Hunt's Hypothesis (H) for the Sum of Two Independent Lévy processes

Ze-Chun Hu

Sichuan University

based on joint paper with Wei Sun

13th Workshop on Markov Processes and Related Topics, BNU and WHU, July 17-21, 2017

Ze-Chun Hu (Sichuan University)

A 34 b

Hunt's hypothesis (H) and Getoor's conjecture

2 Progress on Getoor's conjecture

3 (H) for the sum of two independent Lévy processes

- 3.1 (H) for one-dimensional Lévy processes
- 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
- 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

Hunt's hypothesis (H) and Getoor's conjecture

Progress on Getoor's conjecture

3 (H) for the sum of two independent Lévy processes

- 3.1 (H) for one-dimensional Lévy processes
- 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
- 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

- Hunt's hypothesis (H) and Getoor's conjecture
- Progress on Getoor's conjecture
- (H) for the sum of two independent Lévy processes
 - 3.1 (H) for one-dimensional Lévy processes
 - 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
 - 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

- Hunt's hypothesis (H) and Getoor's conjecture
- Progress on Getoor's conjecture
- (H) for the sum of two independent Lévy processes
 - 3.1 (H) for one-dimensional Lévy processes
 - 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
 - 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

Hunt's hypothesis (H) and Getoor's conjecture

2 Progress on Getoor's conjecture

(H) for the sum of two independent Lévy processes

- 3.1 (H) for one-dimensional Lévy processes
- 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
- 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

(H) for the sum of two independent Lévy p

Meaning of Hunt's Hypothesis (H)

Let *X* be a standard Markov process on *E*.

Hunt's hypothesis (H): every semipolar set *A* of *X* is polar.

Intuitively speaking, (H) means that if A cannot be immediately hit by X with arbitrary starting point, then A will not be hit by X forever.

Some basic notions

Let $B \subset E$. Define $\sigma_B := \inf\{t > 0 : X_t \in B\}$.

 $\mathcal{B}^* :=$ the family of all nearly Borel sets relative to *X*.

 $B \subset E$ is called polar if there exists $C \in \mathcal{B}^*$ such that $B \subset C$ and $P^x(\sigma_C < \infty) = 0$ for every $x \in E$. *B* is called essentially polar if $P^x(\sigma_C < \infty) = 0$ for every *m*-a.e. $x \in E$, where *m* is the reference measure.

B is called a thin set if there exists $C \in \mathcal{B}^*$ such that $B \subset C$ and $P^x(\sigma_C = 0) = 0$ for every $x \in E$.

B is called semipolar if $B \subset \bigcup_{n=1}^{\infty} B_n$ for some thin sets $\{B_n\}_{n=1}^{\infty}$.

< ロ > < 同 > < 三 > < 三 > -

Example and counterexample

• (H) is satisfied by Brownian motion in **R**: All semipolar and polar sets must be the empty set, since in this case, every point *x* is the regular point of the single set $\{x\}$.

In fact, all Brownian motions in any finite dimensional space satisfy (H).

• (H) is not satisfied by uniform motion to the right in **R**: semipolar set is countable set but polar set is the empty set.

In this case, for every point *x*, the set $\{x\}$ has no regular point. But if y < x, we have $P^{y}\{\sigma_{\{x\}} < \infty\} = 1$.

< ロ > < 同 > < 回 > < 回 > .

Several potential principles (I)

Assume *X* is in duality with \hat{X} on *E* w.r.t. σ -finite excessive measure *m*.

- Bounded positivity principle (P_{α}^*) : If μ is a finite signed measure and $U^{\alpha}\mu$ is bounded, then $\mu U^{\alpha}\mu \ge 0$.
- Bounded energy principle (E_{α}^*) : If μ is a finite measure with compact support and $U^{\alpha}\mu$ is bounded, then μ does not charge semipolar sets.
- Bounded maximum principle (M^*_{α}) : If μ is a finite measure with compact support *K* and $U^{\alpha}\mu$ is bounded, then $\sup\{U^{\alpha}\mu(x): x \in E\} = \sup\{U^{\alpha}\mu(x): x \in K\}.$

Several potential principles (II)

• Bounded regularity principle (R^*_{α}) : If μ is a finite measure with compact support such that $U^{\alpha}\mu$ is bounded, then $U^{\alpha}\mu$ is regular.

Assume that all α -excessive functions are lower semicontinuous. Then

 $(P^*_{\alpha}) \Leftrightarrow (E^*_{\alpha}) \Leftrightarrow (M^*_{\alpha}) \Leftrightarrow (R^*_{\alpha}) \Leftrightarrow (\mathrm{H}).$

Blumenthal, Getoor, Rao, Fitzsimmons.

(H) for the sum of two independent Lévy p

Other equivalent characterizations

• (H) holds if and only if every natural additive functional of *X* is a continuous additive functional(Blumenthal and Getoor).

• (H) holds if and only if fine topology and cofine topology differ by polar sets, which means that the fine closure of any set and its cofine closure differ by polar sets (Blumenthal and Getoor, Glover).

• (H) is equivalent to the dichotomy of capacity (Fitzsimmons and Kanda (1992, Ann. Probab.)).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Some sufficient conditions for (H)

• If *X* is symmetric, i.e. u(x, y) = u(y, x), then (H) holds.

• Glover and Rao (86, Ann. Prob.): α -subordinators of general Hunt processes satisfy (H).

• The sector condition implies that every semipolar set is essentially polar: Silverstein (1978,PTRF), Fitzsimmons (2001,PA), Han-Ma-Sun (2011, Acta. Math. Sinica).

Open problem: For a general Markov process *X*, can we give a good sufficient condition which implies (H)?

Hunt's hypothesis (H) and Getoor's conjecture Progress on Getoor's conjecture (H) for the sum of two independent Lévy p

Getoor's conjecture

About 45 years ago, Prof. R. K. Getoor conjectured that essentially all Lévy processes satisfy (H), except in certain extremely non-symmetric cases like uniform motions.

Hunt's hypothesis (H) and Getoor's conjecture

Progress on Getoor's conjecture

3 (H) for the sum of two independent Lévy processes

- 3.1 (H) for one-dimensional Lévy processes
- 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
- 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

Lévy processes

 (Ω, \mathcal{F}, P) : probability space

 $X = (X_t)_{t \ge 0}$: **R**^{*n*}-valued Lévy process on (Ω, \mathcal{F}, P) with Lévy-Khintchine exponent ψ , i.e.

 $E[\exp\{i\langle z, X_t\rangle\}] = \exp\{-t\psi(z)\}, \ z \in \mathbf{R}^n, t \ge 0.$

Lévy-Khintchine formula:

$$\psi(z)=i\langle a,z
angle+rac{1}{2}\langle z,\mathcal{Q}z
angle+\int_{\mathbf{R}^n}\left(1-e^{i\langle z,x
angle}+i\langle z,x
angle\mathbf{1}_{\{|x|<1\}}
ight)\mu(dx).$$

We also use (a, Q, μ) to stand for Lévy-Khintchine exponent ψ .

・ロト ・ 一下・ ・ ヨト ・ ヨト

(H) for the sum of two independent Lévy p

Progress on Getoor's conjecture (1)

Port and Stone (69, Ann. Math. Statist.): For the asymmetric Cauchy process on the line every x is regular for $\{x\}$. Hence only the empty set is a semipolar set and therefore (H) holds.

Blumenthal and Getoor (70): All stable processes with index $\alpha \in (0, 2)$ on the line satisfy (H).

Progress on Getoor's conjecture (2)

Kanda (76, PTRF), Forst (75, Math. Ann.): (H) holds if *X* has bounded continuous transition densities and $|\text{Im}(\psi)| \le M(1 + \text{Re}(\psi))$.

Rao (77, PTRF) gave a short proof of the Kanda-Forst theorem under the weaker condition that *X* has resolvent densities.

In particular, for n > 1 all stable processes of index $\alpha \neq 1$ satisfy (H). Kanda (78, PTRF) settled this problem for $\alpha = 1$ assuming the linear term vanishes.

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶ •

Progress on Getoor's conjecture (3)

Rao (88, Proc. AMS): If all 1-excessive functions of *X* are lower semicontinuous and $|\text{Im}(\psi)| \le (1 + \text{Re}(\psi))f(1 + \text{Re}(\psi))$, where *f* is increasing on $[1, \infty)$ such that

$$\int_{N}^{\infty} \frac{1}{zf(z)} dz = \infty$$

for any $N \ge 1$, then X satisfies (H).

Examples for f: $f(x) \equiv M(constant), f(x) = \ln x, f(x) = \ln \ln x \cdots$.

Progress on Getoor's conjecture (4)

(SY): It has resolvent densities w.r.t. the Lebesgue measure and is symmetric.

(KF): It has resolvent densities w.r.t. the Lebesgue measure and the Kanda-Forst condition holds.

(R): It has resolvent densities w.r.t. the Lebesgue measure and Rao's condition holds.

$$(SY) \Rightarrow (KF) \Rightarrow (R) \Rightarrow (H).$$

Progress on Getoor's conjecture (5)

(ND): Q is non-degenerate.

(S): $\mu(\mathbf{R}^n \setminus \sqrt{Q}\mathbf{R}^n) < \infty$, and the solution condition holds, i.e. the equation $\sqrt{Q}y = -a - \int_{\{x \in \mathbf{R}^n \setminus \sqrt{Q}\mathbf{R}^n : |x| < 1\}} x\mu(dx)$ has at least one solution $y \in \mathbf{R}^n$.

(SP): It has bounded continuous transition densities, and the Lévy process *X* and its symmetrization $X - \overline{X}$ have the same polar sets.

$$(ND) \Rightarrow (KF) \Rightarrow (R) \Rightarrow (H) \Leftarrow (SP)$$

 \uparrow
 (S)

Hu-Sun (2012): Hunt's hypothesis (H) and Getoor's conjecture for Levy processes, *SPA*, **122**, 2319-2328.

Ze-Chun Hu (Sichuan University)

Progress on Getoor's conjecture (6)

(EKFR): It has resolvent densities w.r.t. the Lebesgue measure and the following (EKFR) condition holds:

There are two measurable functions ψ_1 and ψ_2 on ${\bf R}^n$ such that ${\rm Im}(\psi)=\psi_1+\psi_2$, and

$$\begin{cases} |\psi_1| \le A(z)f(A(z)), \quad (A(z) = 1 + \operatorname{Re}\psi(z)), \\ \int_{\mathbb{R}^n} \frac{|\psi_2(z)|}{(1 + \operatorname{Re}\psi(z))^2 + (\operatorname{Im}\psi(z))^2} dz < \infty, \end{cases}$$

where *f* is an increasing function on $[1, \infty)$ such that $\int_{N}^{\infty} (\lambda f(\lambda))^{-1} d\lambda = \infty$ for any $N \ge 1$.

 $(R) \Rightarrow (EKFR) \Rightarrow (H).$

Hu-Sun-Zhang (2015): New results on Hunt's hypothesis (H) for Lévy processes, *PA*, **42**, 585-605.

Ze-Chun Hu (Sichuan University)

Progress on Getoor's conjecture (7)

(C^0): It has resolvent densities w.r.t. the Lebesgue measure and for any finite measure ν on \mathbf{R}^n of finite 1-energy,

$$\int_{\mathbf{R}^n} \frac{1}{B(z)\log(2+B(z))[\log\log(2+B(z))]} |\hat{\nu}(z)|^2 dz < \infty,$$

where $B(z) = |1 + \psi(z)|$.

 $(C^{B/A})$: It has resolvent densities w.r.t. the Lebesgue measure and there exists a constant C > 0 such that

 $B(z) \leq CA(z)\log(2+B(z))[\log\log(2+B(z))], \forall z \in \mathbf{R}^n.$

$$(KF) \Rightarrow (C^{B/A}) \Rightarrow (C^0) \Rightarrow (H).$$

Hu-Sun (2016): Further study on Hunt's hypothesis (H) for Levy processes, *SCM*, **59**, 2205-2226.

Ze-Chun Hu (Sichuan University)

Hunt's Hypothesis (H)

Progress on Getoor's conjecture (8)

- Hu-Sun (2012): Hunt's hypothesis (H) and Getoor's conjecture for Lévy processes, SPA, 122, 2319-2328.
- Hu-Sun-Zhang (2015): New results on Hunt's hypothesis (H) for Lévy processes, PA, 42, 585-605.
- Hu-Sun (2016): Further study on Hunt's hypothesis (H) for Lévy processes, SCM, 59, 2205-2226.

Ze-Chun Hu (Sichuan University)

- Hunt's hypothesis (H) and Getoor's conjecture
- 2 Progress on Getoor's conjecture

(H) for the sum of two independent Lévy processes

- 3.1 (H) for one-dimensional Lévy processes
- 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
- 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

Hunt's hypothesis (H) and Getoor's conjecture Progress on Getoor's conjecture

(H) for the sum of two independent Lévy p ●○○○○○○○○○○○○○○

3.1 (H) for one-dimensional Lévy processes

3.1 (H) for one-dimensional Lévy processes

Ontivation

 \diamond Main results

 \Diamond An example

3.1 (H) for one-dimensional Lévy processes

Motivation-I

Let $X = (X_t)_{t \ge 0}$ be a one-dimensional Lévy process with exponent ψ and (a, σ, μ) . If $\int (|x| \land 1)\mu(dx) < \infty$, we write

$$\psi(z) = ia'z + \frac{1}{2}\sigma z^2 + \int_{\mathbf{R}} \left(1 - e^{i\langle z, x \rangle}\right) \mu(dx).$$

Define

$$C = \{x \in \mathbf{R} : P\{X_t = x \text{ for some } t > 0\} > 0\},\$$

and the following cases:

A.
$$\sigma > 0$$
.
B. $\sigma = 0$; $\int (|x| \land 1)\mu(dx) = +\infty$.
C. $\sigma = 0$; $\int (|x| \land 1)\mu(dx) < +\infty$. Now we further decompose it into the following three subcases:
 C_1 . $a' = 0$,
 C_2 . $a' > 0$, μ 's support is $\mathbf{R}^+ = \{x \in \mathbf{R} | x > 0\}$.
 C_3 . $a' > 0$, μ charges $\mathbf{R}^- = \{x \in \mathbf{R} | x < 0\}$.

< ロ > < 同 > < 三 > < 三 > -

3.1 (H) for one-dimensional Lévy processes

Motivation-II

Theorem (Bretagnolle, 1971)

(i) For Case A, $C = \mathbf{R}$ and 0 is a regular point of $\{0\}$.

(ii) For Case B, either $C = \emptyset$ or $C = \mathbf{R}$, and if $C = \mathbf{R}$, then 0 is a regular point of $\{0\}$.

(iii) For Case C, suppose that *X* is not a compound Poisson process, then

```
(a) for Case C_1, C = \emptyset;
```

- (b) for Case C_2 , $C = \mathbf{R}^+$, 0 is not a regular point of $\{0\}$;
- (c) for Case C_3 , $C = \mathbf{R}$, 0 is not a regular point of $\{0\}$.

Remark For Case B, by one result of Kesten, we know that if $\int_0^{\infty} (x \wedge 1)\mu(dx) < \infty$ or $\int_{-\infty}^0 (|x| \wedge 1)\mu(dx) < \infty$, then $C = \mathbf{R}$, and thus any $x \in \mathbf{R}$ is a regular point of $\{x\}$ and hence (H) holds in this case. \Rightarrow our motivation

3.1 (H) for one-dimensional Lévy processes

Main results-I

Denote by μ_+ and μ_- be the restriction of the Lévy measure μ on $(0,\infty)$ and $(-\infty,0)$, respectively. Define by $\bar{\mu}_-$ the image measure of μ_- under the map

$$x \mapsto -x, \ \forall x \in (-\infty, 0).$$

Theorem 1. Suppose that Q = 0 and $\int_0^\infty (1 \wedge x) \mu_+(dx) = \infty$. If there exist $\delta \in (0, 1), k \in [0, 1)$, and a measure ν on \mathbf{R}^+ satisfying $\int_{(0,\delta)} x\nu(dx) < \infty$, such that

$$\bar{\mu}_{-} \le k\mu_{+} + \nu. \tag{1}$$

Then X satisfies (H).

Ze-Chun Hu (Sichuan University)

Hunt's hypothesis (H) and Getoor's conjecture Progress on Getoor's conjecture (H) for the sum of two independent Lévy p

3.1 (H) for one-dimensional Lévy processes

Main results-II

Theorem 2. If

$$\liminf_{\varepsilon \downarrow 0} \frac{\int_{-\varepsilon}^{\varepsilon} x^2 \mu(dx)}{\frac{\varepsilon}{|\log \varepsilon|}} > 0,$$

(2)

then X satisfies (H).

A 30 b

- - E - b-

3.1 (H) for one-dimensional Lévy processes

Main results-III

Remark 1. (i) The condition (2) does not require any controllability of $Im(\psi)$ by $Re(\psi)$.

(ii) For $\alpha > 0$, we define the measure ν_{α} on (-1, 1) by

$$\nu_{\alpha}(dx) := |x \log |x||^{1+\alpha} \mu(dx), \ x \in (-1, 1).$$

Then, the condition (2) only requires slightly more than ν_{α} is an infinite measures on (-1, 1) for any $\alpha > 0$ in the sense as follows: (a) Condition (2) implies that any ν_{α} is an infinite measure on (-1, 1). (b) If for some $\beta > 2$,

$$\liminf_{\varepsilon \downarrow 0} \frac{\int_{-\varepsilon}^{\varepsilon} x^2 \mu(dx)}{\varepsilon/|\log \varepsilon|^{\beta}} = 0,$$
(3)

then ν_{α} is a finite measure on (-1,1) for any $\alpha \in (0,\beta,-2)$, we have:

Hunt's hypothesis (H) and Getoor's conjecture Progress on Getoor's conjecture

(H) for the sum of two independent Lévy p

3.1 (H) for one-dimensional Lévy processes

Main results-IV

Proposition 4. If

$$\liminf_{|z|\to\infty}\frac{\operatorname{Re}\psi(z)}{\frac{|z|}{\log|z|}}>0,$$

then X satisfies (H).

Proposition 5. If

$$\liminf_{\varepsilon \to 0} \frac{\int_{-\varepsilon}^{\varepsilon} x^2 \mu(dx)}{\frac{\varepsilon}{|\log \varepsilon| [\log |\log \varepsilon|]}} > 0,$$

then X satisfies (H).

4 E b

3.1 (H) for one-dimensional Lévy processes

An example

Let *X* be a Lévy process on **R** with Lévy measure μ . Suppose that there exist positive constants c, δ , and a finite measure ν on $(0, \delta)$ such that

$$\mu(dx) + \nu(dx) \ge \frac{c}{x^2 |\log x|} dx \text{ on } (0, \delta).$$

Then *X* satisfies Condition (2), and thus (H) holds.

Hunt's hypothesis (H) and Getoor's conjecture Progress on Getoor's conjecture

(H) for the sum of two independent Lévy p

3.2 (H) for sum of Lévy processes without assumption on resolvent densities

3.2 (H) for sum of Lévy processes without assumption on resolvent densities

 \diamond Main results

 \diamond Three lemmas for Theorem 6

 \diamondsuit One lemma for Theorem 7

3.2 (H) for sum of Lévy processes without assumption on resolvent densities

Main results-I

Theorem 6. Let X_1 and X_2 be two independent Lévy processes on \mathbb{R}^n . If X_1 satisfies (H) and X_2 is a compound Poisson process, then $X_1 + X_2$ satisfies (H).

Theorem 7. Let X_1 and X_2 be two independent Lévy processes on \mathbb{R}^n . If both X_1 and X_2 satisfy condition (S), then $X_1 + X_2$ satisfies (H).

3.2 (H) for sum of Lévy processes without assumption on resolvent densities

Main results-II

By Theorem 6, we can strengthen the comparison Theorem 2.1 in Hu-Sun-Zhang (2015) as follows:

Proposition 8. Let *X* be a Lévy process on \mathbb{R}^n with Lévy-Khintchine exponent (a, Q, μ) . Suppose that μ_1 is a finite measure on $\mathbb{R}^n \setminus \{0\}$ such that $\mu_1 \leq \mu$. Denote $\mu_2 := \mu - \mu_1$ and let *X'* be a Lévy process on \mathbb{R}^n with Lévy-Khintchine exponent (a', Q, μ_2) , where $a' := a + \int_{\{|x| < 1\}} x \mu_1(dx)$. Then (i) *X* and *X'* have same semipolar sets. (ii) *X* and *X'* have same essentially polar sets.

(iii) if X' satisfies (H), then X satisfies (H).
(iv) if X satisfies (H) and X' has resolvent densities w.r.t. the Lebesgue measure, then X' satisfies (H).

< ロ > < 同 > < 回 > < 回 > < 回 > <

3.2 (H) for sum of Lévy processes without assumption on resolvent densities

Three lemmas for Theorem 6

Lemma 1. Let *X* be a Lévy process on \mathbb{R}^n (n > 1) satisfying (H). Then, for any nonempty proper subspace *S* of \mathbb{R}^n , the projection process *Y* of *X* on *S* satisfies (H).

Lemma 2. Let *X* be a Lévy process on \mathbb{R}^n (n > 1) with Lévy-Khintchine exponent (a, Q, μ). Suppose that for some proper subspace *S* of \mathbb{R}^n , the projection process X_S of *X* on *S* satisfies (H) and $\mu(\mathbb{R}^n \setminus S) < \infty$. Then *X* satisfies (H).

Lemma 3. Let X_1 and X_2 be two independent Lévy processes on \mathbb{R}^m and \mathbb{R}^n , respectively. If X_1 satisfies (H) and X_2 is a compound Poisson process, then $X = (X_1, X_2)$ satisfies (H).

Hunt's hypothesis (H) and Getoor's conjecture Progress on Getoor's conjecture

(H) for the sum of two independent Lévy p

3.2 (H) for sum of Lévy processes without assumption on resolvent densities

One lemma for Theorem 7

Lemma 4. Let *M* be a symmetric nonnegative definite $n \times n$ matrix. Then,

$$x \in \sqrt{M}\mathbf{R}^n \quad \Leftrightarrow \quad \exists c > 0 \ s.t. \ |\langle x, z \rangle| \le c \sqrt{\langle z, Mz \rangle}, \ \forall z \in \mathbf{R}^n.$$

Hunt's hypothesis (H) and Getoor's conjecture Progress on Getoor's conjecture

(H) for the sum of two independent Lévy p

3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

Throughout this part, we assume that X_1 and X_2 are two independent Lévy processes on \mathbb{R}^n such that $X_1 + X_2$ has resolvent densities w.r.t. the Lebesgue measure. We denote by ψ_1 and ψ_2 the Lévy-Khintchine exponents of X_1 and X_2 , respectively.

Main results-I

Theorem 9. Suppose that

(i) X_1 has resolvent densities w.r.t. the Lebesgue measure and satisfies (H).

(ii) Any finite measure ν of finite 1-energy w.r.t. $X_1 + X_2$ has finite 1-energy w.r.t. X_1 .

(iii) There exists a constant c > 0 such that

 $|\mathrm{Im}\psi_2| \le c(1 + \mathrm{Re}\psi_1 + \mathrm{Re}\psi_2).$

Then $X_1 + X_2$ satisfies (H).

4 E b

Main results-II

Proposition 10. If one of the following conditions is fulfilled, then any finite measure ν of finite 1-energy w.r.t. $X_1 + X_2$ has finite 1-energy w.r.t. X_1 .

(i) There exists a constant c > 0 such that

 $|\psi_2| \le c(1 + \operatorname{Re}(\psi_1)).$

(ii) There exists a constant c > 0 such that

$$\begin{cases} \operatorname{Re}\psi_2 \leq c \left(1 + \operatorname{Re}\psi_1 + \frac{(\operatorname{Im}\psi_1)^2}{1 + \operatorname{Re}\psi_1}\right), \\ |\operatorname{Im}\psi_2| \leq c(1 + \operatorname{Re}\psi_1 + \operatorname{Re}\psi_2). \end{cases}$$

(iii) There exists a constant c > 0 such that

$$\begin{cases} \operatorname{Re}\psi_{2} \leq c\left(1 + \operatorname{Re}\psi_{1} + \frac{(\operatorname{Im}\psi_{1})^{2}}{1 + \operatorname{Re}\psi_{1}}\right), \\ (\operatorname{Im}\psi_{2})^{2} \leq c(1 + \operatorname{Re}\psi_{1} + \operatorname{Re}\psi_{2})\left(1 + \operatorname{Re}\psi_{1} + \frac{(\operatorname{Im}\psi_{1})^{2}}{1 + \operatorname{Re}\psi_{1}}\right). \end{cases}$$

Main results-III

Corollary 11. Suppose that

(i) X_1 has bounded resolvent densities w.r.t. the Lebesgue measure and satisfies (H).

(ii) There exists a constant c > 0 such that

$$|\mathrm{Im}\psi_2| \le c(1 + \mathrm{Re}\psi_1 + \mathrm{Re}\psi_2).$$

Then $X_1 + X_2$ satisfies (H).

Main results-III

Remark 2.

- (i) One-dimensional Brownian motion has bounded resolvent densities.
- (ii) Any spectrally one sided one-dimensional Lévy process with unbounded variation has bounded resolvent densities.
- (iii) Any one-dimensional Lévy process satisfying the condition (2) of Theorem 2 has bounded resolvent densities.

- Hunt's hypothesis (H) and Getoor's conjecture
- Progress on Getoor's conjecture
- (H) for the sum of two independent Lévy processes
 3.1 (H) for one-dimensional Lévy processes
 - 3.2 (H) for sum of Lévy processes without assumption on resolvent densities
 - 3.3 (H) for sum of Lévy processes under assumption that resolvent densities exist

Some open problems

- Question 1. Does any subordinator with zero drift satisfy (H)?
- Question 2. Does any one-dimensional Lévy processes in Case *C*₁ satisfy (H)?
- Question 3. Does any pure jump Lévy process satisfy (H)?
- Question 4. Does any one-dimensional Lévy process in Case *B* satisfy (H)?
- Question 5. Suppose that X_1 and X_2 are two independent Lévy processes, and both of them satisfy (H). Does $X_1 + X_2$ satisfy (H)?
- Question 6. Suppose that X_1 and X_2 are two independent Lévy processes, and both of them satisfy (H). Does $X = (X_1, X_2)$ satisfy (H)?

(口) (同) (三) (三) (

Thank you for your attention!

Ze-Chun Hu (Sichuan University)

4 E b