq 0(j \geq 1)$ and $b_{j} \geq 0(j \neq 1)$ with

$$
0 \leq h:=\sum_{j=1}^{\infty} h_{j}<\infty \text { and } 0<-b_{1}=\sum_{j \neq 1} b_{j}<\infty .
$$

Since Q is conservative and bounded, there exists a unique Q-process, i.e., Feller minimal Q-process. We call this process a modified $M^{X} / M / c$ queueing process and denoted by $\left\{X_{t} ; t \geq 0\right\}$.

In order to avoid trivial cases, we assume that $b_{0}>0$ and $\sum_{j=2}^{\infty} b_{j}>0$.

Background

- Special Cases:
- $c=1, \beta=0$: Chen A Y, Renshaw E. (2004, A Appl. Prob.)
- $c=1, \beta=0, h_{j}=b_{j+1}$: Covers $M^{X} / M / 1$ queue.
- $c=1, b_{j}=0(j \geq 3)$: Covers Chen A Y, Renshaw E. (1997, J

Appl. Prob.)
$-h_{1}=b_{2}$ and $h_{j}=b_{j+1}=0(j \geq 2)$: Covers Zhang and $\mathrm{Li}(2015$, J Appl. Prob.)

Background

- Problems:
(1) Case $\beta=0$: for the $M^{X} / M / c$ with resurrection, recurrence and ergodicity criteria? Busy period? Equilibrium distribution? Equilibrium size?
(2) Case $\beta>0$: How about the first catastrophe?

Some notations. Denote $\tilde{Q}=Q^{*}+Q_{s}$.

- Q-process $\left\{X_{t}\right\}:\left(p_{i j}(t) ; i, j \in \mathbf{Z}\right)$ for the Q-function and $\left(r_{i j}(\lambda) ; i, j \in \mathbf{Z}\right)$ for the Q-resolvent.
- \tilde{Q}-process $\left\{\tilde{X}_{t}\right\}:\left(\tilde{p}_{i j}(t) ; i, j \in \mathbf{Z}\right)$ for the Q-function and $\left(\tilde{r}_{i j}(\lambda) ; i, j \in \mathbf{Z}\right)$ for the Q-resolvent.
- Q^{*}-process $\left\{X_{t}^{*}\right\}:\left(p_{i j}^{*}(t) ; i, j \in \mathbf{Z}\right)$ for the Q-function and $\left(\phi_{i j}^{*}(\lambda) ; i, j \in \mathbf{Z}\right)$ for the Q-resolvent.

Preliminary

Define the generating functions

$$
\begin{gather*}
B(s)=\sum_{j=0}^{\infty} b_{j} s^{j} \tag{2.1}\\
B_{i}(s)=B(s)+(i-1) b_{0}(1-s), \quad i=1,2, \cdots, c . \tag{2.2}\\
H(s)=\sum_{j=1}^{\infty} h_{j} s^{j} \tag{2.3}
\end{gather*}
$$

All the above functions are well defined on $[-1,1]$.

Preliminary

Lemma 1. The equation $B_{c}(s)=0$ has a smallest root u on $[0,1]$ with $u=1$ if $B_{c}^{\prime}(1) \leq 0$ and $u<1$ if $B_{c}^{\prime}(1)>0$. More specifically, (i) if $B_{c}^{\prime}(1) \leq 0$, then $B_{c}(s)>0, s \in[0,1)$.
(ii) if $B_{c}^{\prime}(1)>0$, then $B_{c}(s)=0$ has exactly two roots, u and 1 , in $[0,1]$ such that $B_{c}(s)>0,0 \leq s<u$ and $B_{c}(s)<0, u<s<1$.

We also define for any $\lambda>0$,

$$
\begin{equation*}
U_{\lambda}(s):=B_{c}(s)-\lambda s . \tag{2.4}
\end{equation*}
$$

It is clear that for any fixed $\lambda>0$, the equation $U_{\lambda}(s)=0$ has exactly one root $u(\lambda)$ on $[0,1]$ and $0<u(\lambda)<1$.

Preliminary

Lemma 2. For $u(\cdot)$ as defined above.
(i) $u(\lambda) \in C^{\infty}(0, \infty)$;
(ii) $u(\lambda)$ is a decreasing function of $\lambda>0$;
(iii) $u(\lambda) \downarrow 0$ and $\lambda u(\lambda) \rightarrow c b_{0}$ as $\lambda \rightarrow \infty$;
(iv) when $\lambda \rightarrow 0^{+}$,

$$
u(\lambda) \uparrow u \begin{cases}=1 & \text { if } B_{c}^{\prime}(1) \leq 0 \tag{2.5}\\ <1 & \text { if } B_{c}^{\prime}(1)>0\end{cases}
$$

where u is the smallest root of $B_{c}(s)=0$ on $[0,1]$;
(v) for any positive integer k,

$$
\lim _{\lambda \rightarrow 0^{+}} \frac{1-u(\lambda)^{k}}{\lambda}= \begin{cases}\infty & \text { if } B_{c}^{\prime}(1) \geq 0 \tag{2.6}\\ \frac{k}{-B_{c}^{\prime}(1)} & \text { if } B_{c}^{\prime}(1)<0\end{cases}
$$

Conclusions

- The stopped $M^{X} / M / c$ process

Theorem 1. For any $i \geq 0,\left(\phi_{i j}^{*}(\lambda) ; 0 \leq j \leq c-1\right)$ is the unique solution of the equations

$$
\left\{\begin{array}{l}
-\lambda \phi_{i 0}^{*}(\lambda)-\sum_{k=1}^{c-1} u(\lambda)^{k-1}\left[B_{c}(u(\lambda))-B_{k}(u(\lambda))\right] \phi_{i k}^{*}(\lambda)=-u(\lambda)^{i}, \\
-\lambda \phi_{i 0}^{*}(\lambda)+b_{0} \phi_{i 1}^{*}(\lambda)=-\delta_{i 0} \\
\left(b_{1}-\lambda\right) \phi_{i 1}^{*}(\lambda)+2 b_{0} \phi_{i 2}^{*}(\lambda)=-\delta_{i 1}, \\
\quad \ldots \\
\sum_{k=1}^{j-1} \phi_{i k}^{*}(\lambda) b_{j-k+1}+\left[b_{1}-(j-1) b_{0}-\lambda\right] \phi_{i j}^{*}(\lambda)+(j+1) b_{0} \phi_{i j+1}^{*}(\lambda)=-\delta_{i j}, \\
\quad \cdots \\
\quad \sum_{k=1}^{c-3} \phi_{i k}^{*}(\lambda) b_{c-k-1}+\left[b_{1}-(c-3) b_{0}-\lambda\right] \phi_{i c-2}^{*}(\lambda)+(c-1) b_{0} \phi_{i c-1}^{*}(\lambda)=-\delta_{i c-2}
\end{array}\right.
$$

where $u(\lambda)(\lambda>0)$ is the unique root of $U_{\lambda}(s)=0$ on $[0,1]$.

Conclusions

Furthermore, by Theorem 1 and Kolmogorov forward equation, we can obtain all the resolvent ($\left.\phi_{i j}^{*}(\lambda) ; i, j \in \mathbf{E}\right)$ of the transition probability $\left(p_{i j}^{*}(t) ; i, j \in \mathbf{E}\right)$.

Now denote

$$
\begin{gathered}
\tau_{0}^{*}=\inf \left\{t>0 ; X_{t}^{*}=0\right\} \\
e_{k}^{*}=P\left(\tau_{0}^{*}<\infty \mid X_{0}^{*}=k\right) \quad(k \geq 1) \\
m_{i}^{*}(k)=\int_{0}^{\infty} p_{k i}^{*}(t) d t(i \geq 1)
\end{gathered}
$$

Conclusions

Theorem 2. For the Q^{*}-process $\left\{X_{t}^{*} ; t \geq 0\right\}$, we have
(i) If $B_{c}^{\prime}(1) \leq 0$, then $e_{k}^{*}=1,(k \geq 1)$;
(ii) if $B_{c}^{\prime}(1)>0$, then $e_{k}^{*}=b_{0} m_{1}^{*}(k)(k \geq 1)$ and for fixed $k \geq 1$, ($m_{i}^{*}(k) ; 1 \leq i \leq c-1$) is the unique solution of the equations

```
\(\left(b_{0} m_{1}^{*}(k)=u^{k}-\sum_{i=1}^{c-1} m_{i}^{*}(k) u^{i-1}(c-i) b_{0}(1-u)\right.\),
\(b_{1} m_{1}^{*}(k)+2 b_{0} m_{2}^{*}(k)=-\delta_{k 1}\),
\(\sum_{i=1}^{j-1} b_{j-i+1} m_{i}^{*}(k)+\left[b_{1}-(j-1) b_{0}\right] m_{j}^{*}(k)+(j+1) b_{0} m_{j+1}^{*}(k)=-\delta_{k j}\),
    \(\sum_{i=1}^{c-3} b_{c-i-1} m_{i}^{*}(k)+\left[b_{1}-(c-3) b_{0}\right] m_{c-2}^{*}(k)+(c-1) b_{0} m_{c-1}^{*}(k)=-\delta_{k c-2}\),
```

where u is the smallest root of $B_{c}(s)=0$ on $[0,1]$.

Conclusions

Moreover, all the $\left(m_{i}^{*}(k) ; k \geq 1, i \geq 1\right)$ can be obtained.
(iii) The mean extinction time is
$E\left(\tau_{0}^{*} \mid X_{0}^{*}=k\right)= \begin{cases}-\frac{1}{B_{c}^{\prime}(1)}\left[k+\sum_{i=1}^{c-1} m_{i}^{*}(k)(c-i) b_{0}\right] & \text { if } B_{c}^{\prime}(1)<0, \\ \infty & \text { if } B_{c}^{\prime}(1) \geq 0,\end{cases}$
where $\left(m_{i}^{*}(k) ; 1 \leq i \leq c-1\right)$ is given by (ii).

Conclusions

- The $M^{X} / M / c$ process with resurrection (\tilde{Q}-process)

By Theorem 2, we have
Corollary 1. For the $M^{X} / M / c$ queue with resurrection, the mean busy period is
$B=\left\{\begin{array}{lr}-\frac{1}{h B_{c}^{\prime}(1)} \sum_{k=1}^{\infty} h_{k}\left[k+\sum_{i=1}^{c-1} m_{i}^{*}(k)(c-i) b_{0}\right], & \text { if } B_{c}^{\prime}(1)<0 \\ \infty, & \text { if } B_{c}^{\prime}(1) \geq 0 .\end{array}\right.$

Let

$$
\begin{aligned}
& \tilde{P}(t)=\left(\tilde{p}_{i j}(t) ; i, j \geq 0\right) \\
& \tilde{R}(\lambda)=\left(\tilde{r}_{i j}(\lambda) ; i, j \geq 0\right)
\end{aligned}
$$

be the \tilde{Q}-function and \tilde{Q}-resolvent, respectively.

Conclusions

Similar to the proof of Theorem 3.1 in Chen and Renshaw [3], using the resolvent decomposition theorem, we have

Theorem 3. For $\tilde{R}(\lambda)=\left(\tilde{r}_{i j}(\lambda) ; i, j \geq 0\right)$, we have

$$
\begin{align*}
& \tilde{r}_{00}(\lambda)=\left[\lambda+\lambda \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} h_{i} \phi_{i j}^{*}(\lambda)\right]^{-1}, \tag{3.1}\\
& \tilde{r}_{i 0}(\lambda)=\tilde{r}_{00}(\lambda) b_{0} \phi_{i 1}^{*}(\lambda) \quad(i \geq 1), \tag{3.2}\\
& \tilde{r}_{0 j}(\lambda)=\tilde{r}_{00}(\lambda) \sum_{i=1}^{\infty} h_{i} \phi_{i j}^{*}(\lambda) \quad(j \geq 1), \tag{3.3}\\
& \tilde{r}_{i j}(\lambda)=\phi_{i j}^{*}(\lambda)+\tilde{r}_{i 0}(\lambda) \sum_{k=1}^{\infty} h_{k} \phi_{k j}^{*}(\lambda) \quad(i, j \geq 1), \tag{3.4}
\end{align*}
$$

where $\Phi^{*}(\lambda)=\left(\phi_{i j}^{*}(\lambda) ; i, j \geq 0\right)$ is the Q^{*}-resolvent.

Conclusions

Remark 1. ($\left.\tilde{r}_{i j}(\lambda) ; i, j \geq 0\right)$ can be obtained. Indeed, by Theorem 1, we can get ($\phi_{i j}^{*}(\lambda) ; i, j \geq 1$). Then by (3.1) and (3.2), we can get $\tilde{r}_{00}(\lambda)$ and $\tilde{r}_{i 0}(\lambda)$, hence, by (3.3), we can obtain $\tilde{r}_{0 j}(\lambda)(j \geq 1)$. Finally, $\left(\tilde{r}_{i j}(\lambda) ; i, j \geq 1\right)$ can be obtained by (3.4).

Conclusions

Theorem 4. For the modified $M^{X} / M / c$ queueing process with q-matrix \tilde{Q}, we have
(i) the process is recurrent iff $B_{c}^{\prime}(1) \leq 0$,
(ii) the process is positive recurrent iff $B_{c}^{\prime}(1)<0$ and $H^{\prime}(1)<\infty$.

Conclusions

Theorem 5. Suppose theat $B_{c}^{\prime}(1)<0$ and $H^{\prime}(1)<\infty$. The equilibrium generating function $\tilde{\Pi}(s)$ takes the form

$$
\tilde{\Pi}(s)=\tilde{\pi}_{0}\left[1+\frac{s(h-H(s))}{B_{c}(s)}\right]+\frac{1}{B_{c}(s)} \sum_{k=1}^{c-1} \tilde{\pi}_{k} s^{k}(c-k) b_{0}(1-s)
$$

where $\tilde{\pi}_{0}=-B_{c}^{\prime}(1)\left[-B_{c}^{\prime}(1)+H^{\prime}(1)+\sum_{k=1}^{c-1} r_{k}(c-k) b_{0}\right]^{-1}$, $\tilde{\pi}_{k}=\tilde{\pi}_{0} r_{k} \quad(k \geq 1)$ and $\left\{r_{k} ; k=1, \cdots, c+1\right\}$ are determined by

$$
\left\{\begin{array}{l}
b_{0} r_{1}=h, \\
b_{1} r_{1}+2 b_{0} r_{2}=-h_{1}, \\
\quad \ldots \\
\sum_{i=1}^{c-1} b_{c-i+1} r_{i}+\left[b_{1}-(c-1) b_{0}\right] r_{c}+c b_{0} r_{c+1}=-h_{c}, \\
\sum_{i=1}^{j-1} b_{j-i+1} r_{i}+\left[b_{1}-(c-1) b_{0}\right] r_{j}+c b_{0} r_{j+1}=-h_{j} \quad(j \geq c+1) .
\end{array}\right.
$$

Conclusions

- The $M^{X} / M / c$ process with resurrection and catastrophes (Q-process)
By Chen and Renshaw [6], we have
Theorem 6. For $R(\lambda)=\left(r_{i j}(\lambda) ; i, j \geq 0\right)$, we have

$$
\begin{align*}
& r_{00}(\lambda)=\left[\lambda+\lambda \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} h_{i} \phi_{i j}^{*}(\lambda+\beta)\right]^{-1}, \tag{3.5}\\
& r_{i 0}(\lambda)=r_{00}(\lambda)\left[b_{0} \phi_{i 1}^{*}(\lambda+\beta)+\beta \sum_{k=1}^{\infty} \phi_{i k}^{*}(\lambda+\beta)\right] \quad(i \geq 1), \tag{3.6}\\
& r_{0 j}(\lambda)=r_{00}(\lambda) \sum_{i=1}^{\infty} h_{i} \phi_{i j}^{*}(\lambda+\beta) \quad(j \geq 1), \tag{3.7}\\
& r_{i j}(\lambda)=\phi_{i j}^{*}(\lambda+\beta)+r_{i 0}(\lambda) \sum_{k=1}^{\infty} h_{k} \phi_{k j}^{*}(\lambda+\beta) \quad(i, j \geq 1), \tag{3.8}
\end{align*}
$$

where $\Phi^{*}(\lambda)=\left(\phi_{i j}^{*}(\lambda) ; i, j \geq 0\right)$ is the Q^{*}-resolvent.

Conclusions

Lemma 3. For $\left(\phi_{i j}^{*}(\lambda) ; i, j \geq 0\right)$, denote $L_{j}(\lambda)=\sum_{i=1}^{\infty} h_{i} \phi_{i j}^{*}(\lambda)$ $(j \geq 0)$. Then $\left(L_{j}(\lambda) ; 0 \leq j \leq c-1\right)$ is the unique solution of the following linear equations

$$
\left\{\begin{array}{l}
-\lambda L_{0}(\lambda)-\sum_{k=1}^{c-1} u(\lambda)^{k-1}\left[B_{c}(u(\lambda))-B_{k}(u(\lambda))\right] L_{k}(\lambda)=-H(u(\lambda)), \\
-\lambda L_{0}(\lambda)+b_{0} L_{1}(\lambda)=0, \\
\left(b_{1}-\lambda\right) L_{1}(\lambda)+2 b_{0} L_{2}(\lambda)=-h_{1}, \\
\quad \ldots \\
\sum_{k=1}^{j-1} L_{k}(\lambda) b_{j-k+1}+\left[b_{1}-(j-1) b_{0}-\lambda\right] L_{j}(\lambda)+(j+1) b_{0} L_{j+1}(\lambda)=-h_{j}, \\
\quad \ldots \\
\sum_{k=1}^{c-3} L_{k}(\lambda) b_{c-k-1}+\left[b_{1}-(c-3) b_{0}-\lambda\right] L_{c-2}(\lambda)+(c-1) b_{0} L_{c-1}(\lambda)=-h_{c-2},
\end{array}\right.
$$

where $u(\lambda)(\lambda>0)$ is the unique root of $U_{\lambda}(s)=0$ on $[0,1]$.
Moreover, all the ($\left.L_{j}(\lambda) ; j \geq 0\right)$ can be obtained.

Conclusions

Theorem 7. If $h, \beta>0$, then the Q-process is always positive recurrent. The equilibrium distribution of the Q-process is given by
$\pi_{0}=\beta\left[\beta+H(1)-H(u(\beta))+\sum_{k=1}^{c-1} L_{j}(\beta) u(\beta)^{k-1}(c-k) b_{0}(1-u(\beta))\right]^{-1}$,
$\pi_{j}=\pi_{0} L_{j}(\beta) \quad(j \geq 1)$
and $\left(L_{j}(\beta) ; j \geq 1\right)$ is given by Lemma 3 .

Conclusions

Theorem 8. The equilibrium queue size, N, has expectation

$$
\begin{aligned}
E(N)= & \pi_{0} \frac{\left(H(u(\beta))-h-H^{\prime}(1)\right)(-\beta)-(H(u(\beta))-h)\left(B_{c}^{\prime}(1)-\beta\right)}{\beta^{2}} \\
& +\frac{\sum_{k=1}^{c-1} \pi_{k}(c-k) b_{0}\left[\beta+u(\beta)^{k-1}(1-u(\beta)) B_{c}^{\prime}(1)\right]}{\beta^{2}}
\end{aligned}
$$

and the equilibrium waiting queue size, L_{w}, has expectation

$$
\begin{aligned}
E\left(L_{w}\right)= & \pi_{0}\left[\frac{\left(H(u(\beta))-h-H^{\prime}(1)\right)(-\beta)-(H(u(\beta))-h)\left(B_{c}^{\prime}(1)-\beta\right)}{\beta^{2}}+c\right] \\
& +\frac{\sum_{k=1}^{c-1} \pi_{k}(c-k)\left[b_{0}\left(\beta+u(\beta)^{k-1}(1-u(\beta)) B_{c}^{\prime}(1)\right)+\beta^{2}\right]}{\beta^{2}}-c
\end{aligned}
$$

where $\left(\pi_{k} ; 0 \leq k \leq c-1\right)$ is given in Theorem 7 .

Conclusions

Now, we consider the first effective catastrophe occurrence time of the Q-process $\left\{X_{t} ; t \geq 0\right\}$.

The following lemma reveals that $\left(p_{i j}(t)\right)$ can be expressed in terms of $\left(\tilde{p}_{i j}(t)\right)$.

Lemma 4. For all $j, n \in \mathbf{E}, t>0$, we have

$$
\begin{equation*}
p_{j n}(t)=e^{-\beta t} \tilde{p}_{j n}(t)+\beta \int_{0}^{t} e^{-\beta s} \tilde{p}_{0 n}(s) d s \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{j n}(\lambda)=\tilde{r}_{j n}(\lambda+\beta)+\frac{\beta}{\lambda} \tilde{r}_{0 n}(\lambda+\beta), \quad \lambda>0 . \tag{3.10}
\end{equation*}
$$

Conclusions

Let $C_{j 0}$ denote the first occurrence time of an effective catastrophe when $X_{0}=j(j \in \mathbf{E})$, and let $d_{j 0}(t)(t>0)$ be the density of $C_{j 0}$.

In order to study $C_{j 0}$, we consider a modified process $\left\{M_{t} ; t \geq 0\right\}$. Its behavior is identical to that of $\left\{X_{t} ; t \geq 0\right\}$ before catastrophe, the only difference is that the effect of a catastrophe from state $n>0$ makes a jump from n to the absorbing state -1 .

Let $H(t)=\left(h_{j n}(t), j, n \in \mathbf{S}\right)$ and $\eta(\lambda)=\left(\eta_{j n}(\lambda), j, n \in \mathbf{S}\right)$ be the Q_{M}-function and Q_{M}-resolvent, respectively.

By the relation of $\left\{X_{t} ; t \geq 0\right\}$ and $\left\{M_{t} ; t \geq 0\right\}$, we have

$$
\begin{equation*}
P\left(C_{j 0}>t\right)=\sum_{n=0}^{+\infty} h_{j n}(t)=1-h_{j,-1}(t), \quad j \in \mathbf{E} \tag{3.11}
\end{equation*}
$$

Conclusions

Now we need to consider $\left(\eta_{j n}(\lambda) ; j, n \in \mathbf{S}\right)$.

Theorem 9. For all $j \in \mathbf{E}$ and $\lambda>0$, we have

$$
\begin{align*}
& \eta_{j,-1}(\lambda)=\frac{\beta}{\lambda+\beta}\left[\frac{1}{\lambda}-\frac{\tilde{r}_{j 0}(\lambda+\beta)}{1-\beta \tilde{r}_{00}(\lambda+\beta)}\right] \\
& \eta_{j n}(\lambda)=\tilde{r}_{j n}(\lambda+\beta)+\beta \tilde{r}_{0 n}(\lambda+\beta) \frac{\tilde{r}_{j 0}(\lambda+\beta)}{1-\beta \tilde{r}_{00}(\lambda+\beta)}, \quad n \geq 0 \tag{3.13}
\end{align*}
$$

where $\left(\tilde{r}_{j n}(\lambda+\beta) ; j, n \in \mathbf{E}\right)$ is given by Remark 1 .

Conclusions

Sketch of proof.

Step 1. Comparing the Kolmogorov forward equation for $\left(\eta_{0 j}(\lambda) ; j \geq 0\right)$ and $\left(r_{0 j}(\lambda) ; j \geq 0\right)$, we can get

$$
\begin{equation*}
\eta_{0 n}(\lambda)=\frac{\lambda}{\lambda+\beta-\lambda \beta r_{00}(\lambda)} \cdot r_{0 n}(\lambda), \quad n \geq 0 \tag{3.14}
\end{equation*}
$$

By Lemma 4, we obtain (3.13) with $j=0$.
Step 2. Comparing the Kolmogorov forward equation for $\left(\eta_{j n}(\lambda) ; n \geq 0\right)$ and $\left(r_{j n}(\lambda) ; n \geq 0\right)$ with $j \geq 1$, we can get

$$
\begin{equation*}
\eta_{j n}(\lambda)=D_{j}(\lambda) r_{j n}(\lambda)+F_{j}(\lambda) r_{0 n}(\lambda), \quad j \geq 1, \quad n \geq 0 \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{j}(\lambda)=1, \quad F_{j}(\lambda)=\frac{\beta\left[\lambda r_{j 0}(\lambda)-1\right]}{\lambda+\beta-\lambda \beta r_{00}(\lambda)}, \quad j \geq 1 \tag{3.16}
\end{equation*}
$$

Conclusions

By Lemma 4, we obtain (3.13) with $j \geq 1$.
Finally, noting $h_{j,-1}^{\prime}(t)=\beta\left(1-h_{j,-1}(t)-h_{j, 0}(t)\right)$ and (3.13) with $n=0$ we get (3.12).

Conclusions

Corollary 2. For all $j \in \mathbf{E}$, we have

$$
E\left(C_{j 0}\right)=\frac{1}{\beta}+\frac{\tilde{r}_{j 0}(\beta)}{1-\beta \tilde{r}_{00}(\beta)},
$$

$D\left(C_{j 0}\right)=\frac{1}{\beta^{2}}\left\{1-\frac{\beta^{2} \tilde{r}_{j 0}^{2}(\beta)}{\left[1-\beta \tilde{r}_{00}(\beta)\right]^{2}}-\frac{2 \beta^{2}}{1-\beta \tilde{r}_{00}(\beta)} \tilde{r}_{j 0}^{\prime}(\beta)-\frac{2 \beta^{3} \tilde{r}_{j 0}(\beta)}{\left[1-\beta \tilde{r}_{00}(\beta)\right]^{2}} \tilde{r}_{00}^{\prime}(\beta)\right\}$,
where $\tilde{r}_{j 0}(\beta)(j \in \mathbf{E})$ are given by Remark 1 .

Conclusions

Corollary 3. (i) If $B_{c}^{\prime}(1)<0$ and $H^{\prime}(1)<\infty$, then

$$
\begin{equation*}
\lim _{\beta \downarrow 0} \beta E\left(C_{j 0}\right)=\frac{-B_{c}^{\prime}(1)+H^{\prime}(1)+\sum_{k=1}^{c-1} r_{k}(c-k) b_{0}}{H^{\prime}(1)+\sum_{k=1}^{c-1} r_{k}(c-k) b_{0}}, \quad j \in \mathbf{E} ; \tag{3.17}
\end{equation*}
$$

(ii) if $B_{c}^{\prime}(1)>0$, then

$$
\begin{equation*}
\lim _{\beta \downarrow 0}\left[E\left(C_{j 0}\right)-\frac{1}{\beta}\right]=\frac{b_{0} m_{1}^{*}(j)}{h-H(u)+\sum_{k=1}^{c-1} u^{k}(c-k) b_{0}(1-u) r_{k}}, \quad j \geq 0 \tag{3.18}
\end{equation*}
$$

where $m_{1}^{*}(0)=b_{0}^{-1},\left(m_{1}^{*}(j) ; j \geq 1\right)$ and $\left(r_{k} ; 1 \leq k \leq c-1\right)$ are given by Theorems 2 and 5 , respectively.

Conclusions

Corollary 4.

$$
\begin{gathered}
\lim _{\beta \rightarrow+\infty} E\left(C_{00}\right)=\frac{1}{h}, \\
\lim _{\beta \rightarrow+\infty} \beta E\left(C_{j 0}\right)= \begin{cases}1+\frac{b_{0}}{h}, & j=1, \\
1, & j \geq 2 .\end{cases}
\end{gathered}
$$

References

\square Anderson W.
Continuous-Time Markov Chains: An Applications-Oriented Approach. New
York: Springer-Verlag, 1991
Artalejo J.
G-networks: a versatile approach for work removal in queueing networks.
Eur J Oper Res, 2000, 126: 233-249

Asmussen S.
Applied Probability and Queues, 2nd edn. New York: John Wiley, 2003Bayer N and Boxma O J .
Wiener-Hopf analysis of an $M / G / 1$ queue with negative customers and of a related class of random walks.

Queueing Systems, 1996, 23: 301-316Chen A Y, Pollett P, Li J P and Zhang H J.
Markovian bulk-arrival and bulk-service queues with state-dependent control.
Queueing Systems, 2010, 64: 267-304

References

Chen A Y, Renshaw E.
Markov branching processes with instantaneous immigration.
Prob Theory Relat Fields, 1990, 87: 209-240Chen A Y, Renshaw E.
The $M / M / 1$ queue with mass exodus and mass arrives when empty.
J Appl Prob, 1997, 34: 192-207
Chen A Y, Renshaw E.
Markov bulk-arriving queues with state-dependent control at idle time.
Adv Appl Prob, 2004, 36: 499-524Chen M F.
From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World
Scientific, 1992
Chen M F.
Eigenvalues, Inequalities, and Ergodic Theory. London: Springer-Verlag, 2004

References

\square Di Crescenzo A, Giorno V, Nobile A G and Ricciardi L M.
A note on birth-death processes with catastrophes.
Statistics and Probability Letters, 2008, 78: 2248-2257
Dudin A and Karolik A.
BMAP/SM/1 queue with Markovian input of disasters and non-instantaneous recovery.

Performance Evaluation, 2001, 45: 19-32
Gelenbe E.
Product-form queueing networks with negative and positive customers.
J Appl Prob, 1991, 28: 656-663Gelenbe E, Glynn P and Sigman K.
Queues with negative arrivals.
J Appl Prob, 1991, 28: 245-250
\square Gross D, Harris C M.
Fundamentals of Queueing Theory. New York: John Wiley, 1985

References

着
Li J P, Chen A Y.
Markov branching processes with immigration and resurrection.
Markov Processes Relat Fields, 2006, 12: 139-168
Pakes A G.
Killing and resurrection of Markov processes. Commun Statist-Stochastic
Models, 1997, 13: 255-269Parthasarathy PR and Krishna Kumar B.
Density-dependent birth and death processes with state-dependent immigration.
Mathematical and Computer Modelling, 1991, 15: 11-16Zeifman A and Korotysheva A.
Perturbation Bounds for $\mathrm{M}_{t} / \mathrm{M}_{t} / \mathrm{N}$ Queue with Catastrophes.
Stochastic Models, 2012, 28: 49-62
Zhang L, Li J.
The $M / M / c$ Queue With Mass Exodus and Mass Arrivals When Empty.
Journal of Applied Probability, 2015, 52: 990-1002.

Acknowledgements

Thank you!

Email: jpli@mail.csu.edu.cn

