Points of infinite multiplicity of a planar Brownian motion

Yueyun Hu (Paris 13) joint work with Elie Aïdékon, Zhan Shi (Paris 6)

13th Workshop on Markov Processes and Related Topics Wuhan University, July 2017

A (1) × A (2) × A (2) ×

p-multiple point

Let $(B_t)_{t\geq 0}$ be a planar Brownian motion starting from 0 and $p\geq 2$. A point x is called of p-multiplicity if there exist $0 < s_1 < s_2 < \ldots < s_p$ such that

$$B_{s_1} = B_{s_2} = \dots = B_{s_p} = x.$$

double point

triple point

イロト イヨト イヨト イヨト 二日

- Dvoretzky, Erdös, Kakutani (1950) : Existence of *p*-multiple points for planar Brownian motion.
- Geman, Horowitz and Rosen (1984), Le Gall (1986) : The *p*-multiple self-intersection local time of *B* is the Radon measure α_p :

$$\alpha_p(\mathsf{ds}_1\cdots \mathsf{ds}_p) := \delta_0(B_{\mathsf{s}_1} - B_{\mathsf{s}_2})\cdots \delta_0(B_{\mathsf{s}_{p-1}} - B_{\mathsf{s}_p})\mathsf{ds}_1\cdots \mathsf{ds}_p.$$

Consequently, almost surely for any $p \ge 2$, there exist points of multiplicity (exactly) p.

• References : Le Gall, Rosen, Taylor, Yor..., Book by X. Chen (2009) "Random walk intersections."

- Dvoretzky, Erdös, Kakutani (1950) : Existence of *p*-multiple points for planar Brownian motion.
- Geman, Horowitz and Rosen (1984), Le Gall (1986) : The *p*-multiple self-intersection local time of *B* is the Radon measure α_p :

$$\alpha_{\rho}(ds_1\cdots ds_{\rho}):=\delta_0(B_{s_1}-B_{s_2})\cdots \delta_0(B_{s_{\rho-1}}-B_{s_{\rho}})ds_1\cdots ds_{\rho}.$$

Consequently, almost surely for any $p \ge 2$, there exist points of multiplicity (exactly) p.

• References : Le Gall, Rosen, Taylor, Yor..., Book by X. Chen (2009) "Random walk intersections."

イロト 不得 トイラト イラト 二日

- Dvoretzky, Erdös, Kakutani (1950) : Existence of *p*-multiple points for planar Brownian motion.
- Geman, Horowitz and Rosen (1984), Le Gall (1986) : The *p*-multiple self-intersection local time of *B* is the Radon measure α_p :

$$\alpha_p(\mathsf{ds}_1\cdots \mathsf{ds}_p) := \delta_0(B_{\mathsf{s}_1}-B_{\mathsf{s}_2})\cdots \delta_0(B_{\mathsf{s}_{p-1}}-B_{\mathsf{s}_p})\mathsf{ds}_1\cdots \mathsf{ds}_p.$$

Consequently, almost surely for any $p \ge 2$, there exist points of multiplicity (exactly) p.

• References : Le Gall, Rosen, Taylor, Yor..., Book by X. Chen (2009) "Random walk intersections."

(日) (四) (三) (三) (三)

Infinite multiplicity

Dvoretzky, Erdös and Kakutani (1958), Le Gall (1987)

There exist points of (exactly) countable multiplicity as well as points of uncountable multiplicity.

Consequence

Almost surely the planar Brownian motion has points of infinite multiplicity, and these points form a dense set on the range.

・ロト ・回ト ・ヨト ・ヨト

Infinite multiplicity

Dvoretzky, Erdös and Kakutani (1958), Le Gall (1987)

There exist points of (exactly) countable multiplicity as well as points of uncountable multiplicity.

Consequence

Almost surely the planar Brownian motion has points of infinite multiplicity, and these points form a dense set on the range.

イロン イボン イヨン イヨン

Measuring the points of infinite multiplicity

Problem

Construct a measure supported by the points of infinite multiplicity, or *thick points*.

Two natural ways to define the thick points

- By the occupation times;
- By the number of crossings (i.e. number of excursions)

イロン 不同 とくほど 不同 とう

Measuring the points of infinite multiplicity

Problem

Construct a measure supported by the points of infinite multiplicity, or *thick points*.

Two natural ways to define the thick points

- By the occupation times;
- **2** By the number of crossings (i.e. number of excursions).

イロト イポト イヨト イヨト

1st definition of thick points : by the occupation times

Occupation times

Let $0 < \alpha < 2$. A point x is called a α -thick point if

$$\lim_{r \to 0} \frac{1}{r^2 (\log r)^2} \int_0^T \mathbf{1}_{\{|B_s - x| < r\}} ds = \alpha,$$

where T denotes the hitting time of the unit circle, or any finite deterministic time.

Typical behaviors (Ray 1963, Le Gall 1985, H. Shi 1995...) Almost surely, $\limsup_{r \to 0} \frac{1}{r^2(\log 1/r) \log \log \log 1/r} \int_0^T \mathbb{1}_{\{|B_s| < r\}} ds = 1.$

1st definition of thick points : by the occupation times

Occupation times

Let $0 < \alpha < 2$. A point x is called a α -thick point if

$$\lim_{r \to 0} \frac{1}{r^2 (\log r)^2} \int_0^T \mathbf{1}_{\{|B_s - x| < r\}} ds = \alpha,$$

where T denotes the hitting time of the unit circle, or any finite deterministic time.

Typical behaviors (Ray 1963, Le Gall 1985, H. Shi 1995...)

Almost surely,

$$\limsup_{r \to 0} \frac{1}{r^2 (\log 1/r) \log \log \log 1/r} \int_0^T \mathbf{1}_{\{|B_s| < r\}} ds = 1.$$

イロト イボト イヨト イヨト

э

Thick points by the occupation times

Theorem : Dembo, Peres, Rosen and Zeitouni (2001)

For $0 \le \alpha \le 2$,

 $\dim_{\mathrm{H}} \left\{ \alpha \text{-thick points} \right\} = 2 - \alpha, \qquad \textit{a.s.},$

with $\dim_{\mathrm{H}}(A)$ the Hausdorff dimension of the set A.

Remark

The lower bound is the difficult part!

Dembo, Peres, Rosen and Zeitouni (2001)

As a consequence, they solved the Erdös-Taylor (1960) conjecture on the maximum of local times of a simple random walk on \mathbb{Z}^2 .

・ロア ・雪 ア ・ 聞 ア

3

Thick points by the occupation times

Theorem : Dembo, Peres, Rosen and Zeitouni (2001)

For $0 \le \alpha \le 2$,

 $\dim_{\mathrm{H}} \left\{ \alpha \text{-thick points} \right\} = 2 - \alpha, \qquad \textit{a.s.},$

with $\dim_{\mathrm{H}}(A)$ the Hausdorff dimension of the set A.

Remark

The lower bound is the difficult part !

Dembo, Peres, Rosen and Zeitouni (2001)

As a consequence, they solved the Erdös-Taylor (1960) conjecture on the maximum of local times of a simple random walk on \mathbb{Z}^2 .

・ ロ と ・ 四 と ・ 目 と ・ 一 日 と

Э

Thick points by the occupation times

Theorem : Dembo, Peres, Rosen and Zeitouni (2001)

For $0 \le \alpha \le 2$,

 $\dim_{\mathrm{H}} \{ \alpha \text{-thick points} \} = 2 - \alpha, \qquad a.s.,$

with $\dim_{\mathrm{H}}(A)$ the Hausdorff dimension of the set A.

Remark

The lower bound is the difficult part!

Dembo, Peres, Rosen and Zeitouni (2001)

As a consequence, they solved the Erdös-Taylor (1960) conjecture on the maximum of local times of a simple random walk on \mathbb{Z}^2 .

Э

Thick points by the occupation times

Erdös-Taylor (1960)'s conjecture

Let S be a simple symmetric random walk on \mathbb{Z}^2 and define $L_n^* := \max_x L_n^x$ with $L_n^x := \sum_{i=1}^n \mathbb{1}_{\{S_i = x\}}$. Erdös-Taylor (1960) proved that almost surely,

$$\frac{1}{4\pi} \leq \liminf_{n \to \infty} \frac{L_n^*}{(\log n)^2} \leq \limsup_{n \to \infty} \frac{L_n^*}{(\log n)^2} \leq \frac{1}{\pi},$$

and conjectured that the upper bound is sharp.

Thick points by the occupation times

Erdös-Taylor (1960)'s conjecture

Let S be a simple symmetric random walk on \mathbb{Z}^2 and define $L_n^* := \max_x L_n^x$ with $L_n^x := \sum_{i=1}^n \mathbb{1}_{\{S_i = x\}}$. Erdös-Taylor (1960) proved that almost surely,

$$\frac{1}{4\pi} \leq \liminf_{n \to \infty} \frac{L_n^*}{(\log n)^2} \leq \limsup_{n \to \infty} \frac{L_n^*}{(\log n)^2} \leq \frac{1}{\pi},$$

and conjectured that the upper bound is sharp.

Dembo, Peres, Rosen and Zeitouni (2001)

Almost surely,

$$\lim_{n\to\infty}\frac{L_n^*}{(\log n)^2}=\frac{1}{\pi},$$

solving the Erdös-Taylor (1960) conjecture.

Yueyun Hu (Paris 13) joint work with Elie Aïdékon, Zhan Shi (

Thick points by the number of crossings

Let $N_x(r)$ be the number of crossings (i.e. number of excursions) from x to C(x, r) by the Brownian motion B till $T_{C(0,1)}$, the hitting time of the unit circle C(0, 1).

Fix $\alpha \in (0, 2)$. Bass, Burdzy and Koshnevisan (1994) studied the following set of the points with infinite multiplicity :

$$\mathcal{A}_{lpha} := \Big\{ |x| \leq 1 : \lim_{r \to 0} \frac{\mathcal{N}_{\mathsf{X}}(r)}{\log 1/r} = \alpha \Big\}.$$

Carrying dimension

For any finite measure β on $\mathscr{B}(\mathbb{R}^2)$, let $Dim(\beta)$ be the carrying dimension of β :

 $\operatorname{Dim}(\beta) := \inf\{r > 0 : \exists A \in \mathscr{B}(\mathbb{R}^2), \, \beta(A^c) = 0, \, \dim_{\mathrm{H}}(A) = r\}.$

イロト イポト イヨト イヨト

Fix $\alpha \in (0, 2)$. Bass, Burdzy and Koshnevisan (1994) studied the following set of the points with infinite multiplicity :

$$\mathcal{A}_{\alpha} := \Big\{ |x| \leq 1 : \lim_{r \to 0} \frac{N_{x}(r)}{\log 1/r} = \alpha \Big\}.$$

Carrying dimension

For any finite measure β on $\mathscr{B}(\mathbb{R}^2)$, let $Dim(\beta)$ be the carrying dimension of β :

$$\operatorname{Dim}(\beta) := \inf\{r > 0 : \exists A \in \mathscr{B}(\mathbb{R}^2), \, \beta(A^c) = 0, \, \dim_{\mathrm{H}}(A) = r\}.$$

イロト イポト イヨト イヨト

Theorem (Bass, Burdzy and Koshnevisan (1994))

Let $\alpha \in (0, \frac{1}{2})$. Almost surely there exists a measure β_{α} carried by \mathcal{A}_{α} ; [recalling $\mathcal{A}_{\alpha} := \{ |x| \leq 1 : \lim_{r \to 0} \frac{N_{x}(r)}{\log 1/r} = \alpha \}$.] Moreover

$$\operatorname{Dim}(\beta_{\alpha}) = 2 - \alpha,$$
 a.s.

- 本部 トイヨト イヨト - ヨ

Questions

Question 1 (open) :

Are the two definitions of thick points (by the occupation times and by the number of crossings) are equivalent?

Question 2 (open) :

What is the Hausdorff dimension of \mathcal{A}_{α} ?

Aim

- Extend Bass, Burdzy and Koshnevisan's results to all $\alpha \in (0,2)$;
- Establish a relationship between the two definitions of thick points.

イロト イヨト イヨト イヨト

Questions

Question 1 (open) :

Are the two definitions of thick points (by the occupation times and by the number of crossings) are equivalent?

Question 2 (open) :

What is the Hausdorff dimension of \mathcal{A}_{α} ?

Aim

- Extend Bass, Burdzy and Koshnevisan's results to all $\alpha \in (0,2)$;
- Establish a relationship between the two definitions of thick points.

イロト イポト イヨト イヨト

Questions

Question 1 (open) :

Are the two definitions of thick points (by the occupation times and by the number of crossings) are equivalent?

Question 2 (open) :

What is the Hausdorff dimension of \mathcal{A}_{α} ?

Aim

- Extend Bass, Burdzy and Koshnevisan's results to all $\alpha \in (0, 2)$;
- Establish a relationship between the two definitions of thick points.

イロト イポト イヨト イヨト

Theorem (Aidékon, H., Shi (2017+))

For any $\alpha \in (0, 2)$. Almost surely there exists a random finite measure $\mathcal{M}^{\alpha}_{\infty}$ carried by \mathcal{A}_{α} as well as by the set of α -thick points. Moreover,

$$\operatorname{Dim}(\mathcal{M}^{\alpha}_{\infty}) = 2 - \alpha, \quad a.s.$$

Consequence

Since $\mathcal{M}^{\alpha}_{\infty}$ is supported by the set of α -thick points, the above Theorem yields that almost surely,

 $\dim_{\mathrm{H}} \{ \alpha \text{-thick points} \} \geq 2 - \alpha,$

the lower bound in Dembo, Peres, Rosen and Zeitouni's theorem.

Theorem (Aidékon, H., Shi (2017+))

For any $\alpha \in (0, 2)$. Almost surely there exists a random finite measure $\mathcal{M}^{\alpha}_{\infty}$ carried by \mathcal{A}_{α} as well as by the set of α -thick points. Moreover,

$$\operatorname{Dim}(\mathcal{M}^{\alpha}_{\infty}) = 2 - \alpha, \quad a.s.$$

Consequence

Since $\mathcal{M}^\alpha_\infty$ is supported by the set of $\alpha\text{-thick}$ points, the above Theorem yields that almost surely,

$$\dim_{\mathrm{H}} \left\{ \alpha \text{-thick points} \right\} \geq 2 - \alpha,$$

the lower bound in Dembo, Peres, Rosen and Zeitouni's theorem.

Some properties of $\mathcal{M}^{lpha}_{\infty}$

Nice domain

- By a domain in \mathbb{R}^2 we mean an open, connected and bounded subset of $\mathbb{R}^2.$
- A domain D is said a nice domain if its boundary ∂D is a finite union of analytic curves.
- We say that a boundary point is nice if the boundary is an analytic curve locally around the point.

A (1) × A (2) × A (2) ×

Some properties of $\mathcal{M}^{lpha}_{\infty}$

Nice domain

- By a domain in ℝ² we mean an open, connected and bounded subset of ℝ².
- A domain D is said a nice domain if its boundary ∂D is a finite union of analytic curves.
- We say that a boundary point is nice if the boundary is an analytic curve locally around the point.

(4月) トイヨト イヨト

Some properties of $\mathcal{M}^{lpha}_{\infty}$

Nice domain

- By a domain in ℝ² we mean an open, connected and bounded subset of ℝ².
- A domain D is said a nice domain if its boundary ∂D is a finite union of analytic curves.
- We say that a boundary point is nice if the boundary is an analytic curve locally around the point.

<週 > < 目 > < 目 >

Two Probabilities

Probability $\mathbb{P}_D^{z,z'}$

Let *D* be a nice domain. Let $z \neq z'$ two nice points of ∂D . We denote by $\mathbb{P}_D^{z,z'}$ the law of the Brownian motion starting from *z* and conditioned to exit *D* at *z'*.

Two Probabilities

Probability $\mathbb{Q}_{x,D}^{z,z',\alpha}$

Let D be a nice domain, and let $x \in D$ and z, z' distinct nice points in ∂D . Under $\mathbb{Q}_{x,D}^{z,z',\alpha}$, $(B_t)_{t\geq 0}$ can be split into three parts :

(i) Until time T_x , *B* is a Brownian motion starting from *z* and conditioned at touching *x* before ∂D ;

イロト イヨト イヨト イヨト 二日

Probability $\mathbb{Q}_{x,D}^{z,z',\alpha}$

(ii) : After touching x, it is a concatenation of Brownian loops generated by PPP with intensity $\mathbf{1}_{[0,\alpha]}dt$ in time and $\mu_D(x,x)$ in space, where $\mu_D(x,x)$ denotes the law of Brownian loops in D at x;

ヘロト ヘヨト ヘヨト ヘヨト

Probability $\mathbb{Q}_{x,D}^{z,z',\alpha}$

(iii) : the last part is a standard Brownian motion starting at x, conditioned to exit D at z'.

ヘロア 人間 アメヨアメヨア

臣

Some properties of $\mathcal{M}^{lpha}_{\infty}$

Spine decomposition

Let $0 < \alpha < 2$. Let $z \neq z'$ be two nice points of ∂D . For any nonnegative measurable function f, we have

$$\mathbb{E}_D^{z,z'}\int_D f(x,B_{\cdot})\mathcal{M}_{\infty}^{\alpha}(dx) = \int_D \mathbb{E}_{\mathbb{Q}_{x,D}^{z,z',\alpha}}(f(x,B_{\cdot}))M_D(x,\alpha)dx,$$

where $M_D(x, \alpha)$ is a deterministic positive function.

Remark

The above result is an extension of Bass, Burdzy and Koshnevisan's Theorem 5.2 (where they limited $\alpha \in (0, \frac{1}{2})$ and considered a Brownian motion instead of an excursion).

< ロ > < 同 > < 三 > < 三 >

Some properties of $\mathcal{M}^{lpha}_{\infty}$

Spine decomposition

Let $0 < \alpha < 2$. Let $z \neq z'$ be two nice points of ∂D . For any nonnegative measurable function f, we have

$$\mathbb{E}_D^{z,z'}\int_D f(x,B_{\cdot})\mathcal{M}_{\infty}^{\alpha}(dx) = \int_D \mathbb{E}_{\mathbb{Q}_{x,D}^{z,z',\alpha}}(f(x,B_{\cdot}))M_D(x,\alpha)dx,$$

where $M_D(x, \alpha)$ is a deterministic positive function.

Remark

The above result is an extension of Bass, Burdzy and Koshnevisan's Theorem 5.2 (where they limited $\alpha \in (0, \frac{1}{2})$ and considered a Brownian motion instead of an excursion).

< ロ > < 同 > < 三 > < 三 >

Change of measure

Let $D_1 \subset D$ be two nice domains, and $x \in D_1$. Let $z \neq z'$ distinct nice points of ∂D .

$$\frac{\mathrm{d}\mathbb{Q}_{x,D}^{z,z',\alpha}}{\mathrm{d}\mathbb{P}_D^{z,z'}}\big|_{\mathscr{F}_{D_1}^+} = \frac{M_{D_1}(x,\alpha)}{e^{-\alpha C_D(x)}\xi_D(x,z,z')},$$

where

$$M_{D_1}(x,\alpha) := e^{-\alpha C_{D_1}(x)} \sum_{k \ge 1} \frac{\alpha^{k-1}}{(k-1)!} \sum_{(\underline{g}_k, \underline{d}_k)_{D_1}} \prod_{i=1}^k \xi_{D_1}(x, e_{g_i}, e_{d_i}),$$

where
$$C_{D_1}(x) := -\int_{\partial D_1} \log(|x-y|) H_{D_1}(x,y) dy$$
 and
 $\xi_{D_1}(x,y,z) := \frac{2\pi H_{D_1}(x,y) H_{D_1}(x,z)}{H_{D_1}(y,z)}$, $d_0 := 0$ and the sum runs over all
 $\underline{g}_k = (g_1, \dots, g_k)$ and $\underline{d}_k = (d_1, \dots, d_k)$ such that (g_i, d_i) are the
starting and ending times of distinct excursions inside D_1 .

Martingale

For simplicity, let D be the square $(0,1)^2$ and $z \neq z'$ nice points of ∂D . Let \mathcal{D}_n be the set of open squares in D generated by the grid of mesh size 2^{-n} . We define for any Borel set A,

$$\mathcal{M}^{\alpha}_{\mathscr{D}_n}(A) := \int_A M_{D^{(x)}_n}(x,\alpha) dx.$$

The process $(\mathcal{M}_{\mathscr{D}_n}^{\alpha}(A))_{n\geq 0}$ is a martingale under $\mathbb{P}_D^{z,z'}$.

(4月) キョン・キョン

Definition of $\mathcal{M}^{lpha}_{\infty}$

Since $\mathcal{M}^{\alpha}_{\mathscr{D}_{n}}(A)$ is a nonnegative martingale, we can define

$$\mathcal{M}^{\alpha}_{\infty}(A) := \lim_{n \to +\infty} \mathcal{M}^{\alpha}_{\mathscr{D}_n}(A), \qquad \mathbb{P}^{z,z'}_D$$
-a.s.

Uniform convergence

Let $0 < \alpha < 2$. Let A be a Borel set in D. Under $\mathbb{P}_{D}^{z,z'}$, the martingale $(\mathcal{M}_{\mathscr{D}_{n}}^{\alpha}(A))_{n}$ converges in L^{1} to $\mathcal{M}_{\infty}^{\alpha}(A)$.

Yueyun Hu (Paris 13) joint work with Elie Aïdékon, Zhan Shi (Points of infinite multiplicity of a planar Brownian motion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Definition of $\mathcal{M}^{lpha}_{\infty}$

Since $\mathcal{M}^{\alpha}_{\mathscr{D}_{n}}(A)$ is a nonnegative martingale, we can define

$$\mathcal{M}^{\alpha}_{\infty}(A) := \lim_{n \to +\infty} \mathcal{M}^{\alpha}_{\mathscr{D}_n}(A), \qquad \mathbb{P}^{z,z'}_D$$
-a.s.

Uniform convergence

Let $0 < \alpha < 2$. Let A be a Borel set in D. Under $\mathbb{P}_D^{z,z'}$, the martingale $(\mathcal{M}_{\mathscr{D}_n}^{\alpha}(A))_n$ converges in L^1 to $\mathcal{M}_{\infty}^{\alpha}(A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

THANK YOU

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?