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1 Introduction

Example: Random conductance model (RCM)

{µe}: random conductance, i.i.d. on each edge e of Zd s.t. 9↵ 2 (0, 1)

P(µe � c1) = 1, P(µe � u) = c2u
�↵(1 + o(1)) as u!1. (1.1)

(Note that Eµe = 1.) {Xt}t�0: cont. time MC on Zd (holding time exp(1)).
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Theorem 1.1 d � 2 (Barlow-Černý ’11) For d � 3,

"Xct/"2/↵
d! FKd,↵(t) := BMd(S

�1
↵ (t)) P-a.s. on D([0,1), Rd),

where {S↵(t)}t�0: ↵-stable subord. (indep. of {BMd(t)}).

For d = 2 (Černý ’11), same result by replacing "�2/↵ to "�2/↵(log "�1)1�1/↵.
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FKd,↵: Fractional-kinetics process ̶ It is no longer a Markov process!

Density of its fixed time distribution p(t, x) satisfies the fractional-kinetics equation:

@↵

@t↵
p(t, x) =

1

2
�p(t, x).

Rem 1: Limit is very di↵erent for d = 1 : Z(s) = BM(��1
⇢ (s)), FIN di↵usion.

�⇢(t) :=
R

R `(t, y)⇢(dy), ⇢ :=
P

i ⌫i�xi: PPP with intensity dx↵⌫�1�↵d⌫.

Rem 2: For Bouchaud’s trap model (BTM), Theorem 1.1 is by Ben Arous-Černý ’07.



2 Unique exsitence of the weak solution and Heat kernel estimates for generalized FK

processes

Classical case 0 < � < 1

@�t p(t, x) = �p(t, x) t > 0, x 2 Rd.

where @�t  (t) := d
dtI

1��( �  (0))(t) = d
dtI

1�� (t)�  (0)
t��(1��)

: Caputo derivative

I� (t) = �(�)�1
R t

0 (t� s)��1 (s)ds.

HK estimates are made by PDE people (e.g. Eidelman-Kochubei (’04, JDE))

E�(z) =
P1

k=1 zk/�(�k + 1): Mittag-Le✏er function

p(t, x) = F�1(E�(|⇠|2t�)) use Fourier analysis



2 Unique exsitence of the weak solution and HKE for generalized FK processes

Classical case 0 < � < 1

@�t p(t, x) = �p(t, x) t > 0, x 2 Rd.

where @�t  (t) := d
dtI

1��( �  (0))(t) = d
dtI

1�� (t)�  (0)
t��(1��)

: Caputo derivative

I� (t) = �(�)�1
R t

0 (t� s)��1 (s)ds.

HK estimates are made by PDE people (e.g. Eidelman-Kochubei (’04, JDE))

E�(z) =
P1

k=1 zk/�(�k + 1): Mittag-Le✏er function, p(t, x) = F�1(E�(|⇠|2t�))

(Q) More general case? (General space, general operator)

Motivtion : • Question from industory. (Predict the progress of soil contamination.)

The next two slides: J. Math. Ind. (2010) are by J. Nakagawa (Nippon Steel Co.).

• The third slide: Nature (2006, Jan.) by D. Brockmann, L. Hufnagel and T. Geisel.
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Observation well

Prediction by Advection-Diffusion equation

Result of Field Test 
(Adams& Gelhar, 1992)
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Brockmann et. al., Nature (2006)



Result I: Weak solution (Cf. Talk by Z.-Q. Chen yesterday)

(F, d, µ) metric meas. space

(E ,F): reg. Dirichlet form on L2(F, µ). {Xt}: process, L: generator

{St}t�0: subordinator without drift, Ee��St = e�t�(�),

⌫: Lévy measure of S (i.e. �(�) =
R1

0 (1� e��s) ⌫(ds)). Let

Iw
t ( ) :=

Z t

0
w(t� s)( (s)�  (0)) ds, @w

t  (t) =
d

dt
Iw
t ( ),

where w(x) := ⌫((x,1)). @w
t is a generalized Caputo derivstive. Define

v(t, x) = E[f(X(S�1
t ))],

where S�1
t = inf{s > 0 : Ss > t}. Then …



Theorem 2.1 For 8f 2 L2(M ; µ), v(t, x) = E[f(X(S�1
t ))] is a weak solution to

@w
t v(t, x) = Lv(t, x) with v(0, x) = f (x) (2.1)

in the following sense:

(i) t 7! v(t, x) is continuous in L2(M ; µ) with kv(t, x)k2  kfk2. Hence Iw
t (v(·, x)) is

absolutely convergent in L2(M ; µ) for 8t > 0.

(ii) For 8g 2 D(L) and t > 0

d

dt

Z
M

g(x)Iw
t (v(·, x)) µ(dx) =

Z
M

v(t, x)Lg(x) µ(dx). (2.2)

Conversely , if v(t, x) is a weak solution to (2.1) in the sense of (i) and (ii) above

with f 2 L2(M ; µ), then v(t, x) = E[f(X(S�1
t ))] µ-a.e. on M for every t � 0.



Result II: Heat kernel estimates

(F, d, µ) metric meas. space d: geodesic metric

(E ,F): reg. Dirichlet form on L2(F, µ), conservative. {Xt}: process, L: generator

u(t, x, y) the corresponding heat kernel

(Q) What is the HK of the generalized FK processes?

v(t, x) = E[f(X(S�1
t ))] =

Z 1

0
Trf(x) drP(S�1

t  r) =

Z 1

0
Trf(x) drP(Sr � t)

=

Z 1

0

Z
M

f(y)u(r, x, y) µ(dy) drP(Sr � t)

=

Z
M

f(y)

✓Z 1

0
u(r, x, y) drP(Sr � t)

◆
µ(dy).

So the HK of the FK process pt(x, y) is pt(x, y) :=
R1

0 u(r, x, y) drP(Sr � t).



Suppose the corresponding heat kernel enjoys

u(t, x, y) ⇣ t�d/↵ (d(x, y)/t1/↵)

for some  monotone decreasing

) (Grigor’yan-K ’08) Either E is local, ↵ � 2 and (s) ⇣ exp(�s↵/(↵�1)): sub-Gaussian

or E is non-local, ↵ > 0 and  (s) ⇣ (1 + s)�(d+↵): ↵-stable-like.

Note: ↵ = 2 and  (s) = exp(�s2) is the classical case.

Suppose 0 < 9�1  �2 < 1 s.t.

c1
�1  �(�)

�(�)
 c2

�2 (2.3)

for all � > 0,  � 1. Then …



Theorem 2.2 (i) If d(x, y)�(t�1)1/↵  1, then

pt(x, y) ⇣

8>>>>>><
>>>>>>:

�(t�1)d/↵ if d < ↵,

�(t�1) log

✓
2

d(x, y)�(t�1)1/↵

◆
if d = ↵,

�(t�1)d/↵
�
d(x, y)�(t�1)1/↵

��d+↵
= �(t�1)/d(x, y)d�↵ if d > ↵.

(ii) Suppose d(x, y)�(t�1)1/↵ � 1. • When the Dirichlet form (E ,F) is local,

pt(x, y) ⇣ �(t�1)d/↵ exp
⇣
� t�̄�1

↵ ((d(x, y)/t)↵)
⌘
, (2.4)

where �̄↵(�) = �↵/�(�), and �̄�1
↵ (�) is the inverse function of �̄↵(�)

• When (E ,F) is non-local,

pt(x, y) ⇣ �(t�1)d/↵(d(x, y)�(t�1)1/↵)�d�↵ =
1

�(t�1)d(x, y)d+↵
.



Special case: �(s) = s�, 0 < � < 1 �-stable subodinator

In that case (2.4) is

pt(x, y) ⇣ t��d/↵ exp
⇣
(d(x, y)t��/↵)↵/(↵��)

⌘
.

Rem 1: We have more general version: under vol. doubling, more general shape of HK. 

Rem 2: Under (2.3), w.l.o.g.  we  may assume � is a complete Bernstein function.

Proposition 2.3 (Key Proposition)

P(Sr � t) ⇣ r�(t�1) if r�(t�1) << 1,

P(Sr  t) ⇣ exp(�t(�0)�1(t/r)) if r�(t�1) >> 1.

Rem 3: Roughly, one can interpret Theorem 2.2 by taking t ! 1/�(t�1).



Thank you!



3 Limit is very di↵erent when d = 1.

Theorem 3.1 d = 1 (Fontes-Isopi-Newman ’02)

"Xc⇤t/"1+1/↵
d! Z(t) under P⇥ P ⇠

0 .

Definition 3.2 FIN di↵usion is defined by Z(s) = BM(��1
⇢ (s)), s 2 [0,1),

where �⇢(t) :=
R

R `(t, y)⇢(dy) where `(·, ·) is the local time of BM,

⇢ :=
P

i ⌫i�xi where (xi, ⌫i) 2 R⇥R+ is distributed by PPP with intensity dx↵⌫�1�↵d⌫.

̶ Atoms of ⇢ are dense in R a.e.

@

@t
p(t, x) =

@2

@⇢@x
p(t, x)

⇢ plays the role of speed measure.



Theorem 3.5 (Barlow-Černý ’10) Let d � 3, ↵ 2 (0, 1), and

{Xt}t�0 be the Markov chain of RCM that satisfies (1.1). Then

"Xt/"2/↵
d! c · FKd,↵ under P 0

!, P-a.s. on D([0,1), Rd) with J1-topology.

Explanation:

Recall that scaled VSRW converges to BM, and CSRW is a time change of VSRW:

Clock process Ãt :=

Z t

0
µYsds =

Z t

0
µ0(TYs!)ds, Xt = YÃ�1

t
.

In fact, (using transience of RW)

(n�1Y (n2·), n�2/↵Ãn2·) ! (c1Bd, c2V↵) weakly under P 0
! , P-a.s.

) n�1X(n2/↵t) = n�1Y (Ã�1
n2/↵t

) = n�1Y (n2(Fn
t )�1) ! c1Bd((c2V↵)�1)

(Ã�1
n2/↵t

= inf{s : Ãs > n2/↵t} = n2 inf{s : Fn
t := n�2/↵Ãn2s > t} = n2(Fn

t )�1)
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