Points of infinite multiplicity of a planar Brownian motion

Yueyun Hu (Paris 13)
joint work with Elie Aïdékon, Zhan Shi (Paris 6)

13th Workshop on Markov Processes and Related Topics

$$
\text { Wuhan University, July } 2017
$$

p-multiple point

Let $\left(B_{t}\right)_{t \geq 0}$ be a planar Brownian motion starting from 0 and $p \geq 2$. A point x is called of p-multiplicity if there exist $0<s_{1}<s_{2}<\ldots<s_{p}$ such that

$$
B_{s_{1}}=B_{s_{2}}=\ldots=B_{s_{p}}=x
$$

double point

triple point

- Dvoretzky, Erdös, Kakutani (1950) : Existence of p-multiple points for planar Brownian motion.
- Geman, Horowitz and Rosen (1984), Le Gall (1986) : The p-multiple self-intersection local time of B is the Radon measure α_{p}

Consequently, almost surely for any $p \geq 2$, there exist points of multiplicity (exactly) p.
 Book by X. Chen (2009) "Random walk intersections."

- Dvoretzky, Erdös, Kakutani (1950) : Existence of p-multiple points for planar Brownian motion.
- Geman, Horowitz and Rosen (1984), Le Gall (1986) : The p-multiple self-intersection local time of B is the Radon measure α_{p} :
$\alpha_{p}\left(d s_{1} \cdots d s_{p}\right):=\delta_{0}\left(B_{s_{1}}-B_{s_{2}}\right) \cdots \delta_{0}\left(B_{s_{p-1}}-B_{s_{p}}\right) d s_{1} \cdots d s_{p}$.
Consequently, almost surely for any $p \geq 2$, there exist points of multiplicity (exactly) p.
- References : Le Gall, Rosen, Taylor, Yor.

Book by X. Chen (2009) "Random walk intersections."

- Dvoretzky, Erdös, Kakutani (1950) : Existence of p-multiple points for planar Brownian motion.
- Geman, Horowitz and Rosen (1984), Le Gall (1986) : The p-multiple self-intersection local time of B is the Radon measure α_{p} :
$\alpha_{p}\left(d s_{1} \cdots d s_{p}\right):=\delta_{0}\left(B_{s_{1}}-B_{s_{2}}\right) \cdots \delta_{0}\left(B_{s_{p-1}}-B_{s_{p}}\right) d s_{1} \cdots d s_{p}$.
Consequently, almost surely for any $p \geq 2$, there exist points of multiplicity (exactly) p.
- References : Le Gall, Rosen, Taylor, Yor..., Book by X. Chen (2009) "Random walk intersections."

Infinite multiplicity

Dvoretzky, Erdös and Kakutani (1958), Le Gall (1987)

There exist points of (exactly) countable multiplicity as well as points of uncountable multiplicity.

Consequence
Almost surely the planar Brownian motion has points of infinite multiplicity, and these points form a dense set on the range.

Infinite multiplicity

Dvoretzky, Erdös and Kakutani (1958), Le Gall (1987)

There exist points of (exactly) countable multiplicity as well as points of uncountable multiplicity.

Consequence

Almost surely the planar Brownian motion has points of infinite multiplicity, and these points form a dense set on the range.

Measuring the points of infinite multiplicity

Problem

Construct a measure supported by the points of infinite multiplicity, or thick points.

Two natural ways to define the thick points

 (1) By the occupation times
Measuring the points of infinite multiplicity

Problem

Construct a measure supported by the points of infinite multiplicity, or thick points.

Two natural ways to define the thick points
(1) By the occupation times;
(2) By the number of crossings (i.e. number of excursions).

1st definition of thick points : by the occupation times

Occupation times

Let $0<\alpha<2$. A point x is called a α-thick point if

$$
\lim _{r \rightarrow 0} \frac{1}{r^{2}(\log r)^{2}} \int_{0}^{T} 1_{\left\{\left|B_{s}-x\right|<r\right\}} d s=\alpha,
$$

where T denotes the hitting time of the unit circle, or any finite deterministic time.

Typical behaviors (Ray 1963, Le Gall 1985, H. Shi 1995.

Almost surely,

1st definition of thick points : by the occupation times

Occupation times

Let $0<\alpha<2$. A point x is called a α-thick point if

$$
\lim _{r \rightarrow 0} \frac{1}{r^{2}(\log r)^{2}} \int_{0}^{T} 1_{\left\{\left|B_{s}-x\right|<r\right\}} d s=\alpha,
$$

where T denotes the hitting time of the unit circle, or any finite deterministic time.

Typical behaviors (Ray 1963, Le Gall 1985, H. Shi 1995...)

Almost surely,

$$
\limsup _{r \rightarrow 0} \frac{1}{r^{2}(\log 1 / r) \log \log \log 1 / r} \int_{0}^{T} 1_{\left\{\left|B_{s}\right|<r\right\}} d s=1 .
$$

Thick points by the occupation times

```
Theorem : Dembo, Peres, Rosen and Zeitouni (2001)
For \(0 \leq \alpha \leq 2\),
\(\operatorname{dim}_{\mathrm{H}}\{\alpha\)-thick points \(\}=2-\alpha, \quad\) a.s.,
```

with $\operatorname{dim}_{\mathrm{H}}(A)$ the Hausdorff dimension of the set A.

Remark

The lower bound is the difficult part!
\square
Dembo, Peres, Rosen and Zeitouni (2001)
As a consequence, they solved the Erdös-Taylor (1960) conjecture on the maximum of local times of a simple random walk on \mathbb{Z}^{2}

Thick points by the occupation times

Theorem : Dembo, Peres, Rosen and Zeitouni (2001)
For $0 \leq \alpha \leq 2$,

$$
\operatorname{dim}_{H}\{\alpha \text {-thick points }\}=2-\alpha, \quad \text { a.s., }
$$

with $\operatorname{dim}_{\mathrm{H}}(A)$ the Hausdorff dimension of the set A.

Remark

The lower bound is the difficult part!

> Dembo, Peres, Rosen and Zeitouni (2001)
> As a consequence, they solved the Erdös-Taylor (1960) conjecture on the maximum of local times of a simple random walk on \mathbb{Z}^{2}

Thick points by the occupation times

Theorem : Dembo, Peres, Rosen and Zeitouni (2001)
For $0 \leq \alpha \leq 2$,

$$
\operatorname{dim}_{H}\{\alpha \text {-thick points }\}=2-\alpha, \quad \text { a.s., }
$$

with $\operatorname{dim}_{\mathrm{H}}(A)$ the Hausdorff dimension of the set A.

Remark

The lower bound is the difficult part!

Dembo, Peres, Rosen and Zeitouni (2001)

As a consequence, they solved the Erdös-Taylor (1960) conjecture on the maximum of local times of a simple random walk on \mathbb{Z}^{2}.

Thick points by the occupation times

Erdös-Taylor (1960)'s conjecture

Let S be a simple symmetric random walk on \mathbb{Z}^{2} and define $L_{n}^{*}:=\max _{x} L_{n}^{x}$ with $L_{n}^{x}:=\sum_{i=1}^{n} 1_{\left\{S_{i}=x\right\}}$. Erdös-Taylor (1960) proved that almost surely,

$$
\frac{1}{4 \pi} \leq \liminf _{n \rightarrow \infty} \frac{L_{n}^{*}}{(\log n)^{2}} \leq \limsup _{n \rightarrow \infty} \frac{L_{n}^{*}}{(\log n)^{2}} \leq \frac{1}{\pi},
$$

and conjectured that the upper bound is sharp.

Dembo, Peres, Rosen and Zeitouni (2001)

Almost surely,

solving the Erdös-Taylor (1960) conjecture.

Thick points by the occupation times

Erdös-Taylor (1960)'s conjecture

Let S be a simple symmetric random walk on \mathbb{Z}^{2} and define $L_{n}^{*}:=\max _{x} L_{n}^{x}$ with $L_{n}^{x}:=\sum_{i=1}^{n} 1_{\left\{S_{i}=x\right\}}$. Erdös-Taylor (1960) proved that almost surely,

$$
\frac{1}{4 \pi} \leq \liminf _{n \rightarrow \infty} \frac{L_{n}^{*}}{(\log n)^{2}} \leq \limsup _{n \rightarrow \infty} \frac{L_{n}^{*}}{(\log n)^{2}} \leq \frac{1}{\pi}
$$

and conjectured that the upper bound is sharp.

Dembo, Peres, Rosen and Zeitouni (2001)

Almost surely,

$$
\lim _{n \rightarrow \infty} \frac{L_{n}^{*}}{(\log n)^{2}}=\frac{1}{\pi}
$$

solving the Erdös-Taylor (1960) conjecture.

Thick points by the number of crossings

Let $N_{x}(r)$ be the number of crossings (i.e. number of excursions) from x to $\mathcal{C}(x, r)$ by the Brownian motion B till $T_{\mathcal{C}(0,1)}$, the hitting time of the unit circle $\mathcal{C}(0,1)$.

Fix $\alpha \in(0,2)$. Bass, Burdzy and Koshnevisan (1994) studied the following set of the points with infinite multiplicity :

$$
\mathcal{A}_{\alpha}:=\left\{|x| \leq 1: \lim _{r \rightarrow 0} \frac{N_{x}(r)}{\log 1 / r}=\alpha\right\} .
$$

Carrying dimension

For any finite measure β on $\mathscr{B}\left(\mathbb{R}^{2}\right)$, let $\operatorname{Dim}(\beta)$ be the carrying dimension of β

Fix $\alpha \in(0,2)$. Bass, Burdzy and Koshnevisan (1994) studied the following set of the points with infinite multiplicity

Carrying dimension

For any finite measure β on $\mathscr{B}\left(\mathbb{R}^{2}\right)$, let $\operatorname{Dim}(\beta)$ be the carrying dimension of β :

$$
\operatorname{Dim}(\beta):=\inf \left\{r>0: \exists A \in \mathscr{B}\left(\mathbb{R}^{2}\right), \beta\left(A^{c}\right)=0, \operatorname{dim}_{H}(A)=r\right\}
$$

Theorem (Bass, Burdzy and Koshnevisan (1994))

Let $\alpha \in\left(0, \frac{1}{2}\right)$. Almost surely there exists a measure β_{α} carried by $\mathcal{A}_{\alpha} ;$ [recalling $\mathcal{A}_{\alpha}:=\left\{|x| \leq 1: \lim _{r \rightarrow 0} \frac{N_{x}(r)}{\log 1 / r}=\alpha\right\}$.] Moreover

$$
\operatorname{Dim}\left(\beta_{\alpha}\right)=2-\alpha, \quad \text { a.s. }
$$

Questions

Question 1 (open) :

Are the two definitions of thick points (by the occupation times and by the number of crossings) are equivalent?

Question 2 (open)
What is the Hausdorff dimension of \mathcal{A}_{α} ?

Questions

Question 1 (open) :

Are the two definitions of thick points (by the occupation times and by the number of crossings) are equivalent?

Question 2 (open) :

What is the Hausdorff dimension of \mathcal{A}_{α} ?

```
Aim
- Extend Bass, Burdzy and Koshnevisan's results to all
    \alpha\in(0,2)
    - Establish a relationship between the two definitions of thick
    points
```


Questions

Question 1 (open) :

Are the two definitions of thick points (by the occupation times and by the number of crossings) are equivalent?

Question 2 (open) :

What is the Hausdorff dimension of \mathcal{A}_{α} ?

Aim

- Extend Bass, Burdzy and Koshnevisan's results to all $\alpha \in(0,2)$;
- Establish a relationship between the two definitions of thick points.

Theorem (Aidékon, H., Shi $(2017+$))

For any $\alpha \in(0,2)$. Almost surely there exists a random finite measure $\mathcal{M}_{\infty}^{\alpha}$ carried by \mathcal{A}_{α} as well as by the set of α-thick points. Moreover,

$$
\operatorname{Dim}\left(\mathcal{M}_{\infty}^{\alpha}\right)=2-\alpha, \quad \text { a.s. }
$$

Consequence

Since $\mathcal{1}_{\infty}^{\alpha}$ is supported by the set of α-thick points, the above Theorem yields that almost surely,

$$
\operatorname{dim}_{\mathrm{H}}\{\alpha \text {-thick points }\} \geq 2-\alpha
$$

the lower bound in Dembo, Peres, Rosen and Zeitouni's theorem.

Theorem (Aidékon, H., Shi $(2017+)$)

For any $\alpha \in(0,2)$. Almost surely there exists a random finite measure $\mathcal{M}_{\infty}^{\alpha}$ carried by \mathcal{A}_{α} as well as by the set of α-thick points. Moreover,

$$
\operatorname{Dim}\left(\mathcal{M}_{\infty}^{\alpha}\right)=2-\alpha, \quad \text { a.s. }
$$

Consequence

Since $\mathcal{M}_{\infty}^{\alpha}$ is supported by the set of α-thick points, the above Theorem yields that almost surely,

$$
\operatorname{dim}_{H}\{\alpha \text {-thick points }\} \geq 2-\alpha
$$

the lower bound in Dembo, Peres, Rosen and Zeitouni's theorem.

Some properties of $\mathcal{M}_{\infty}^{\alpha}$

Nice domain

- By a domain in \mathbb{R}^{2} we mean an open, connected and bounded subset of \mathbb{R}^{2}.
- A domain D is said a nice domain if its boundary ∂D is a finite union of analytic curves.
- We say that a houndary noint is nice if the boundary is an analytic curve locally around the point.

Some properties of $\mathcal{M}_{\infty}^{\alpha}$

Nice domain

- By a domain in \mathbb{R}^{2} we mean an open, connected and bounded subset of \mathbb{R}^{2}.
- A domain D is said a nice domain if its boundary ∂D is a finite union of analytic curves.
- We say that a boundary point is nice if the boundary is an analytic curve locally around the point.

Some properties of $\mathcal{M}_{\infty}^{\alpha}$

Nice domain

- By a domain in \mathbb{R}^{2} we mean an open, connected and bounded subset of \mathbb{R}^{2}.
- A domain D is said a nice domain if its boundary ∂D is a finite union of analytic curves.
- We say that a boundary point is nice if the boundary is an analytic curve locally around the point.

Two Probabilities

Probability $\mathbb{P}_{D}^{z, z^{\prime}}$

Let D be a nice domain. Let $z \neq z^{\prime}$ two nice points of ∂D. We denote by $\mathbb{P}_{D}^{z, z^{\prime}}$ the law of the Brownian motion starting from z and conditioned to exit D at z^{\prime}.

Two Probabilities

Probability $\mathbb{Q}_{x, D}^{z, z^{\prime}, \alpha}$

Let D be a nice domain, and let $x \in D$ and z, z^{\prime} distinct nice points in ∂D. Under $\mathbb{Q}_{x, D}^{z, z^{\prime}, \alpha},\left(B_{t}\right)_{t \geq 0}$ can be split into three parts :

(i) Until time T_{x}, B is a Brownian motion starting from z and
conditioned at touching x
before ∂D;

Probability $\mathbb{Q}_{x, D}^{z, z^{\prime}, \alpha}$

(ii) : After touching x, it is a concatenation of Brownian loops generated by PPP with intensity $\mathbf{1}_{[0, \alpha]} d t$ in time and $\mu_{D}(x, x)$ in space, where $\mu_{D}(x, x)$ denotes the law of Brownian loops in D at x;

Probability $\mathbb{Q}_{x, D}^{z, z^{\prime}, \alpha}$

(iii) : the last part is a standard Brownian motion starting at x, conditioned to exit D at z^{\prime}.

Some properties of $\mathcal{M}_{\infty}^{\alpha}$

Spine decomposition

Let $0<\alpha<2$. Let $z \neq z^{\prime}$ be two nice points of ∂D. For any nonnegative measurable function f, we have

$$
\mathbb{E}_{D}^{z, z^{\prime}} \int_{D} f(x, B .) \mathcal{M}_{\infty}^{\alpha}(d x)=\int_{D} \mathbb{E}_{\mathbb{Q}_{x, D}^{z, z^{\prime}, \alpha}}(f(x, B .)) M_{D}(x, \alpha) d x
$$

where $M_{D}(x, \alpha)$ is a deterministic positive function.

> Remark
> The above result is an extension of Bass, Burdzy and Koshnevisan's Theorem 5.2 (where they limited $\alpha \in\left(0, \frac{1}{2}\right)$ and considered a Brownian motion instead of an excursion).

Some properties of $\mathcal{M}_{\infty}^{\alpha}$

Spine decomposition

Let $0<\alpha<2$. Let $z \neq z^{\prime}$ be two nice points of ∂D. For any nonnegative measurable function f, we have

$$
\mathbb{E}_{D}^{z, z^{\prime}} \int_{D} f(x, B .) \mathcal{M}_{\infty}^{\alpha}(d x)=\int_{D} \mathbb{E}_{\mathbb{Q}_{x, D}^{z, z^{\prime}, \alpha}}(f(x, B .)) M_{D}(x, \alpha) d x
$$

where $M_{D}(x, \alpha)$ is a deterministic positive function.

Remark

The above result is an extension of Bass, Burdzy and Koshnevisan's Theorem 5.2 (where they limited $\alpha \in\left(0, \frac{1}{2}\right)$ and considered a Brownian motion instead of an excursion).

Change of measure

Let $D_{1} \subset D$ be two nice domains, and $x \in D_{1}$. Let $z \neq z^{\prime}$ distinct nice points of ∂D.

$$
\left.\frac{\mathrm{d} \mathbb{Q}_{x, D}^{z, z^{\prime}, \alpha}}{\mathrm{d} \mathbb{P}_{D}^{z, z^{\prime}}}\right|_{\mathscr{F}_{D_{1}}^{+}}=\frac{M_{D_{1}}(x, \alpha)}{e^{-\alpha C_{D}(x)} \xi_{D}\left(x, z, z^{\prime}\right)}
$$

where

$$
M_{D_{1}}(x, \alpha):=e^{-\alpha C_{D_{1}}(x)} \sum_{k \geq 1} \frac{\alpha^{k-1}}{(k-1)!} \sum_{\left(\underline{g}_{k}, d_{k}\right)_{D_{1}}} \prod_{i=1}^{k} \xi_{D_{1}}\left(x, e_{g_{i}}, e_{d_{i}}\right)
$$

where $C_{D_{1}}(x):=-\int_{\partial D_{1}} \log (|x-y|) H_{D_{1}}(x, y) d y$ and $\xi_{D_{1}}(x, y, z):=\frac{2 \pi H_{D_{1}}(x, y) H_{D_{1}}(x, z)}{H_{D_{1}}(y, z)}, d_{0}:=0$ and the sum runs over all $\underline{g}_{k}=\left(g_{1}, \ldots, g_{k}\right)$ and $\underline{d}_{k}=\left(d_{1}, \ldots, d_{k}\right)$ such that $\left(g_{i}, d_{i}\right)$ are the starting and ending times of distinct excursions inside D_{1}.

Martingale

For simplicity, let D be the square $(0,1)^{2}$ and $z \neq z^{\prime}$ nice points of ∂D. Let \mathscr{D}_{n} be the set of open squares in D generated by the grid of mesh size 2^{-n}. We define for any Borel set A,

$$
\mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A):=\int_{A} M_{D_{n}^{(x)}}(x, \alpha) d x
$$

The process $\left(\mathcal{M}_{\mathscr{O}_{n}}^{\alpha}(A)\right)_{n \geq 0}$ is a martingale under $\mathbb{P}_{D}^{z, z^{\prime}}$.

The martingale measure $\mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A):=\int_{A} M_{D_{n}^{(x)}}(x, \alpha) d x$

Definition of $\mathcal{M}_{\infty}^{\alpha}$

Since $\mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A)$ is a nonnegative martingale, we can define

$$
\mathcal{M}_{\infty}^{\alpha}(A):=\lim _{n \rightarrow+\infty} \mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A), \quad \mathbb{P}_{D}^{z, z^{\prime}} \text {-a.s. }
$$

Uniform convergence
Let $0<\alpha<2$. Let A be a Borel set in D. Under $\mathbb{P}_{D}^{z, z^{\prime}}$, the
martingale $\left(\mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A)\right)_{n}$ converges in L^{1} to $\mathcal{M}_{\infty}^{\alpha}(A)$.

Definition of $\mathcal{M}_{\infty}^{\alpha}$

Since $\mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A)$ is a nonnegative martingale, we can define

$$
\mathcal{M}_{\infty}^{\alpha}(A):=\lim _{n \rightarrow+\infty} \mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A), \quad \mathbb{P}_{D}^{z, z^{\prime}} \text {-a.s. }
$$

Uniform convergence

Let $0<\alpha<2$. Let A be a Borel set in D. Under $\mathbb{P}_{D}^{z, z^{\prime}}$, the martingale $\left(\mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A)\right)_{n}$ converges in L^{1} to $\mathcal{M}_{\infty}^{\alpha}(A)$.

THANK YOU

