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Paul Lévy (1886-1971)
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Lévy’s Three Arcsine Laws

(1) Occupation of Brownian motion on the positive half line on [0,1];

(2) Last passage time of the origin before time 1;

(3) The time of the maximum of the path on [0,1].

We are concerned with the occupation time arcsine law.
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Classical Occupation Time Arcsine Law

Let W be one dimensional Brownian motion.

P

[∫ 1

0
1R+(Ws) ds ≤ t

]
=

2

π
arcsin

√
t.

The same hold for the half space defined by a hyperplane Rn−1 in Rn.
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The Problem to Be Investigated

Lower order correction (deviation) to the classical arcsine law near a hypersurface for
a Brownian motion on Rn (or a general Riemannian manifold M ).

If N is a hypersurface that divides the manifold M into two parts M+ and M−.

Consider the occupation time

Tt =
1

t

∫ t
0

1M+
(Xs) ds.

We expect that the distribution of Tt is close to the arcsine law when t is small.

Question: What is the deviation of Tt from the arcsine law?
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How to Describe the Deviation?

We will show that Tt is the sum of two random variables:

Tt = T0 + Zt,

where T0 has exactly the arcsine law andZt is random variable going to zero as t→ 0.

What is the order of Zt?

What is the joint law of T0 and Zt?

We will see that Zt has the order of
√
t.
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Intuition

* The problem should be local, depending only on the geometry near the starting point;

* The correction term depends on how the hypersurface deviates from the tangent
hyperplane;

* In geometry, the mean curvature is a number that captures the deviation of a hyper-
surface from the tangent hyperplane.
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What is the mean curvature of a hypersurface?

Near the starting point, let x̃ = (x2, . . . , xn) be euclidean coordinates on the tangent
hyperplane, then the surface is given by an equation z = f(x̃). We can choose x̃
such that

f(x) =
n∑
i=2

Kix
2
i + O(|x|3).

Then

H =
n∑
i=2

Ki.
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Technical Setup

In order to obtain a probabilistic description of the deviation from the arcsine law, we
need to put time scaled Brownian motion on the same probability space. In Rn, this
means that we consider the scaled Brownian motion

Xt = {Bts, s ≥ 0} .

Now the occupation time we are interested in is just

Lt =

∫ 1

0
IM+

(Xt
s) ds.

This setup will help us describe the joint law of the leading arcsine term and the devia-
tion term.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Statement of the Main Result

Let W be a one dimensional Brownian motion and L its local time at x = 0.

Tt =

∫ 1

0
1R+(Wu)du−

√
t

2
H

∫ 1

0
udLu + o(

√
t).

Observations:

(1) The leading order of correction is
√
t;

(2) The correction is proportional to the mean curvature;

(3) The correction depends on the local time of W through the integral∫ 1

0
udLu.

We will see why the local time at x = 0 appears in the deviation term.
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Semi-geodesic coordinates

Straighten the hypersurface into a hyperplane:

x1 = the signed distance to the hypersurface;

x̃ =
{
x2, . . . , xn

}
, the usual euclidean coordinates on the tangent hyperplane.

The metric (length element) ds2 = gijdx
idxj is given by

gij(x) =

{
δ1j, i = 1, 1 ≤ j ≤ n;

δij + 2Πijx1 + O(|x|2), 2 ≤ i, j ≤ n.

Here Π =
{
Πij

}
is called the second fundamental form. Its relation with the mean

curvature H is

H = TrΠ =
n∑
i=2

Πii.
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Change of Coordinates for the Laplace Operator

The general formula for the Laplace operator in curvilinear coordinates is

∆ =
1

√
det g

∂

∂xi

(√
det ggij

∂

∂xj

)
.

In the semi-geodesic coordinates
{
xi
}

, the Laplace operator becomes

∆ =

(
∂

∂x1

)2

+ b1(x)
∂

∂x1
+ partial derivatives with respect to x̃,

where

b1(x) = H + O(|x|).
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Brownian Motion in Curvilinear Coordinates

Once we have the generator (the Laplace operator) in the curvilinear coordinates we
can write down the stochastic differential equation for the Brownian motion Xt =

{Bts}. Its first component is given by

Xt,1
s =

√
tWs +

t

2

∫ s
0
b1(Xt

u) du.

Recall that b1(x) = H + O(|x|), we see that

X
t,1
s√
t
∼Ws +

√
t

2
Hs.
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Approxmate Occupation Time

By the choice of the coordinates, the occupation time for the half space M+ is simply

Tt =

∫ 1

0
1R+(Xt,1

s ) ds.

From the approximation for the first component Xt,1, we have

Tt ∼
∫ 1

0
IR+

(
Ws +

√
t

2
Hs

)
ds.

It is clear now that

lim
t↓0

Tt =

∫ 1

0
1R+(Ws) ds.

This is the exactly the term with the arcsine law.

In order to find out the deviation from the arcsine term, we need the local time for
Brownian motion.
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Brownian Local Time and Occupation Time Formula

Our discovery is that the leading deviation term depends also on the local time Lxt of a
one dimensional Brownian motionW . It is defined as the unique continuous increasing
process such that

|Wt − x| = |x|+
∫ t

0
sgn(Ws − x) dWs +

1

2
Lxt .

It is a classical result that Lxt is jointly continuous in (t, x).

The occupation time formula is∫ t
0
Φ(Ws, s) ds =

∫
R

[∫ t
0
Φ(x, s)dLxs

]
dx.
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The Final Step

From the occupation time formula we have immediately

Tt ∼
∫ 1

0
IR+

(
Ws +

√
t

2
Hs

)
ds

∼
∫ 1

0
IR+(Ws) ds−

∫ 1

0
I
[0,
√
tHs/2]

(Ws) ds

∼
∫ 1

0
IR+(Ws) ds−

√
t

2
H

∫ 1

0
s dLs.

We have omitted some technical details. But what we described is basically the whole
proof.
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Thank You!




