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Introduction

In the reliability system, we consider a system of multi-
components and study the dynamics of failure times based on
the history of failure process: Knight (1975) and Arjas &
Norros (1985, 1991).

In the credit risk analysis, we are also interested in failure
times — the defaults on the financial market. However the
environmental information is important.

Default modelling is based on the theory the enlargement of
filtrations developped by Jacod, Jeulin & Yor...in the 70s-80s.
Literature on multi-default modelling with two main

approaches: bottom-up and top-down models for respectively
non-ordered and ordered defaults.



Plan of our work

Consider a multivariate system in a general setting of
enlargement of filtrations in presence of environmental
information.

Use a random variable x to describe all default risks and to
study the dependence between the multi-default system and
the environmental information.

This general setting can be applied flexibly to diverse
situations, including bottom-up and top-down models.

The dependence structure between the default system and the
market environment can be described in a dynamic manner
and represented by a change of probability.



The multi-default system

Basic setting

(2, A,P): probability space for the market
E: a Polish space

X : © = E random variable describing all default uncertainties

Very flexible framework

Permits to consider both bottom-up and top-down models:

» E=R}, x=(m1,",7Tn) : Q > R models the default times of n
firms.

» E=(Ry xR)", x = (73, Li)[_; : Q@ > E models the default times
with corresponding loss (or gain).

» E={(x1,...,xp) €eRY|x1 << xp}, x = (01,,00) : Q> E
models the successive default times.



Modelling of the default filtration

The observable default information can be induced by a
filtration (NE)ss0 of B(E).

The default filtration (N;)es0 on (€,.A) is defined as the
inverse image given by NV; = x 1(NVE).

If (NE)ts0 is generated by some observation process (N;):so,
then (NV:)es0 is generated by (N; o x)¢s0.

Examples
If NE =€ for all t, then Ny = x"H(E) = o(x) : initial
enlargement of filtration

If x =7 and NE is generated by the functions of the form
1[o,5) with s < t, then NV = 0(1(;<5),5 < t) : progressive
enlargement of filtration

In general, (NVF) 0 can be any filtration on (E,&) which can
differ from the initial and progressive enlargements.



The prediction process

Complete information on Y is not observable.

(Nt)tso: filtration of A representing the information related to
defaults observable on the market.

Definition (Norros)

Let 7; be the Ni-conditional law of x, t > 0. The measure-valued
process (7:)¢>0 is called the prediction process of .

(nt) >0 is an (N¢)es0-adapted process valued in the space
P(E) of Borel probability measures on E.

Existence of a cadlag version which is unique up to
indistinguishability.

Martingale with respect to the weak topology on P(E): for
any bounded Borel function h on E

([Eh(x)nt(dx), t> 0) is an (N:)eso-martingale.



Example: one default

E=R,, x=7:Q->E.
(Ni)ts0: filtration generated by (1(;¢y = 1[0,¢] © X)t20-
7. probability law of 7.

Prediction process
Jt, 0o (X)17(dX)

dx 1 5-(dx)1 Y
melee) = n(]t,+oo[) {roty + 07 (dX) 17y
Remark
Let nE be the random measure
Lt oo ()(d%)
Jt,+o0[
0y (dx)1 E.
n(]t,+oo[) Lt voo[ (1) + () ()10, (-) on

One has [ h(x)n:(dx) = ([E h(x)nf(dx)) o 7 for any bounded
Borel function h on E.



Example: successive defaults

E={(x1,...,%n) e R} |x1 <--<xp}, x = (01,,00) : Q> E.
(Nt)ts0: filtration generated by Y7 ; 145, <1y

Prediction process

Mo i) (1{f<ui+1(x)} - dx)

n
nt(dx)zzl oi<t<ojy
i=0 toist<oia} 77|¢7(;)(1{f<ui+1(')})

or equivalently

No 1 up, +1(x ~dx
ne(dx) = | (Nt)( {t<upp1(x)} )

Mo (ny) (1{t<”Nt+1(‘)})

Moy 1 the conditional law of x given o (;y := (01,"+,0/)
ma(’,)(l{KuM(X)} - dx) denotes the random measure on E
sending a bounded Borel function h: E -~ R to

fE h(x) Moy (Lt (03~ d%) = E[A(X) Lt<o,,01 01y ]-



Interaction with environmental information - product space
We distinguish two sources of risks
(2°, (F7)20,P°): the market without default
x valued in (E,B(E)): the default information
We model the global market by the product space
(Q,A):=(Q°xE,F,, ® B(E))
x : Q2 =Q°x E - E given by projection to the 2nd coordinate.

Filtrations of A

Default-free filtration: F = (F:) 0 with Fr = F; © {2, E}.
Default filtration: (N;)es0 = (X H(NVE)) =0, where (VE) 150 is
a filtration of B(E).

Market filtration: G = (Gt)es0 With Ge = Fr v N = F2 @ NE.
(progressive enlargement of filtrations)

Global filtration: H = (H¢) 0, He = Fr v o(x) = Ff ® B(E).
(initial enlargement of filtrations)



The probability measures

Let the law of x be a Borel probability measure 1 on E.

Let P = P° ® ;7 be the product measure on .
» 1 and I are independent under?.
» The probability law of x under P is 7.

Change of probability measure
Consider the probability IP given by a change of probability measure

P(dw, dx) = B¢(w,x)P(dw,dx) on Fivo(x)

where 3 is a positive (H, P)-martingale with Epe[3:(x)] = 1 for
x € E and t >0 (in particular, So(x) =1).

The probability law of x under P is unchanged and remains 7.
The N;-conditional law 7, of x (the prediction process) is the
same under P and P.

The marginal law of P on Q° equals P° if and only if

Je Be(x)n(dx) =1 for any t > 0.



G-conditional law under P

Under P, the Gs-conditional law of y is still 7; by the
independence of x and F.

For any bounded #;-mesurable function Y:(-),

ne(i() = [ Yi(ome(dx) = Es[ Ve()[Ge]
More generally, for any bounded H -mesurable function Y, (-)

He=Ftvo(x)

Yoo (X) Ep[ Yoo (X) [ H¢]

foo\/./\/’tl lgt

Es[ Yoo (X) | Foo v N ] o Ep[ Yoo (X) | Gt ]

leading to

E5[ Yoo (00)IGe] = e (Bpe [ Yoo ()| 771)



(-conditional law under P

Proposition

The G;-conditional law nf’ under P is given by
ne(Be(x) - dx)
ne(Be ()

Let T>t>0 and Y7(-) be a bounded H r-mesurable
function. One has

ne (dx) =

Y7 (x)B7(x)

ntvr - [

2 | (b0,

or equivalently,

~ne(Epe [ YT ()BT ()IFE])
BTG =T ey




Exemple: non-ordered defaults
E :RZ, X = (7—17""7—")
For t >0 and Jc {1,---,n}, define the set E/ to be

{xy<t,xge > thi={(x1,,xn) € E|xi < tforied, xj>tfor e}

Default observations: NF generated by (E7,s < t) on E, and
N = x H(WNE) generated by (lgsox,s<t)on A
Prediction process :

)

N (Lir ety - dX)
ne(dx) = Lirjst 7y
JCE.,H} frstmet) N1 (Lirjest))
where 7, is the conditional law of x with respect to 7.

G-conditional law of x

15 (Lir,esty Be(x) - dx)

G
e = 1 T T)c
' Jc{lz,.:.,,n} frust et} NJ(Lirjese1Be(4))




Martingale characterization

The previous proposition allows to characterize G martingale
processes. Recall that 7¢(8:(+)) = [ Be(x)ne(dx).

Theorem
Let (M¢(-)) >0 be a G-adapted process. It is a (G, P)-martingale if
the process

W)= M) [ BeCme(d), €20
is a (G,P)-martingale, or equivalently if

VT >t>0, [E Ep[ M7 (x)|Felne(dx) = ().



Change of probability vs Density

Change of probability = F-conditional density
The F-conditional law of x under P admit a density w.r.t. 7.

Be(x)n(dx)

P(x € dx|F:) = —fE Be(x)n(d)

Proof. Under P, we have by independence of 77 and F

Es(8:00NF] = [ B:()m(d).
For a non-negative Borel function f on E, by Bayes formula

Es[f00B:00IFe] _ Je F()B:(x) n(dx)

A= EXCY 123 Ry WX P




Density = change of probability

Jacod’s hypothesis

We suppose that the Fi-conditional law of x has a density ()
w.r.t. a o-finite Borel measure v on E, i.e.

P(x € dx|F:) = ar(x)v(dx).

In multi-default modelling, adopted by El Karoui, Jeanblanc & J.
and Kchia, Larsson & Protter.

Consequences:

n(dx) = ao(x)(dx).

The density (a¢(+),t > 0)xee is an (F,P)-martingale.
Proposition
The probability measure P is absolutely continuous w.r.t. P (with
P° the marginal law of PP on Q°) and the Radon-Nikodym derivative
on H; is

o a¢(X)
P00 Oéo(X).




Example: ordered defaults

E={(x1,...,%n) eRY|x1 < <xp}, x = (01,,0n): Q> E
Assume that the probability measure 7 admits a density ag(x)
w.r.t. Lebesgue measure. For any t >0,

ar(x) = ap(x)Be(x), xeR”

is the (I, P)-conditional density of x = (o1,+0p).

Proposition
The G-intensity of the counting process (XL 1(,,<¢})t20 is

A, = nil 1 ftoo ftoo O[t(o'(,'), t7Xf+27 "'7Xn)dxi+2"'dxn
t = . .
& {oist<oii1} ftoo mftoo at(U(i)aXi+1,"',Xn)dXi+1“‘an )

where O'(,') = (01,---,0',').



Impact of the default events

Proposition
Let Y7(:) be a bounded H -mesurable function. One has

L EYT () ar(x) | FeldXiiim
17 ae(x)dx(isn) ’

X(H=9(i)

E[YT(X) ‘ gt] = Z 1{0’;St<0;+1}
i=0

where X(j.1.n) = (Xi+15% Xn)-

Regime switching on each scenario of default.

Jump of the firm value at the default time o;.



Back to the general setting

In practice, the market together with different types of information
is modelled by a probability space (2, .4,P) which is not necessarily
a product space:

(2, A,P): probability space for the market

X : Q — E default uncertainty random variable

F = (Ft)es0 filtration of A with Fy being the trivial o-algebra:
default free informations.

(NtE)tzo filtration of B(E) and (V)0 = (X_l(Nt‘L:))tZO
filtration of A: default informations.

G = (Gt) 10 the enlargement of F by (NV;)es0: global market
information.

However, the previous results with the product space can be useful
tools in the general setting.



Decoupling measure under equivalence hypothesis

In the classic setting of initial enlargement of filtration, Grorud
and Pontier (2001) have proved that if the F;-conditional law
of x is equivalent to its probability law 7, i.e. 5:(-) >0 a.s.,
then there exists a probability measure P defined by

d_ﬁ‘ _ 1
dP e B(x)

under which x is independent of FF.

In the general case where (;(+) is not necessarily strictly
positive, that is, the F;-conditional probability law of x is
absolutely continuous but not equivalent w.r.t. 1, we can no
longer use the above approach since P is not well defined.



Main tool to link the product space

Idea: extend the original probability space by introducing an
auxiliary product space (2 x £, A® &) equipped with a product
probability measure P =P ® n and then use the graph map of x.

Definition
Let 'y : Q - Q x E be the graph map sending w € Q to (w, x(w)).
VF c A, any F v o(x)-measurable function can be written as

Y(x):=Y(:)oly, where Y(-) is an F ® B(E)-measurable
function on Q2 x E.

r .
0 " oxe "R

Y (x)

Proposition

Let (Y¢(-),t>0) be a process adapted to the filtration F ® N'E,
then (Y:(x),t >0) is a G-adapted process.



Remarks on G-adapted processes

Recall that G, = F; v Ny, t > 0 where N; = x L(NVE).

If NE = B(E) for all t, then N; = x"}(&) =a(x). So G
coincides with the initial enlargement of filtration. The
previous lemma is similar as in Grorud & Pontier.

If x =7 and NE is generated by the functions of the form
1[os] with s < t, then G is the progressive enlargement.
In general, G can be different since (NVF )0 can be any

filtration on (E,&). So the measurability of Y;(-) is possibly
different with the classic initial and progressive enlargements.



The induced probability of '

Let P’ be the probability related to Iy : w - (w, x(w)), i.e.,
for non-negative A ® £-measurable function f on Q x E,

me F(w, X)P' (dw, dx) = Ep[F ()]

Density assumption

The F-conditional law of x has a positive density ((+))¢>0 with
respect to a o-finite Borel measure v on E.

Recall that P denotes the product probability measure P &,

then
dP"  a(x)

dP  ao(x)

=: B¢(x), on F:® B(E).



Evaluation formula in the general setting

Lemma
Let Y(-) be a bounded A ® B(E)-measurable function on Q x E.
One has

Ep[Y (X)IGe] = Ep[Y ()1 Fe © NE100).

Theorem
Let Y7(-) be a non-negative F1 ® £-measurable function on Q x E
and t< T. Then

_ /EEIP’[YT(X)ﬂT(XN]:t]??t(dX)

Ep[ YT (X)IGt] = T B (Ome(dx) (x),




Example: non-ordered multi-defaults

We consider E =R7 and x = (71,-+-,7p) : Q — E, with v = dx.
progressive enlargement of filtration: G; = F; v N; where
Nt = x M (W) is generated by (1, 0 x,s < t) with

El = {xeE|x;<t, xje>t}

prediction process:
1 ap (-, xge )0y (dxy) dx e
{xge>t}X0O\", XJe )O(.) J)axy
ne(dx) = — JoX,
t( ) Jc{§~,n} [t ao(-7XJc)dXJc E;

evaluation formula:

L Ep[ YT (x)ar(x)|Ft]dxe
Ep[Y: = 1
IP[ T(X)|gt] JC{§,7,’} {TJSt?TJC>t} ftoo Oét(X)dXJc

XJ=TJ



Martingale characterization in the general setting

Theorem

Let (M¢(-),t>0) be an (F; ® Nf)ss0-adapted process. Then
(M¢(x),t>0) is a (G, P)-martingale if

()= M) [

(07

al) ) (de), 30
0(x)
is an ((F: ® NE)is0,P)-martingale, or equivalently

VT>t>0, fEEp[/\NﬂT(X)Ift]m(dX) = M. ("). (*)



Example: non-ordered defaults

We write My(x) as > M{(x))1g1(x).

Jc{1,+,n}
O(t( ) /tooOét(',XJc)dXJc
One has dx = 1-,(9).
-[EaO( ) t( ) JC{lz,-:n,n}_[t O[o(-,XJc)dX_jc EtJ()
- I e
M. (") = M ()2t el Xye)dXye ;0
©) Jc{lz ()/t Xy ) dxge e/ ()

(%) becomes

LT Ee[Mh(x1) [ ar (x) dxie | Frdxie g
2 & } I ;O(X)dXJc 1ey ()

Jc{1,-,n} I2J

= M (x)) t————
JC{E-W} ' ft ao(x)dxye




Corollary

With the notation of the example of non-ordered defaults.

The G-adapted process (M:(x))ts0 is a (G,P)-martingale if for
any Jc {0,---,n} and any x; € R7, the process

t ()
fmax M;:{k}(XJu{k}) / Ol (X) dxge (k) duk
Xk

XJ

M) [ ae(odne- ¥

keJe

is an (F,P)-martingale on [x]", +oo[, where x]'* = r})jjxxj.



Conclusion

We consider a general multi-default system with environmental
information.
Two key elements are:

» the prediction process (7, t > 0) conditional on the observable
default information;

» the Radon-Nikodym derivative (3;(-),t > 0) w.r.t. the product
measure.

We establish a link with the density approach modelling.

The technical tools by using the product space allows to
obtain general results in a unified setting.



Thanks for your attention |

DA



