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Littlewood–Paley square functions

Let M be a complete (smooth) Riemannian manifold with
volume measure vol, non-negative Laplace–Beltrami operator
∆, and gradient operator ∇. For f ∈ C∞c (M), define
• horizontal Littlewood–Paley g-function

g(f )(x) =
(∫ ∞

0
t
∣∣∣ ∂
∂t

e−t
√

∆f (x)
∣∣∣2 dt

)1/2
,

• vertical Littlewood–Paley G-function

G(f )(x) =
(∫ ∞

0
t |∇e−t

√
∆f (x)|2 dt

)1/2
,

• horizontal Littlewood–Paley h-function

h(f )(x) =
(∫ ∞

0
t
∣∣∣ ∂
∂t

e−t∆f (x)
∣∣∣2 dt

)1/2
,

• vertical Littlewood–Paley H-function

H(f )(x) =
(∫ ∞

0
|∇e−t∆f (x)|2 dt

)1/2
.

4 / 31



Lp boundedness for 1 < p <∞: known results

· g,G,h,H are all bounded in Lp(Rn) (see e.g. Stein’s book
in 1970a).
· g,h are bounded in Lp, 1 < p <∞, for symmetric Markov

semigroups in a general context (see Stein’s book in
1970b).
· For 1 < p ≤ 2, H and G are bounded in Lp(M, vol) (see

e.g. Coulhon–Duong–Li [Studia Math. 2003]).
· For 2 < p <∞, much stronger assumptions are need for

the Lp boundedness of H,G, e.g. |∇e−t∆f |2 ≤ Ce−t∆|∇f |2
(see Coulhon–Duong [Comm. Pure Appl. Math. 2003]).

Many other results...
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Weighted boundedness: A2 conjecture

Let M = Rn. Given an operator S : L2
w (Rn)→ L2

w (Rn), prove

‖S(f )‖L2
w (Rn) ≤ C(n,S)‖w‖A2(Rn)‖f‖L2

w (Rn), (1)

where w is the 2-Muckenhoupt weight (or A2 weight), i.e.,
0 ≤ w ∈ L1

loc(Rn) and

‖w‖A2(Rn) := sup
Q

( 1
|Q|

∫
Q

w dx
)( 1
|Q|

∫
Q

w−1 dx
)
<∞,

where the sup is taken over all cubes Q ⊂ Rn, and

L2
w (Rn) :=

{
f : Rn → R measurable

∣∣∣ ∫
Rn
|f |2w dx <∞

}
,

with the norm of f ∈ L2
w (Rn) defined by

‖f‖L2
w (Rn) =

(∫
M
|f (x)|2w(x) dx

)1/2
.
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Known results on the A2 conjecture

The problem (1) was solved for
· Hardy–Littlewood maximal operator (Buckley [Trans. Amer.

Math. Soc. 1993]),
· Beurling–Ahlfors operator (Petermichl–Volberg [Duke

Math. J. 2002]),
· Hilbert transform (Petermichl [Amer. J. Math. 2007]),
· Riesz transform (Petermichl [Proc. Amer. Math. Soc.

2008]),
· Haar shift (Lacey–Petermichl–Reguera [Math. Ann. 2010]).

Later, Hytönen [Ann. Math. 2012] proved (1) for the general
Calderón–Zygmund operator.

Recently, by establishing sharp weighted L2 martingale
inequalities, Bañuelos and Osekowski proved (1) for the
Littlewood–Paley square function for heat flows in Rn (see
arXiv:1603.07618).
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The aim

Let (M,d) be a complete separable metric space endowed with
a non-negative Radon measure with full support. The triple
(M,d , µ) is called a metric measure space.

Motivated by Bañuelos–Osekowski [arXiv:1603.07618], we are
going to establish the weighted L2 Littlewood–Paley inequalities
for heat flows in the RCD∗(0,N) space (M,d , µ).
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Absolutely continuous curves

From now on, the metric measure space (M,d , µ) is fixed.

Let q ∈ [1,∞). A curve γ : [0,1]→ M is said q-absolutely
continuous provided there exists g ∈ Lq([0,1]) such that

d(γ(t), γ(s)) ≤
∫ t

s
g(r) dr , ∀ 0 ≤ s < t ≤ 1.

For a q-absolutely continuous curve γ : [0,1]→ M, it can be
proved the metric slope

lim
δ→0

d(γ(r + δ), γ(r))

|δ|

exists for a.e. r and belongs to Lq([0,1]), denoted by |γ̇r |.

For every γ ∈ C([0,1],M), we use the notation
∫ 1

0 |γ̇r |q dr ,
which may be +∞ if γ is not absolutely continuous.
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Test plans

For t ∈ [0,1], the evaluation map et : C([0,1],M)→ M is
defined by

et (γ) = γ(t), ∀ γ ∈ C([0,1],M).

Definition
A probability measure π on C([0,1],M) is called a test plan if,
there exists a positive constant C such that

(et )]π ≤ Cµ, for any t ∈ [0,1],

and ∫ ∫ 1

0
|γ̇t |2 dt dπ(γ) <∞.
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Sobolev spaces

Definition

The Sobolev class S2(M) is the space of all Borel functions
h : M → R, for which there exists a non-negative function f
∈ L2(M) such that, for each test plan π, it holds∫

|h(γ1)− h(γ0)|dπ(γ) ≤
∫ ∫ 1

0
f (γt )|γ̇t |dt dπ(γ), (2)

where f is called a weak upper gradient for h.

For each h ∈ S2(M), there exists a unique minimal function f in
the µ-a.e. sense such that (2) holds, which is denoted |∇h|∗
and is called the minimal weak upper gradient of h.
Define the Sobolev space W 1,2(M) = S2(M) ∩ L2(M), which is
a Banach space with the norm

‖f‖W 1,2(M) :=
(
‖f‖L2(M) + ‖|∇f |∗‖2L2(M)

)1/2
.
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Riemannian curvature-dimension conditions

In general, (W 1,2(M), ‖ · ‖W 1,2(M)) is not a Hilbert space.

Definition (Erbar– Kuwada–Sturm, Invent. Math. 2015)

Let K ∈ R and N ∈ [1,∞). We say that a metric measure space
(M,d , µ) is an RCD∗(K ,N) space if it is a CD∗(K ,N) space and
W 1,2(M) is Hilbert.

See Bacher–Sturm [J. Funct. Anal. 2010] for the CD∗(K ,N).

The RCD(K ,∞) is first introduced by Ambrosio–Gigli–Savaré
[Duke Math. J. 2014] and Ambrosio–Gigli–Mondino–Rajala
[Trans. Amer. Math. Soc. 2015].

13 / 31



Examples of RCD spaces

· Euclidean spaces endowed with the Lebesgue measure,

· complete Riemannian manifolds with Ricci curvature
bounded from below,

· measured Gromov–Hausdorff limits of a sequence of
Riemannian manifolds with Ricci curvature bounded from
below,

· Alexandrov spaces with curvature bounded from below,

· Separable Hilbert spaces endowed with a log-concave
probability measure (N =∞).
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Heat flows

Let (M,d , µ) be an RCD∗(K ,N) space with K ∈ R, N ∈ [1,∞).
For any f ∈W 1,2(M), define

D(f ) =

∫
M
|∇f |2∗ dµ.

For f ,g ∈W 1,2(M), let

D(f ,g) :=
1
4

[D(f + g)− D(f − g)] =

∫
M

Γ(f ,g) dµ,

where

Γ(f ,g)(x) := lim
ε↓0

|∇(g + εf )|2∗(x)− |∇g|2∗(x)

2ε
, for µ-a.e. x ∈ X ,

Then, (D,W 1,2(M)) is a strongly local and regular Dirichlet
form, and denote (Pt )t≥0 and ∆ the corresponding heat flow
and generator, respectively.
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The p-heat weight

Definition

Let w : M → [0,∞] be a locally integrable function. For
p ∈ (1,∞), we say that w is a p-heat weight, denoted by
w ∈ Aheat

p (M), if

‖w‖Aheat
p (M) :=

∥∥Ptw(Ptw−1/(p−1))p−1∥∥
L∞(M×[0,∞),µ×L1)

<∞,

where L1 is the Lebesgue measure restricted on [0,∞).

Note that, by Hölder’s inequality, for any 1 < p ≤ q <∞,

Aheat
p (M) ⊂ Aheat

q (M).
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Littlewood–Paley square functions

For f ∈ Cc(M) and x ∈ M, define the Littlewood–Paley
H-function and H∗-function by

H(f )(x) =
(∫ ∞

0
|∇Pt f |2∗(x) dt

)1/2
,

and

H∗(f )(x) =
(∫ ∞

0

∫
M
|∇Pt f |2∗(y)pt (x , y) dµ(y)dt

)1/2
,

where (pt )t≥0 is the heat kernel corresponding to (Pt )t≥0.
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Sharp weighted L2 Littlewood–Paley inequalities

Theorem

Let (M,d , µ) be an RCD∗(0,N) space with N ∈ [1,∞) and
w ∈ Aheat

2 (M). Suppose that lim supr→∞[µ(B(o, r))/rN ] > 0,
for some o ∈ M. Then, for every f ∈ Cc(M),

‖f‖L2
w (M,µ) ≤ (320‖w‖Aheat

2 (M))1/2‖H∗(f )‖L2
w (M,µ),

‖H∗(f )‖L2
w (M,µ) ≤ 25/4‖w‖Aheat

2 (M)‖f‖L2
w (M,µ),

‖H(f )‖L2
w (M,µ) ≤ 27/4‖w‖Aheat

2 (M)‖f‖L2
w (M,µ),

where ‖f‖p
Lp

w (M,µ)
:=
∫

M |f |
pw dµ.

Idea of proof: express the square functions as conditional
expectations of quadratic variations for martingales and then
apply the sharp martingale inequalities; see Bañuelos–
Osekowski (2016).
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Tool 1: space-time martingales

Let
(
(Zt )t≥0, (Px )x∈M\N

)
be the µ-symmetric Hunt process

corresponding to (D,W 1,2(X )), where N is a properly
exceptional set. Then, under the RCD condition,

Px(t 7→ Zt is continuous for t ∈ (0,∞)
)

= 1, ∀ x ∈ M.

Lemma

Suppose (M,d , µ) is an RCD∗(K ,N) space with K ∈ R and
N ∈ [1,∞). Fix T > 0 and f ∈ Cc(M). Then (M(f )t )0≤t≤T with

M(f )t = PT−t f (Zt )− PT f (Z0)

is a uniformly integrable martingales with continuous path, and
moreover, for any t ∈ [0,T ], the quadratic variation

〈M(f )〉t = 2
∫ t

0
|∇PT−r f |2∗(Zr ) dr .

See Bañuelos–Méndez-Hernández (2003).
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Tool 2: probabilistic representation of LPS functions

Lemma

Suppose (M,d , µ) is an RCD∗(K ,N) space with K ∈ R and
N ∈ [1,∞). Let T > 0, f ∈ Cc(M) and x ∈ M. Define

H∗,T (f )(x) =
(∫ T

0

∫
M
|∇Pt f |2∗(y)pt (x , y) dµ(y)dt

)1/2
.

Then limT→∞H∗,T (f )(x) = H∗(f )(x), and

H∗,T (f )2(x) =

∫
M
Ey

[ ∫ T

0
|∇PT−r f |2∗(Zr ) dr

∣∣∣ZT = x
]
pT (x , y) dµ(y)

=
1
2

∫
M
Ey

[
〈M(f )〉T

∣∣∣ZT = x
]
pT (x , y) dµ(y).

Varopoulos [J. Funct. Anal. 1980] first used the idea for general
Poisson semigroups.
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Tool 3: sharp weighted martingale inequalities

Lemma (Bañuelos–Osekowski)

Fix T > 0. Let X = (Xt )t≥0 be an adapted, real valued and
uniformly integrable martingale with continuous path, and
Y = (Yt )t≥0 be a non-negative and uniformly integrable
martingale with continuous path. Suppose that Y satisfies

‖Y‖Amart
2

:= sup
0≤t≤T

∥∥∥E( Yt

YT

∣∣∣Ft

)∥∥∥
L∞(P)

<∞,

Then

‖XT‖L2(Q) ≤
(
80‖Y‖Amart

2

)1/2‖〈X 〉1/2
T ‖L2(Q),

‖〈X 〉1/2
T ‖L2(Q) ≤ 27/4‖Y‖Amart

2
‖XT‖L2(Q),

where dQ = YT dP.

In application, X =M(f ) and YT = w(ZT ).
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Tool 4: heat kernel estimates

Lemma (Jiang–L.–Zhang, Potential Anal. 2016)

Let (M,d , µ) be an RCD∗(0,N) space with N ∈ [1,∞). Then,
there exists a positive constant C depending on N such that

pt (x , y)≥ 1
Cµ(B(x ,

√
t))

exp
{
− d2(x , y)

3t

}
,

pt (x , y)≤ C
µ(B(x ,

√
t))

exp
{
− d2(x , y)

5t

}
,

for any t > 0 and any x , y ∈ M.
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Sharp weighted L2 Littlewood–Paley inequalities

Theorem

Let (M,d , µ) be an RCD∗(0,N) space with N ∈ [1,∞) and
w ∈ Aheat

2 (M). Suppose that lim supr→∞[µ(B(o, r))/rN ] > 0,
for some o ∈ M. Then, for every f ∈ Cc(M),

‖f‖L2
w (M,µ) ≤ (320‖w‖Aheat

2 (M))1/2‖H∗(f )‖L2
w (M,µ),

‖H∗(f )‖L2
w (M,µ) ≤ 25/4‖w‖Aheat

2 (M)‖f‖L2
w (M,µ),

‖H(f )‖L2
w (M,µ) ≤ 27/4‖w‖Aheat

2 (M)‖f‖L2
w (M,µ),

where ‖f‖p
Lp

w (M,µ)
:=
∫

M |f |
pw dµ.

24 / 31



An example

Theorem

Let M be a complete noncompact Riemannian manifold with
dimension≥ 2. Suppose Ric ≥ 0 and w ∈ Aheat

2 (M). Then,
all the inequalities in the Theorem above hold true.

The results were obtained by Bañuelos and Osekowski
[arXiv:1603.07618] without noncompactness but under an
additionally assumption

sup
x∈M

pt (x , x) = ct → 0, as t →∞. (3)

However, in the noncompact setting, (3) is available, since for
any t > 0 and x ∈ M, we have the Li–Yau (1986) heat kernel
bounds

C1

µ(B(x ,
√

t))
≤ pt (x , x) ≤ C2

µ(B(x ,
√

t))
,

and Yau’s result (1976) that µ(B(x ,
√

t)) ≥ c
√

t .
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Comparison of p-heat and p-Muckenhoupt weights

Let (M,d , µ) be a metric measure space and w : M → [0,∞]
be a locally integrable function. For p ∈ (1,∞), we say that w is
a p-Muckenhoupt weight, denoted by w ∈ Ap(M), if

‖w‖Ap(M) := sup
B

( 1
µ(B)

∫
B

w dµ
)( 1

µ(B)

∫
B

w−1/(p−1) dµ
)p−1

<∞,

where the supremum is taken over all balls B ⊂ M.

Theorem

Let (M,d , µ) be an RCD∗(0,N) space with N ∈ [1,∞) and
1 < p <∞. Then, there exist positive constants c1 and c2
depending on N such that

c1‖w‖Aheat
p (M) ≤ ‖w‖Ap(M) ≤ c2‖w‖Aheat

p (M). (4)

The same conclusion (4) for p = 2 was obtained in R2 by
Petermichl and Volberg [Duke Math. J. 2002].
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An immediate corrollary

Corollary

Let (M,d , µ) be an RCD∗(0,N) space with N ∈ [1,∞) and
w ∈ A2(M). Suppose that

lim sup
r→∞

µ(B(o, r))

rN > 0,

for some o ∈ M. Then, for every f ∈ Cc(M), there exists a
constant C > 0 such that

‖f‖L2
w (M,µ) ≤ C‖w‖1/2

A2(M)‖H∗(f )‖L2
w (M,µ),

‖H∗(f )‖L2
w (M,µ) ≤ C‖w‖A2(M)‖f‖L2

w (M,µ),

‖H(f )‖L2
w (M,µ) ≤ C‖w‖A2(M)‖f‖L2

w (M,µ).
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A remark on sub-Riemannian manifolds

Let M be a smooth connected manifold endowed with a smooth
measure µ, and d a metric canonically associated with a
smooth second order diffusion operator L on M with real
coefficients such that L1 = 0 and∫

M
fLg dµ =

∫
M

gLf dµ,
∫

M
fLf dµ ≤ 0,

for every f ,g ∈ C∞c (M). More precisely, for any x , y ∈ M,

d(x , y) = sup{|φ(x)− φ(y)| : φ ∈ C∞(M), Γ(φ, φ) ≤ 1},

where Γ is the carré du champ

Γ(f ,g) =
1
2
{

L(fg)− fLg − gLf
}
, f ,g ∈ C∞(M).

Similarly results should be established on sub-Riemannian
manifolds satisfying the generalized curvature-dimension
condition CD(0, ρ2, κ,m) with ρ2 > 0, κ ≥ 0 and 2 ≤ m <∞, in
the sense of Baudoin–Garofalo [J. Eur. Math. Soc. 2017].
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