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Galton-Watson Branching Processes

Consider a population starting with one individual (the 0th
generation) and evolves over time.

Each individual, upon its death, produces the offspring
according to the offspring distribution {Pj}j≥0, where

Pj = the probability of producing j children.

Assume that the reproduction is independent of the history of
the population and of other individuals existing at the present.

We record the number of individuals in each generation
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Galton-Watson Branching Processes

.
Let

Zn = the population size of the nth generation.

Then the processes
{Zn}n≥0

is called a discrete-time single-type Galton-Watson branching
process.



GWBP Other Open Questions Proof of BRW

Galton-Watson Branching Processes



GWBP Other Open Questions Proof of BRW

Galton-Watson Branching Processes



GWBP Other Open Questions Proof of BRW

Galton-Watson Branching Processes



GWBP Other Open Questions Proof of BRW

Galton-Watson Branching Processes



GWBP Other Open Questions Proof of BRW

Galton-Watson Branching Processes



GWBP Other Open Questions Proof of BRW

GWBP: Cases

Let m =
∞∑

j=0

jPj be the offspring mean (expectation), then the

process {Zn}n≥0 is said to be

(1) subcritical, if 0 < m < 1

(2) critical, if m = 1;

(3) supercritical, if 1 < m <∞;

(4) explosive, if m = ∞
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Aspects to investigate the population

Questions:

(1) What happens to the population size Zn when n grows?
Will the population extinct, explore, or become stabilized?

(2) If the population has a chance to die out, what is the
probability of extinction?

(3) If the population has a chance to grow big, what is the
growth rate?

One may look at the history of the population:

(1) What happens to the certain characteristic of the family
line of a randomly chosen individual?

(2) How ”close” are any two randomly chosen individuals?
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The Coalescence Problem

Consider a Galton-Watson branching process {Zn : n ≥ 0} with
Z0 = 1.

Pick two individuals from the population in the nth generation
by simple random sampling without replacement.

Trace their lines of descent backward in time till they meet.

We call the common ancestor in the generation where the lines
meet for the first time the most recent common ancestor of
these two chosen individuals.
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The Coalescence Problem

Let τn,2 be the number of the generation which their most
recent common ancestor belonged to.

When the population is big, we can expect that the most recent
common ancestor would be found way back to the beginning of
the family tree.

When the population is small, we may expect that the most
recent common ancestor would not be too far away from the
current generation.

Question: How does τn,2 behave as n→∞?
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Results of the coalescence problem

Athreya (2012) has the following results:

(1) The supercritical case (1 < m <∞):

τn,2

∣∣Zn ≥ 2
d−−−→ a proper distribution on {0, 1, 2, · · · }

⇒ Coalescence is near the beginning of the tree

(2) The critical case (m = 1):

τn,2

n

∣∣∣∣Zn ≥ 2
d−−−→ a proper distribution on (0, 1)

⇒ Coalescence is of order n
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Summary of the coalescence problem

(3) The subcritical case (0 < m < 1):

n− τn,2

∣∣Zn ≥ 2
d−−→ a proper distribution on {0, 1, · · · }

⇒ Coalescence is near the present

(4) The explosive case (m = ∞):

n− τn,2

∣∣Zn ≥ 2
d−−→ a proper distribution on {0, 1, · · · }

⇒ Coalescence is near the present
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Branching Random Walks

We impose the following movement structure to the family tree
of the process {Zn}n≥0.

If an individual is located at x ∈ R and, upon death, produces k
children, then these k children will move to

x+Xk1, x+Xk2, · · · , x+Xkk

where Xk ≡ (Xk1, Xk2, · · · , Xkk) is a random vector with a joint
distribution πk on Rk for each k.

Assume that the random vector Xk is stochastically
independent of the history up to that generation and the
movement of the offspring of other individuals.

Let xni be the position of the ith individual in the nth
generation.
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Galton-Watson Branching Processes

Recall a family tree in the Galton-Watson branching process:
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Branching Random Walks

Let ζn = {xni : 1 ≤ i ≤ Zn} be the position of the Zn

individuals in the nth generation. Then the sequence of pairs

{Zn, ζn}n≥0

is called a branching random walk.

Question: Where are individuals?

(1) Let Yn be the position of a random chosen individual in the
nth generation. How does Yn behave as n→∞?

(2) Let Zn(x) be the number of individuals in ζn whose
locations are less than or equal to x. What happens to the

proportion
Zn(x)

Zn
as n→∞? How can we choose x such

that the proportion will converge to a proper distribution?
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(1) Let Yn be the position of a random chosen individual in the
nth generation. How does Yn behave as n→∞?

It is clear that the movement along the line of descent of any
individual is that of a classical random walk.

In addition, the location Yn of any individual in the nth
generation is the sum of the location x01 of the first ancestor
and the movements the ancestors along the line of decent.

So, if Xki are identically distributed with mean µ and finite
variance σ2, then, by the central limit theorem, as n→∞,

Yn − nµ√
nσ

d−−→ standard normal distribution

i.e., the location Yn of an individual of the nth generation
should be approximately Normal with mean nµ and variance
nσ2 when n is large.
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(2) Let Zn(x) be the number of individuals in ζn whose
locations are less than or equal to x. What happens to the

proportion
Zn(x)

Zn
as n→∞? How can we choose x such

that the proportion will converge to a proper distribution?

First,

P (Yn ≤ nµ+
√
nσy) = E(P (Yn ≤ nµ+

√
nσy|Zn))

= E

(
Zn(nµ+

√
nσy)

Zn

)

This suggests that if Zn →∞ as n→∞, and if
xn =

√
nσy + nµ, then

Zn(xn)

Zn

may be close to the standard normal cumulative distribution
function Φ(y), where Φ(y) = P (N ≤ y) and N is a standard
normal random variable.
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Main Results for the supercritical case

Athreya and Hong (2010, 2013) have the following results:

Theorem 1.3.1.

Let p0 = 0 and 1 < m <∞.
Let πk be such that {Xki : i = 1, 2, · · · , k} are identically
distributed with EXk1 = 0 and EX2

k1 = σ2 <∞.
Then, for any y ∈ R,

(a) P (Yn ≤
√
nσy) → Φ(y), as n→∞;

(b)
Zn(

√
nσy)

Zn
→ Φ(y) in mean square, as n→∞.
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Main Results for the explosive case

Surprisingly, the result for the explosive case does not support
our conjecture:

Theorem 1.3.2.

Let p0 = 0, m = ∞ and {pj}j≥0 ∈ D(α), 0 < α < 1.
Let πk be such that {Xki : i = 1, 2, · · · , k} are identically
distributed with EXk1 = 0 and EX2

k1 = σ2 <∞.
Then, for any y ∈ R,

(a) P (Yn ≤
√
nσy) → Φ(y), as n→∞;

(b)
Zn(

√
nσy)

Zn
→ δy in distribution, as n→∞, where δy has

the Bernoulli distribution with parameter Φ(y), i.e.,

P (δy = 1) = Φ(y) = 1− P (δy = 0).
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Application of the Coalescence Problem

To prove (b) for the supercritical case, we need to show that

E

(
Zn(

√
nσy)

Zn
− Φ(y)

)2

→ 0, as n→∞.

First,

E

(
Zn(

√
nσy)

Zn
− Φ(y)

)2

= E

(
Zn(

√
nσy)

Zn

)2

− 2Φ(y) · E

(
Zn(

√
nσy)

Zn

)
+ Φ(y)2

we only need to prove that

E

(
Zn(

√
nσy)

Zn

)2

→ Φ(y)2, as n→∞.
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Application of the Coalescence Problem

For the explosive case, since, by (a), as n→∞,

E

(
Zn(

√
nσy)

Zn

)
= P (Yn ≤

√
nσy) → Φ(y),

so, if we can show that

E

(
Zn(

√
nσy)

Zn

)2

→ Φ(y), as n→∞,

then, since the random variable
Zn(

√
nσy)

Zn
takes values in [0, 1]

and the limits of its first and second moments both equal to
Φ(y), its limit distribution is a Bernoulli distribution with
parameter Φ(y).
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One can derive the following:

lim
n→∞

E

(
Zn(

√
nσy)

Zn

)2

= lim
n→∞

P (xn1 ≤
√
nσy, xn2 ≤

√
nσy)

where xn,i is the position of ithe individual in the nthe
generation.

Note that xni is the sum of the position of the ancestor in the
0th generation and the movements of the rest of its ancestors
along its line of descent.
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Application of the Coalescence Problem

When we look at the lines of descent of these two individuals in
the nth generation, the random walks along the lines are the
same up to their most recent common ancestor and become
independent after the movement of this common ancestor.

So, the coalescence time when these two lines of descent met in
the past is crucial.
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Conclusion

Therefore, we have shown that

(1) In supercritical case,

lim
n→∞

E

(
Zn(

√
nσy)

Zn

)2

= lim
n→∞

P (xn1 ≤
√
nσy, xn2 ≤

√
nσy) = Φ(y)2

(2) In explosive case,

lim
n→∞

E

(
Zn(

√
nσy)

Zn

)2

= lim
n→∞

P (xn1 ≤
√
nσy, xn2 ≤

√
nσy) = Φ(y)

and hence the theorems are proved.
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Multitype Galton-Watson Branching Processes

Consider a population consists individuals of various types, say
d types in total. Assume that this population starts with one
individual and evolves in time.

Each individual lives a unit of time and, upon its death,
produces children of all types according to the offspring
distribution{

P (i)(j1, j2, · · · , jd) : j1, j2, · · · , jd ∈ Nd
}

1≤i≤d

independently of other individuals in the population where N is
the set of all the nonnegative integers and
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Multitype Galton-Watson Branching Processes

P (i)(j1, j2, · · · , jd)

= the probability that an individual of type i produces

j1 children of type 1, j2 children of type 2,

· · · , jd children of type d.
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Multitype Galton-Watson Branching Processes

Let Zn,i be the number of the individuals of type i in the nth
generation, i = 1, 2, · · · , d. This vector

Zn = (Zn,1, Zn,2, · · · , Zn,d)

shows the type composition of the population in the nth
generation. Then, the process {Zn}n≥0 is called a multitype
(d-type) Galton-Watson branching process.

Let mij = E
(
Z1,j

∣∣∣Z0 = ei

)
be the expected number of children

of type j produced by a single individual of type i. Then

M =
{
mij : i, j = 1, 2, · · · , d

}
is called the offspring mean matrix.
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Multitype Galton-Watson Branching Processes

We impose the following conditions on the process {Zn}n≥0:

1. Non-singularity, i.e. for every i = 1, 2, · · · , d,

P
(
Z1 = ei

∣∣∣Z0 = ei

)
< 1.

2. Positive regularity, i.e. there exists an n such that for all
i, j = 1, 2, · · · , d,

m
(n)
ij > 0

where m(n)
ij is the entry in Mn.
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Multitype Galton-Watson Branching Processes

By the Perron-Frobenius theorem, the matrix M has a maximal
eigenvalue ρ which is positive, simple and has associated strictly
positive normalized right and left eigenvectors u and v such
that

u · 1 = 1 and u · v = 1.

We say that the branching process {Zn}n≥0 is

(a) subcritical, if ρ < 1;

(b) critical, if ρ = 1;

(c) supercritical, if 1 < ρ <∞.
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The Coalescence Problem

Let Xn,k be the number of the generation which the most recent
common ancestor of these k chosen individuals belonged to.

Question 1 : How does Xn,k behave as n→∞?

Let Tn be the generation number of the most recent common
ancestor of the whole population in the nth generation. We call
Tn the total coalescence time.

Question 2 : How does Tn behave as n→∞?
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The Type Problem

Moreover, in a multitype process, let ζn,i be the type of the ith
chosen individual from the nth generation.

Let ηn be the type of the most recent common ancestor of the
chosen individuals.

Question 3 : What happens to the joint distribution of

(Xn,k, ηn, ζn,1, · · · , ζn,k),

as n→∞?
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Main Results in the Supercritical Case

Theorem 2.1.1 (Hong, 2015).

Let ρ > 1, Z0 = ei0 and E
(
‖Z1‖ log ‖Z1‖

∣∣Z0 = ei

)
<∞ for all

1 ≤ i ≤ d. Then

(a) (Quenched version) for almost all trees T and r = 1, 2, · · · ,
there exists positive real-valued random variables W (l)

r,i ,

i = 1, 2, · · · , Z(l)
r , l = 1, 2, · · · , d such that

P (Xn,k < r|T ) → φk(r, T ) ≡ 1−

d∑
l=1

Z
(l)
r∑

i=1
(W

(l)
r,i )k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k

as n→∞.
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Main Results in the Supercritical Case

Theorem 2.1.1 (cont.).

(b) (Annealed version) there exist random variable X̃k such
that Xn,k

d−−→ X̃k as n→∞, where

P (X̃k < r) ≡ φk(r) = 1− E

( d∑
l=1

Z
(l)
r∑

i=1
(W

(l)
r,i )k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k

)

for any r = 1, 2, · · · . Further, lim
r→∞

φk(r) = 1 so that X̃k is
a proper random variable.
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Main Results in the Supercritical Case

The next theorem tells us the existence of the limit distribution
of X̃k as k →∞ and says that the coalescence time goes away
back to one generation before the first time when this process
began to split when more individuals are chosen.

Theorem 2.1.2 (Hong, 2015).

Let ρ > 1 and E‖Z1‖ log ‖Z1‖ <∞.
Let U = min

{
n ≥ 1 : |Zn| ≥ 2

}
be the first time when the

population exceeds 1. Then

X̃k
d−−→ U − 1

as k →∞.
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Main Results in the Supercritical Case

The next theorem is the result on the joint distribution of
(Xn,2, ηn, ζn,1, ζn,2):

Theorem 2.1.3 (Hong, 2015).

Let ρ > 1, Z0 = ei0, and E
(
‖Z1‖ log ‖Z1‖

∣∣Z0 = ei

)
<∞ for all

1 ≤ i ≤ d. Then

lim
n→∞

P (Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2) ≡ ϕ2(r, j, i1, i2)

exists and
∑

(r,j,i1,i2)

ϕ2(r, j, i1, i2) = 1.
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Main Results in the Critical Case

Theorem 2.1.4 (Hong, 2016).

Let ρ = 1 and E‖Z1‖2 <∞. Then, for k = 2, 3, · · · , there exists
a random variable X̃k such that

Xn,k

n

∣∣∣∣|Zn| ≥ k
d−−→ X̃k

as n→∞ and, for any α ∈ (0, 1),

P (X̃k < α) = 1− (1− α)F (1, 2; k + 1;α) ≡ Hk(α)

where F is a hypergeometric function. Further, lim
α↑1

Hk(α) = 1.
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Main Results in the Critical Case

This the result on the total coalescence time:

Theorem 2.1.5 (Hong, 2016).

Let ρ = 1 and E‖Z1‖2 <∞. Then

Tn

n

∣∣∣∣|Zn| > 0
d−−→ T̃

as n→∞, where T̃ has a uniform distribution in (0, 1).
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Main Results in the Subcritical Case

The following result in the subcritical case can be extended to
the case when k individuals are chosen from the nth generation.

Theorem 2.1.6 (Hong, 2016).

Let 0 < ρ < 1 and E‖Z1‖ log ‖Z1‖ <∞. Then there exists a
random variable X̃2 such that

n−Xn,2

∣∣|Zn| ≥ 2
d−−→ X̃2

as n→∞, and, for any r = 0, 1, 2, · · · ,

P (X̃2 ≤ r) = 1− 1

ρrP
(
|Y| ≥ 2

)E(φ(Y (1), Y (2), · · · , Y (d), r
))

≡ H2(r)
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Main Results in the Subcritical Case

Theorem 2.1.6 (cont.).

where

φ(t1, t2, · · · , td, r)

= E

( dP

l=1

tlP

i6=j=1
|Z̃(l)

r,i||Z̃
(l)
r,j |+

dP

l6=p=1

tlP

i=1

tpP

j=1
|Z̃(l)

r,i||Z̃
(p)
r,j |( dP

l=1

tlP

i6=j=1
|Z̃(l)

r,i|
)( dP

l=1

tlP

i6=j=1
|Z̃(l)

r,i|−1
) I{ dP

l=1

tlP

i6=j=1
|Z̃(l)

r,i|≥2
})

and
{
Z̃

(l)
r,i : i ≥ 1

}
r≥0

are i.i.d copies of {Z(l)
r }r≥0. Further,

lim
r→∞

H2(r) = 1.
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Main Results in the Subcritical Case

Theorem 2.1.7 (Hong, 2016).

Let 0 < ρ < 1 and E‖Z1‖ log ‖Z1‖ <∞. Then there exists a

random variable T̃ such that n− Tn

∣∣∣∣|Zn| > 0
d−−→ T̃ as n→∞,

and, for any r = 0, 1, 2, · · · ,

P (T̃ ≤ r)

= ρ−rE

(
d∑

l=1

Y (l)
(
1− f (l)

r (0)
)(
f (l)

r (0)
)Y (l)−1

∏
p6=l

(
f (l)

r (0)
)Y (p)

)
≡ π(r)

where Y is the random vector with distribution {b(j)}j∈Rd
+

defined as in Theorem ?? (a). Also, limr↑∞ π(r) = 1, i.e., T̃ is a
proper random variable.
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Main Results in the Subcritical Case

Theorem 2.1.8 (Hong, 2016).

Let 0 < ρ < 1 and E‖Z1‖ log ‖Z1‖ <∞. Then

lim
n→∞

P
(
Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2

∣∣|Zn| ≥ 2
)

≡ ψ2(r, j, i1, i2)

exists and
∑

(r,j,i1,i2)
ψ2(r, j, i1, i2) = 1.
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Bellman-Harris Branching Processes

We consider a population starting with an individual

Each individual in this population lives for a random amount of
time, L, with the life distribution function G.

Upon the death, each individual produces a random number ξ
of children according the offspring distribution {pj}j≥0 where

pj = the probability of producing j children.

We assume that the life time and the reproduction of each
individual are independent and are also independent of those of
other individuals.
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Bellman-Harris Branching Processes

The process {Z(t) : t ≥ 0} is called a Bellman-Harris branching
process with the lifetime distribution G(·) and the offspring
distribution {pj}j≥0.

Let

m ≡
∞∑

j=1

jpj (the offspring mean)

then
(a) m < 1 ⇒ the subcritical case
(b) m = 1 ⇒ the critical case
(c) 1 < m <∞ ⇒ the supercritical case
(c) m = ∞ ⇒ the explosive case
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The Coalescence Problem

Consider a Bellman-Harris branching process {Z(t) : t ≥ 0}.

Pick k individuals from the population alive at time t by simple
random sampling without replacement.

Trace their lines of descent backward in time till they meet.

We call the time when the lines of descent met the coalescent
time.

We call the common ancestor alive at this coalescent time the
most recent common ancestor of these k chosen individuals.
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The Coalescence Problem

Let Dk(t) be the coalescence time, then Dk(t) is also the death
time of the most recent common ancestor.

Let Xk(t) be the generation number of the most recent common
ancestor.

Questions:
(1) What are the distributions of Dk(t) and Xk(t)?
(2) What happens to Dk(t) and Xk(t) as t→∞?
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Theorem 2.2.1 (Hong, 2013, Subcritical, Age
Chart).

Let 0 < m < 1 and
∞∑

j=1

(j log j)pj <∞. Assume that the lifetime

distribution G is non-lattice, G(0+) = 0 and such that the

Malthusian parameter α exists and
∫ ∞

0
te−αtdG(t) <∞. Then,

conditioned on the event
{
Z(t) > 0

}
, the point process

A(t) ≡
{
at,i : 1 ≤ i ≤ Z(t)

}
converges in distribution, as t→∞, to a point process

Ã ≡
{
ãi : 1 ≤ i ≤ Y

}



GWBP Other Open Questions Proof of BRW

Theorem 2.2.1 (cont.).

where Y is the random variable with the distribution
{
bj
}

j≥0
as

defined in the classical limit theorem. The distribution of Ã is
determined by its Laplace functional ϕ(s).
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Theorem 2.2.2 (Hong, 2013, Subcritical).

Let 0 < m < 1 and
∞∑

j=1

(j log j)pj <∞. Assume that the lifetime

distribution G is non-lattice, G(0+) = 0, the Malthusian

parameter α exists and
∫ ∞

0
te−αtdG(t) <∞. Let Dk(t) be

defined in Section 1.3. Then, conditioned on {Z(t) ≥ 2},

t−D2(t)
d−−→ D̃2 as t→∞,

where D̃2 is a positive random variable such that
P (0 < D̃2 <∞) = 1. For any u ≥ 0,

P
(
D̃2 ≤ u

)
= 1− 1

eαuP (Y ≥ 2)
E
(
φ(Ã, u)

)
≡ H2(u)
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Theorem 2.2.2 (Cont.).

where Ã and Y are as defined in Theorem 2.2.1, where

φ
(
(a1, a2, · · · , ak), u

)
= E

( k∑
i6=j=1

Z̃i(ai + u)Z̃j(aj + u)(
k∑

i=1
Z̃i(ai + u)

)(
k∑

i=1
Z̃i(ai + u)− 1

)I( kP

i=1
Z̃i(ai+u)≥2

)))

for any positive integer k and any positive real numbers
a1, a2, · · · , ak and

{
Z̃i(t) : t ≥ 0

}
i≥1

are i.i.d. copies of
{Z(t) : t ≥ 0} with new born initial ancestors.
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Theorem 2.2.3 (Athreya and Hong, Accepted by
TJM, Supercritical, Generation Number).

Let 1 < m <∞,
∞∑

j=1

(j log j)pj <∞, p0 = 0 and the life time

distribution G be non-lattice with G(0+) = 0. Then, for any
integer k ≥ 2,

Xk(t)
d−−→ X̃k as t→∞

with

P
(
X̃k < r

)
= 1− E

( Yr∑
i=1

(
e−αSr,iWr,i

)k

(
Yr∑
i=1

e−αSr,iWr,i

)k

)
≡ φk(r)

for r = 0, 1, 2, · · · and lim
r↑∞

φk(r) = 1.
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Theorem 2.2.4 (Athrey and Hong, Accepted by
TJM, Supercritical, Generation Number).

Let 1 < m <∞ and U = min
{
n ≥ 1 : Yn ≥ 2

}
. Under the same

hypotheses of Theorem 2.2.3, then X̃k
d−−→ U − 1 as k →∞.
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Theorem 2.2.5 (Athreya and Hong, Accepted by
TJM, Supercritical, Death Time).

Let 1 < m <∞,
∞∑

j=1

(j log j)pj <∞, p0 = 0 and the life time

distribution G be non-lattice with G(0+) = 0. Then, for any
integer k ≥ 2, there exists a nonnegative real-valued random
variable D̃k such that

Dk(t)
d−−→ D̃k as t→∞

and, for any s ≥ 0

P
(
D̃k ≤ s

)
= 1− E

( Z(s)∑
i=1

(
e−αRs,iW̃s,i

)k

( Z(s)∑
i=1

e−αRs,iW̃s,i

)k

)
≡ Hk(s).
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The random variables W̃r,i, i = 1, 2, · · · , Z(s), are the i.i.d

copies of the sum
ξ∑

j=1

Wj where ξ is a random variable with the

offspring distribution {pj}j≥0 and
{
Wj

}
j≥0

are i.i.d. copies and
ξ and {Wj}j≥1 are independent.
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Theorem 2.2.6 (Athreya and Hong, Accepted by
TJM, Supercritical, Death time).

Let 1 < m <∞ and U = min
{
n ≥ 1 : Yn ≥ 2

}
where {Yn}n≥0 is

the embedded Galton-Watson branching process. Under the
hypotheses of Theorem 2.2.5, there exist a random variable D̃
such that

D̃k
d−−→ D̃ as k →∞

and, for any s ≥ 0,

P
(
D̃ ≤ s

)
= P (L0 + L1 + · · ·+ LU−1 ≤ s)

where
{
Li

}
i≥0

are i.i.d. random variables with distribution G
and independent of U .
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Open Questions

(1) The explosive case in multitype Galton-Watson branching
processes and Bellman-Harris branching Processes

(2) The coalescence in the critical Bell-Harris branching
process

(3) The positions in branching random work in critical and
subcritical cases

(4) · · ·
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Thank You!!!



GWBP Other Open Questions Proof of BRW

Idea of Proofs
Now, let

δni =


1, if xni ≤

√
nσy

0, otherwise

then

E

(
Zn(

√
nσy)

Zn

)2

= E

(
1

Zn

Zn∑
i=1

δni

)2

= E

(
1

Z2
n

Zn∑
i=1

δni

)
+ E

(
1

Z2
n

∑
i6=j

δniδnj

)
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Idea of Proofs

and

E

(
1

Z2
n

∑
i6=j

δniδnj

)

= E

(
1

Z2
n

∑
i6=j

E
(
δniδnj

∣∣∣Zn

))
= E

(
1

Z2
n

∑
i6=j

E
(
δn1δn2

∣∣∣Zn

))

= E

(
Zn(Zn − 1)

Z2
n

E
(
δn1δn2

))
= E

(
Zn(Zn − 1)

Z2
n

)
· E
(
δn1δn2

)

= E

(
Zn(Zn − 1)

Z2
n

)
· P (xn1 ≤

√
nσy, xn2 ≤

√
nσy)
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Idea of Proofs

In supercritical case, we want to show that

P (xn1 ≤
√
nσy, xn2 ≤

√
nσy) → Φ(y)2, as n→∞.

In explosive case, we want to show that

P (xn1 ≤
√
nσy, xn2 ≤

√
nσy) → Φ(y), as n→∞.
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