Sharp vertical Littlewood–Paley inequalities for heat flows in weighted L^2 spaces

Huaiqian Li

School of Mathematics Sichuan University Chengdu 610064, P. R. China

The 13th Workshop on Markov Processes and Related Topics

2017.7.17-21 @ Wuhan

2 Preliminaries

- 3 Sharp weighted Littlewood–Paley inequalities
- 4 The comparison of weights
- 5 A remark on sub-Riemannian manifolds

2 Preliminaries

- 3 Sharp weighted Littlewood–Paley inequalities
- 4 The comparison of weights
 - 5 A remark on sub-Riemannian manifolds

Littlewood–Paley square functions

Let *M* be a complete (smooth) Riemannian manifold with volume measure vol, non-negative Laplace–Beltrami operator Δ , and gradient operator ∇ . For $f \in C_c^{\infty}(M)$, define

horizontal Littlewood–Paley g-function

$$g(f)(x) = \Big(\int_0^\infty t \Big| \frac{\partial}{\partial t} e^{-t\sqrt{\Delta}} f(x) \Big|^2 dt \Big)^{1/2},$$

• vertical Littlewood–Paley *G*-function

$$\mathcal{G}(f)(x) = \Big(\int_0^\infty t |\nabla e^{-t\sqrt{\Delta}} f(x)|^2 \,\mathrm{d}t\Big)^{1/2},$$

horizontal Littlewood–Paley h-function

$$h(f)(x) = \left(\int_0^\infty t \left|\frac{\partial}{\partial t} e^{-t\Delta} f(x)\right|^2 \mathrm{d}t\right)^{1/2},$$

• vertical Littlewood–Paley H-function

$$\mathcal{H}(f)(x) = \left(\int_0^\infty |\nabla e^{-t\Delta} f(x)|^2 \,\mathrm{d}t\right)^{1/2}$$

- $g, \mathcal{G}, h, \mathcal{H}$ are all bounded in $L^p(\mathbb{R}^n)$ (see e.g. Stein's book in 1970a).
- g, h are bounded in L^p , 1 , for symmetric Markov semigroups in a general context (see Stein's book in 1970b).
- For $1 , <math>\mathcal{H}$ and \mathcal{G} are bounded in $L^p(M, \text{vol})$ (see e.g. Coulhon–Duong–Li [Studia Math. 2003]).
- For 2 , much stronger assumptions are need for $the <math>L^p$ boundedness of \mathcal{H}, \mathcal{G} , e.g. $|\nabla e^{-t\Delta} f|^2 \leq C e^{-t\Delta} |\nabla f|^2$ (see Coulhon–Duong [Comm. Pure Appl. Math. 2003]).

Many other results...

Weighted boundedness: A₂ conjecture

Let
$$M = \mathbb{R}^n$$
. Given an operator $S : L^2_w(\mathbb{R}^n) \to L^2_w(\mathbb{R}^n)$, prove

$$\|S(f)\|_{L^{2}_{w}(\mathbb{R}^{n})} \leq C(n, S) \|w\|_{\mathcal{A}_{2}(\mathbb{R}^{n})} \|f\|_{L^{2}_{w}(\mathbb{R}^{n})},$$
(1)

where *w* is the 2-Muckenhoupt weight (or A_2 weight), i.e., $0 \le w \in L^1_{loc}(\mathbb{R}^n)$ and

$$\|w\|_{\mathcal{A}_{2}(\mathbb{R}^{n})} := \sup_{Q} \Big(\frac{1}{|Q|} \int_{Q} w \, \mathrm{d}x \Big) \Big(\frac{1}{|Q|} \int_{Q} w^{-1} \, \mathrm{d}x \Big) < \infty,$$

where the sup is taken over all cubes $Q \subset \mathbb{R}^n$, and

$$L^2_w(\mathbb{R}^n):=\Big\{f:\mathbb{R}^n o\mathbb{R} ext{ measurable }\Big|\int_{\mathbb{R}^n}|f|^2w\,\mathrm{d} x<\infty\Big\},$$

with the norm of $f \in L^2_w(\mathbb{R}^n)$ defined by

$$\|f\|_{L^2_w(\mathbb{R}^n)} = \Big(\int_M |f(x)|^2 w(x) \,\mathrm{d}x\Big)^{1/2}.$$

Known results on the A_2 conjecture

The problem (1) was solved for

- Hardy–Littlewood maximal operator (Buckley [Trans. Amer. Math. Soc. 1993]),
- Beurling–Ahlfors operator (Petermichl–Volberg [Duke Math. J. 2002]),
- · Hilbert transform (Petermichl [Amer. J. Math. 2007]),
- Riesz transform (Petermichl [Proc. Amer. Math. Soc. 2008]),
- · Haar shift (Lacey-Petermichl-Reguera [Math. Ann. 2010]).

Later, Hytönen [Ann. Math. 2012] proved (1) for the general Calderón–Zygmund operator.

Recently, by establishing sharp weighted L^2 martingale inequalities, Bañuelos and Osekowski proved (1) for the Littlewood–Paley square function for heat flows in \mathbb{R}^n (see arXiv:1603.07618).

Let (M, d) be a complete separable metric space endowed with a non-negative Radon measure with full support. The triple (M, d, μ) is called a metric measure space.

Motivated by Bañuelos–Osekowski [arXiv:1603.07618], we are going to establish the weighted L^2 Littlewood–Paley inequalities for heat flows in the RCD^{*}(0, *N*) space (*M*, *d*, μ).

2 Preliminaries

- 3 Sharp weighted Littlewood–Paley inequalities
- 4 The comparison of weights
- 5 A remark on sub-Riemannian manifolds

Absolutely continuous curves

From now on, the metric measure space (M, d, μ) is fixed.

Let $q \in [1, \infty)$. A curve $\gamma : [0, 1] \rightarrow M$ is said q-absolutely continuous provided there exists $g \in L^q([0, 1])$ such that

$$d(\gamma(t), \gamma(s)) \leq \int_s^t g(r) \, \mathrm{d}r, \quad \forall \ 0 \leq s < t \leq 1.$$

For a *q*-absolutely continuous curve $\gamma : [0, 1] \rightarrow M$, it can be proved the metric slope

$$\lim_{\delta \to 0} \frac{d(\gamma(r+\delta), \gamma(r))}{|\delta|}$$

exists for a.e. *r* and belongs to $L^q([0, 1])$, denoted by $|\dot{\gamma}_r|$.

For every $\gamma \in C([0, 1], M)$, we use the notation $\int_0^1 |\dot{\gamma}_r|^q dr$, which may be $+\infty$ if γ is not absolutely continuous.

Test plans

For $t \in [0, 1]$, the evaluation map $e_t : C([0, 1], M) \rightarrow M$ is defined by

$$e_t(\gamma) = \gamma(t), \quad \forall \ \gamma \in C([0, 1], M).$$

Definition

A probability measure π on C([0, 1], M) is called a test plan if, there exists a positive constant C such that

$$(e_t)_{\sharp}\pi \leq C\mu$$
, for any $t \in [0, 1]$

and

$$\int \int_0^1 |\dot{\gamma}_t|^2 \,\mathrm{d}t \,\mathrm{d}\pi(\gamma) < \infty.$$

Sobolev spaces

Definition

The Sobolev class $S^2(M)$ is the space of all Borel functions $h: M \to \mathbb{R}$, for which there exists a non-negative function $f \in L^2(M)$ such that, for each test plan π , it holds

$$\int |h(\gamma_1) - h(\gamma_0)| \, \mathrm{d}\pi(\gamma) \leq \int \int_0^1 f(\gamma_t) |\dot{\gamma}_t| \, \mathrm{d}t \, \mathrm{d}\pi(\gamma), \qquad (2)$$

where *f* is called a weak upper gradient for *h*.

For each $h \in S^2(M)$, there exists a unique minimal function f in the μ -a.e. sense such that (2) holds, which is denoted $|\nabla h|_*$ and is called the minimal weak upper gradient of h. Define the Sobolev space $W^{1,2}(M) = S^2(M) \cap L^2(M)$, which is a Banach space with the norm

$$\|f\|_{W^{1,2}(M)} := \left(\|f\|_{L^2(M)} + \||\nabla f|_*\|_{L^2(M)}^2\right)^{1/2}.$$

In general, $(W^{1,2}(M), \|\cdot\|_{W^{1,2}(M)})$ is not a Hilbert space.

Definition (Erbar- Kuwada-Sturm, Invent. Math. 2015)

Let $K \in \mathbb{R}$ and $N \in [1, \infty)$. We say that a metric measure space (M, d, μ) is an RCD^{*}(K, N) space if it is a CD^{*}(K, N) space and $W^{1,2}(M)$ is Hilbert.

See Bacher–Sturm [J. Funct. Anal. 2010] for the $CD^*(K, N)$.

The RCD(K, ∞) is first introduced by Ambrosio–Gigli–Savaré [Duke Math. J. 2014] and Ambrosio–Gigli–Mondino–Rajala [Trans. Amer. Math. Soc. 2015].

- · Euclidean spaces endowed with the Lebesgue measure,
- complete Riemannian manifolds with Ricci curvature bounded from below,
- measured Gromov–Hausdorff limits of a sequence of Riemannian manifolds with Ricci curvature bounded from below,
- · Alexandrov spaces with curvature bounded from below,
- Separable Hilbert spaces endowed with a log-concave probability measure ($N = \infty$).

Heat flows

Let (M, d, μ) be an RCD^{*}(K, N) space with $K \in \mathbb{R}$, $N \in [1, \infty)$. For any $f \in W^{1,2}(M)$, define

$$\mathsf{D}(f) = \int_M |\nabla f|^2_* \, \mathsf{d}\mu.$$

For $f, g \in W^{1,2}(M)$, let

$$\mathsf{D}(f,g) := rac{1}{4} [\mathsf{D}(f+g) - \mathsf{D}(f-g)] = \int_M \mathsf{\Gamma}(f,g) \, \mathsf{d}\mu,$$

where

$$\Gamma(f,g)(x) := \lim_{\epsilon \downarrow 0} \frac{|\nabla(g + \epsilon f)|^2_*(x) - |\nabla g|^2_*(x)}{2\epsilon}, \quad \text{for μ-a.e. $x \in X$,}$$

Then, $(D, W^{1,2}(M))$ is a strongly local and regular Dirichlet form, and denote $(P_t)_{t\geq 0}$ and Δ the corresponding heat flow and generator, respectively.

2 Preliminaries

3 Sharp weighted Littlewood–Paley inequalities

- 4 The comparison of weights
- 5 A remark on sub-Riemannian manifolds

Definition

Let $w : M \to [0, \infty]$ be a locally integrable function. For $p \in (1, \infty)$, we say that w is a *p*-heat weight, denoted by $w \in A_p^{heat}(M)$, if

$$\|w\|_{A_{\rho}^{heat}(M)} := \|P_{t}w(P_{t}w^{-1/(\rho-1)})^{\rho-1}\|_{L^{\infty}(M\times[0,\infty),\mu\times\mathcal{L}^{1})} < \infty,$$

where \mathcal{L}^1 is the Lebesgue measure restricted on $[0,\infty)$.

Note that, by Hölder's inequality, for any 1 ,

$$A_p^{heat}(M) \subset A_q^{heat}(M).$$

For $f \in C_c(M)$ and $x \in M$, define the Littlewood–Paley \mathcal{H} -function and \mathcal{H}_* -function by

$$\mathcal{H}(f)(x) = \left(\int_0^\infty |\nabla P_t f|^2_*(x) \,\mathrm{d} t\right)^{1/2},$$

and

$$\mathcal{H}_*(f)(x) = \left(\int_0^\infty \int_M |\nabla P_t f|^2_*(y) \rho_t(x, y) \,\mathrm{d}\mu(y) \mathrm{d}t\right)^{1/2},$$

where $(p_t)_{t\geq 0}$ is the heat kernel corresponding to $(P_t)_{t\geq 0}$.

Sharp weighted L^2 Littlewood–Paley inequalities

Theorem

Let (M, d, μ) be an $\text{RCD}^*(0, N)$ space with $N \in [1, \infty)$ and $w \in A_2^{heat}(M)$. Suppose that $\limsup_{r\to\infty} [\mu(B(o, r))/r^N] > 0$, for some $o \in M$. Then, for every $f \in C_c(M)$,

$$\|f\|_{L^2_w(M,\mu)} \leq (320 \|w\|_{\mathcal{A}^{heat}_2(M)})^{1/2} \|\mathcal{H}_*(f)\|_{L^2_w(M,\mu)},$$

$$\|\mathcal{H}_{*}(f)\|_{L^{2}_{w}(M,\mu)} \leq 2^{5/4} \|w\|_{\mathcal{A}^{heat}_{2}(M)} \|f\|_{L^{2}_{w}(M,\mu)},$$

$$\|\mathcal{H}(t)\|_{L^{2}_{w}(M,\mu)} \leq 2^{r/4} \|w\|_{A^{heat}_{2}(M)} \|t\|_{L^{2}_{w}(M,\mu)},$$

where $||f||_{L^{p}_{w}(M,\mu)}^{p} := \int_{M} |f|^{p} w d\mu$.

Idea of proof: express the square functions as conditional expectations of quadratic variations for martingales and then apply the sharp martingale inequalities; see Bañuelos– Osekowski (2016).

Tool 1: space-time martingales

Let $((Z_t)_{t\geq 0}, (\mathbb{P}^x)_{x\in M\setminus \mathcal{N}})$ be the μ -symmetric Hunt process corresponding to $(D, W^{1,2}(X))$, where \mathcal{N} is a properly exceptional set. Then, under the RCD condition,

 $\mathbb{P}^{x}(t\mapsto Z_{t} ext{ is continuous for } t\in(0,\infty))=1, \quad \forall \, x\in M.$

Lemma

Suppose (M, d, μ) is an $\text{RCD}^*(K, N)$ space with $K \in \mathbb{R}$ and $N \in [1, \infty)$. Fix T > 0 and $f \in C_c(M)$. Then $(\mathcal{M}(f)_t)_{0 \le t \le T}$ with

$$\mathcal{M}(f)_t = P_{T-t}f(Z_t) - P_Tf(Z_0)$$

is a uniformly integrable martingales with continuous path, and moreover, for any $t \in [0, T]$, the quadratic variation

$$\langle \mathcal{M}(f) \rangle_t = 2 \int_0^t |\nabla P_{T-r}f|^2_*(Z_r) \,\mathrm{d}r.$$

See Bañuelos-Méndez-Hernández (2003).

Tool 2: probabilistic representation of LPS functions

Lemma

Suppose (M, d, μ) is an RCD^{*}(K, N) space with $K \in \mathbb{R}$ and $N \in [1, \infty)$. Let T > 0, $f \in C_c(M)$ and $x \in M$. Define

$$\mathcal{H}_{*,T}(f)(x) = \left(\int_0^T \int_M |\nabla P_t f|^2_*(y) p_t(x,y) d\mu(y) dt\right)^{1/2}.$$

Then $\lim_{T\to\infty} \mathcal{H}_{*,T}(f)(x) = \mathcal{H}_{*}(f)(x)$, and

$$\mathcal{H}_{*,T}(f)^{2}(x) = \int_{M} \mathbb{E}_{y} \Big[\int_{0}^{T} |\nabla P_{T-r}f|_{*}^{2}(Z_{r}) dr \Big| Z_{T} = x \Big] \rho_{T}(x,y) d\mu(y)$$
$$= \frac{1}{2} \int_{M} \mathbb{E}_{y} \Big[\langle \mathcal{M}(f) \rangle_{T} \Big| Z_{T} = x \Big] \rho_{T}(x,y) d\mu(y).$$

Varopoulos [J. Funct. Anal. 1980] first used the idea for general Poisson semigroups.

Lemma (Bañuelos-Osekowski)

Fix T > 0. Let $X = (X_t)_{t \ge 0}$ be an adapted, real valued and uniformly integrable martingale with continuous path, and $Y = (Y_t)_{t \ge 0}$ be a non-negative and uniformly integrable martingale with continuous path. Suppose that Y satisfies

$$\|\mathbf{Y}\|_{\mathbf{A}_{2}^{mart}} := \sup_{0 \leq t \leq T} \left\| \mathbb{E} \left(\frac{\mathbf{Y}_{t}}{\mathbf{Y}_{T}} \middle| \mathcal{F}_{t} \right) \right\|_{L^{\infty}(\mathbb{P})} < \infty,$$

Then

$$\begin{split} \|X_{T}\|_{L^{2}(\mathbb{Q})} &\leq \left(80\|Y\|_{A_{2}^{mart}}\right)^{1/2} \|\langle X\rangle_{T}^{1/2}\|_{L^{2}(\mathbb{Q})},\\ \|\langle X\rangle_{T}^{1/2}\|_{L^{2}(\mathbb{Q})} &\leq 2^{7/4}\|Y\|_{A_{2}^{mart}}\|X_{T}\|_{L^{2}(\mathbb{Q})}, \end{split}$$

where $d\mathbb{Q} = Y_T d\mathbb{P}$.

In application, $X = \mathcal{M}(f)$ and $Y_T = w(Z_T)$.

Lemma (Jiang–L.–Zhang, Potential Anal. 2016)

Let (M, d, μ) be an RCD^{*}(0, N) space with $N \in [1, \infty)$. Then, there exists a positive constant *C* depending on *N* such that

$$p_t(x,y) \ge rac{1}{C\mu(B(x,\sqrt{t}))} \exp\Big\{-rac{d^2(x,y)}{3t}\Big\},$$

 $p_t(x,y) \le rac{C}{\mu(B(x,\sqrt{t}))} \exp\Big\{-rac{d^2(x,y)}{5t}\Big\},$

for any t > 0 and any $x, y \in M$.

Theorem

Let (M, d, μ) be an $\text{RCD}^*(0, N)$ space with $N \in [1, \infty)$ and $w \in A_2^{heat}(M)$. Suppose that $\limsup_{r\to\infty} [\mu(B(o, r))/r^N] > 0$, for some $o \in M$. Then, for every $f \in C_c(M)$,

$$\begin{split} \|f\|_{L^2_w(M,\mu)} &\leq (320\|w\|_{\mathcal{A}^{heat}_2(M)})^{1/2} \|\mathcal{H}_*(f)\|_{L^2_w(M,\mu)}, \\ \|\mathcal{H}_*(f)\|_{L^2_w(M,\mu)} &\leq 2^{5/4} \|w\|_{\mathcal{A}^{heat}_2(M)} \|f\|_{L^2_w(M,\mu)}, \end{split}$$

$$\begin{split} \|\mathcal{H}(f)\|_{L^2_w(M,\mu)} &\leq 2^{7/4} \|w\|_{A^{heat}_2(M)} \|f\|_{L^2_w(M,\mu)}, \\ \text{where } \|f\|_{L^p_w(M,\mu)}^{\rho} &:= \int_M |f|^{\rho} w \, \mathrm{d}\mu. \end{split}$$

An example

Theorem

Let *M* be a complete noncompact Riemannian manifold with dimension ≥ 2 . Suppose Ric ≥ 0 and $w \in A_2^{heat}(M)$. Then, all the inequalities in the Theorem above hold true.

The results were obtained by Bañuelos and Osekowski [arXiv:1603.07618] without noncompactness but under an additionally assumption

$$\sup_{x \in M} p_t(x, x) = c_t \to 0, \quad \text{as } t \to \infty. \tag{3}$$

However, in the noncompact setting, (3) is available, since for any t > 0 and $x \in M$, we have the Li–Yau (1986) heat kernel bounds

$$\frac{C_1}{\mu(B(x,\sqrt{t}))} \leq p_t(x,x) \leq \frac{C_2}{\mu(B(x,\sqrt{t}))},$$

and Yau's result (1976) that $\mu(B(x,\sqrt{t})) \ge c\sqrt{t}$.

2 Preliminaries

3 Sharp weighted Littlewood–Paley inequalities

4 The comparison of weights

5 A remark on sub-Riemannian manifolds

Comparison of *p*-heat and *p*-Muckenhoupt weights

Let (M, d, μ) be a metric measure space and $w : M \to [0, \infty]$ be a locally integrable function. For $p \in (1, \infty)$, we say that w is a *p*-Muckenhoupt weight, denoted by $w \in A_p(M)$, if

$$\|w\|_{\mathcal{A}_{p}(M)} := \sup_{B} \Big(\frac{1}{\mu(B)} \int_{B} w \, \mathrm{d}\mu\Big) \Big(\frac{1}{\mu(B)} \int_{B} w^{-1/(p-1)} \, \mathrm{d}\mu\Big)^{p-1} < \infty,$$

where the supremum is taken over all balls $B \subset M$.

Theorem

Let (M, d, μ) be an RCD^{*}(0, N) space with $N \in [1, \infty)$ and $1 . Then, there exist positive constants <math>c_1$ and c_2 depending on N such that

$$c_1 \|w\|_{A_p^{heat}(M)} \le \|w\|_{A_p(M)} \le c_2 \|w\|_{A_p^{heat}(M)}.$$
 (4)

The same conclusion (4) for p = 2 was obtained in \mathbb{R}^2 by Petermichl and Volberg [Duke Math. J. 2002].

Corollary

Let (M, d, μ) be an RCD^{*}(0, N) space with $N \in [1, \infty)$ and $w \in A_2(M)$. Suppose that

$$\limsup_{r\to\infty}\frac{\mu(B(o,r))}{r^N}>0,$$

for some $o \in M$. Then, for every $f \in C_c(M)$, there exists a constant C > 0 such that

$$\begin{split} \|f\|_{L^2_w(M,\mu)} &\leq C \|w\|_{A_2(M)}^{1/2} \|\mathcal{H}_*(f)\|_{L^2_w(M,\mu)}, \\ \|\mathcal{H}_*(f)\|_{L^2_w(M,\mu)} &\leq C \|w\|_{A_2(M)} \|f\|_{L^2_w(M,\mu)}, \\ \|\mathcal{H}(f)\|_{L^2_w(M,\mu)} &\leq C \|w\|_{A_2(M)} \|f\|_{L^2_w(M,\mu)}. \end{split}$$

2 Preliminaries

- 3 Sharp weighted Littlewood–Paley inequalities
- 4 The comparison of weights

5 A remark on sub-Riemannian manifolds

A remark on sub-Riemannian manifolds

Let *M* be a smooth connected manifold endowed with a smooth measure μ , and *d* a metric canonically associated with a smooth second order diffusion operator *L* on *M* with real coefficients such that L1 = 0 and

$$\int_{\mathcal{M}} \mathit{fLg} \, \mathrm{d}\mu = \int_{\mathcal{M}} \mathit{gLf} \, \mathrm{d}\mu, \quad \int_{\mathcal{M}} \mathit{fLf} \, \mathrm{d}\mu \leq \mathbf{0},$$

for every $f, g \in C^{\infty}_{c}(M)$. More precisely, for any $x, y \in M$,

$$d(x,y) = \sup\{|\phi(x) - \phi(y)| : \phi \in C^{\infty}(M), \, \Gamma(\phi,\phi) \leq 1\},\$$

where Γ is the *carré du champ*

$$\Gamma(f,g)=rac{1}{2}\{L(fg)-fLg-gLf\}, \quad f,g\in C^\infty(M).$$

Similarly results should be established on sub-Riemannian manifolds satisfying the generalized curvature-dimension condition $CD(0, \rho_2, \kappa, m)$ with $\rho_2 > 0$, $\kappa \ge 0$ and $2 \le m < \infty$, in the sense of Baudoin–Garofalo [J. Eur. Math. Soc. 2017].

#