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1. The model of stochastic games

{S, (A(i) ⊂ A,B(i) ⊂ B, i ∈ S), Q(·|i, a, b), r(i, a, b)}

• S: State space, a denumerable set space S;

• A(i)/B(i): Finite sets of actions available at i ∈ S for

player 1/player 2 respectively;

• Q(j|i, a, b): Transition probability from i to j at under the

pair of actions (a, b) ∈ A(i)×B(i);

• r(i, a, b): Nonnegative reward/cost function for player 1

(i.e., the cost for player 2) under actions (a, b) at state i.
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The evolution of the game: When the system state is i0 at

the initial decision epoch 0, there is a common level λ0 in the

two players’ mind, that is, player 1 tries his or her best to get

rewards more than λ0, while player 2 will try to control the cost

no more than λ0). Then, the players independently of each

other choose actions a0 ∈ A(i0) and b0 ∈ B(i0). Consequent-

ly, the system jumps to state i1 ∈ S with one-step transition

probability Q(i1|i0, a0, b0) at time 1, and a payoff r(i0, a0, b0) is

generated, and thus there remains a level λ1 := λ0−r(i0, a0, b0)

for both players.
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Based on the current state i1, level λ1, state i0, and the

previous level λ0, the players chose their actions....... The game

is developed in this way, and so we get an admissible history hn

of the game up to the nth decision epoch, i.e.,

hn = (i0, λ0, a0, b0, . . . , in−1, λn−1, an−1, bn−1, in, λn),

where (im, am, bm) ∈ K := {(i, a, b)|i ∈ S, a ∈ A(i), b ∈
B(i)}, λ0 ∈ R := (−∞,+∞), and λm+1 := λm−r(im, am, bm)

For convenience, we denote by Hn the set of all admissible

histories hn of the system up to the nth decision epoch, and

assume that Hn is endowed with a Borel σ-algebra.
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Φ1: Set of all stochastic kernels ϕ satisfying ϕ(A(i)|i, λ) = 1

History-dependent policy (for player 1): π1 = {π1
n, n ≥ 0} of

stochastic kernels π1
n such that π1

n(A(in)|hn) ≡ 1

Markov policy: π1
n(·|hn) = ϕn(·|xn, λn) ∈ Φ1 for all n ≥ 0.

Stationary policy: π1
n(·|hn) ≡ ϕ(·|xn, λn) for some ϕ ∈ Φ1.

We write such a policy {π1
n, n ≥ 0} as ϕ.

Π1/Πm
1 /Πs

1: the sets of all history-dependent/Markov/stationary

policies for player 1, respectively.

Similarly, Π2/Πm
2 /Πs

2: the sets of all history-dependent/stationary

policies for player 2, respectively.
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Given (i, λ) ∈ S × R and (π1, π2) ∈ Π1 × Π2, the Tul-

cea’s theorem gives the existence of a unique probability space

(Ω,F , P π1,π2

(i,λ) ) and a process {in, λn, an, bn} such that

P π1,π2

(i,λ) (an = a, bn = b|hn) = π1
n(a|hn)π2

n(b|hn),

P π1,π2

(i,λ) (in+1 = j|hn, an, bn) = Q(j|in, an, bn),

for each j ∈ S, a ∈ A(i), b ∈ B(i) and hn ∈ Hn with n ≥ 0.

Eπ1,π2

(i,λ) : the expectation operator associated with P π1,π2

(i,λ) .

For the target set D, let

τD :=

{
inf{n ≥ 0 : in ∈ D} if {n ≥ 0 : in ∈ D} 6= ∅,
+∞ otherwise.
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2. The game problem

Probability criterion: For each (π1, π2) ∈ Π1 × Π2,

G(i, λ, π1, π2) := P π1,π2

(i,λ)

(
τD−1∑
n=0

r(in, an, bn) > λ

)
,

which gives capacity for player 1 to reach the profit level λ, and

also measures the risk of player 2 to control the cost level λ.

The corresponding standard expectation criterion:

V (i, ·, π1, π2) := Eπ1,π2

(i,·)

(
τD−1∑
n=0

r(in, an, bn)

)
.
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The functions

L(i, λ) := sup
π1∈Π1

inf
π2∈Π2

G(i, λ, π1, π2),

U(i, λ) := inf
π2∈Π2

sup
π1∈Π1

G(i, λ, π1, π2)

are called the lower value and the upper value of the game,

respectively. Clearly,

L(i, λ) ≤ U(i, λ)

Definition 1: If L(i, λ) ≡ U(i, λ), then we call the com-

mon function the value of the game, which is denoted by V .
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Definition 2: Suppose that the value of the game V exists.

A policy π∗1 ∈ Π1 is said to be optimal for player 1 if

inf
π2∈Π2

G(i, λ, π∗1, π2) = V (i, λ)

Similarly, π∗2 ∈ Π2 is called optimal for player 2 if

sup
π1∈Π1

G(i, λ, π1, π∗2) = V (i, λ)

If π∗k ∈ Πk is optimal for player k(k = 1, 2), then (π∗1, π∗2) is

called a pair of optimal policies (also known as a saddle point).

Main goals: The existence and computation of a saddle point.
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3. The main results

P(U): The set of all probability measures on the set U , en-

dowed with the weak topology.

Fm: The set of functions h : Dc×R→ [0, 1], such that h(i, ·)
is Borel-measurable on R for each i ∈ Dc and h(i, λ) = 1 if

λ < 0 for each i ∈ Dc.

T ϕ,φ, T , T π
1,π2

: The operators on Fm are defined as follows:
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For any h ∈ Fm, i ∈ Dc, ϕ ∈ P(A(i)), φ ∈ P(B(i)) and

(π1, π2) ∈ Πs
1 × Πs

2, if λ ≥ 0,

T ϕ,φh(i, λ) :=
∑
a∈A(i)

∑
b∈B(i)

ϕ(a)φ(b)[I{λ<r(i,a,b)}Q(D|i, a, b)

+
∑
j∈Dc

h(j, λ− r(i, a, b))Q(j|i, a, b)],

Th(i, λ) := sup
ϕ∈P(A(i))

inf
φ∈P(B(i))

T ϕ,φh(i, λ), (1)

T π
1,π2
h(i, λ) := T π

1(·|i,λ),π2(·|i,λ)h(i, λ),

with T ϕ,φh(i, λ) = Th(i, λ) = T π
1,π2
h(i, λ) := 1 for λ < 0.
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In order to calculate G(i, λ, π1, π2), we rewrite

G(i, λ, π1, π2) = P π1,π2

(i,λ)

(
τD−1∑
n=0

r(in, an, bn) > λ

)

= P π1,π2

(i,λ)

( ∞∑
n=0

I{
⋂n
k=0{ik∈Dc}}r(in, an, bn) > λ

)
= lim

n→∞
Gn(i, λ, π1, π2)

where

Gn(i, λ, π1, π2) := P π1,π2

(i,λ)

(
n∑

m=0

I{
⋂m
k=0{ik∈Dc}}r(im, am, bm) > λ

)
Obviously, Gn(·, ·, π1, π2) ≤ Gn+1(·, ·, π1, π2) (by r ≥ 0).
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Lemma 1: Given any π1 = {ϕn, n ≥ 0} ∈ Πm
1 , π2 =

{φn, n ≥ 0} ∈ Πm
2 , define

(1)π1 := {ϕn, n ≥ 1} ∈ Πm
1 ,

(1)π2 := {φn, , n ≥ 1} ∈ Πm
2 .

Then, for each n ≥ 0, we have

(a) Gn(·, ·, π1, π2) ∈ Fm and G(·, ·, π1, π2) ∈ Fm;

(b) Gn+1(·, ·, π1, π2) = T ϕ0,φ0Gn(·, ·,(1) π1,(1) π2);

(c) G(·, ·, π1, π2) = T ϕ0,φ0G(·, ·,(1) π1,(1) π2);

(d) G(·, ·, ϕ, φ) = T ϕ,φG(·, ·, ϕ, φ) for every (ϕ, φ) ∈ Πs
1×Πs

2.
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To further show the uniqueness of the solution to the equation

h = T ϕ,φh, we need the following assumption.

Assumption 1. P π1,π2

(i,λ) (τD <∞) ≡ 1

Assumption 1 indicates that, no matter what the initial state

is, what the level is, and what the pair of randomized Markov

policies is, the system will fail within finite time.

To verify Assumption 1, it is desired to give a sufficient con-

dition imposed on the primitive data of the game model.

Lemma 2. If inf(i,a,b)∈Dc×A(i)×B(i)Q(D|i, a, b) > 0, then

Assumption 1 holds.
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Lemma 3. Under Assumption 1, for any function u in Fm
the following statements hold.

(a) If u(i, λ) ≤ T π
1,φku(i, λ) for all k ≥ 0, π1 ∈ Πs

1, and

π2 = {φk, k ≥ 0} ∈ Πm
2 , then u(i, λ) ≤ G(i, λ, π1, π2).

(b) If u(i, λ) ≥ T ϕk,π
2
u(i, λ) for all k ≥ 0, policies π2 ∈ Πs

2,

and π1 = {ϕk, k ≥ 0} ∈ Πm
1 , then u(i, λ) ≥ G(i, λ, π1, π2);

(c) For every (π1, π2) ∈ Πs
1 × Πs

2 , G(·, ·, π1, π2) is the unique

solution in Fm to the equation h = T π
1,π2
h.
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Let u−1(i, λ) := I(−∞,0)(λ), and for n ≥ 0, define un by

un(i, λ) := Tun−1(i, λ)

= sup
ϕ∈P(A(i))

inf
φ∈P(B(i))

{
∑
a∈A(i)

∑
b∈B(i)

ϕ(a)φ(b)[I{λ<r(i,a,b)}Q(D|i, a, b)

+
∑
j∈Dc

u∗(j, λ− r(i, a, b))Q(j|i, a, b)]}

for (i, λ) ∈ Dc × R.

Now, we state the main result on the existence of a pair of

optimal policies.
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Theorem 1. Under Assumption 1, we have the assertions:

(a) The limn→∞ un(i, λ) =: u∗(i, λ) exists and belongs to Fm;

(b) u∗ satisfies the Shapley’s equation u∗(i, λ) = Tu∗(i, λ);

(c) There exists a pair of stationary policies (π∗1, π
∗
2) ∈ Πs

1×Πs
2

such that, for all (i, λ) ∈ Dc × R,

T π
∗
1,π
∗
2u∗(i, λ) = max

ϕ∈P(A(i))
T ϕ,π

∗
2u∗(i, λ) = min

φ∈P(B(i))
T π
∗
1,φu∗(i, λ)

(d) u∗(i, λ) is the value of the game, and u∗(i, λ) = G(i, λ, π∗1, π
∗
2);

(e) (π∗1, π
∗
2) in (c) above is a pair of optimal stationary policies.
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4. An example

Example 1 (An inventory system with capacity M):

in: stock amount at the beginning of period n = 0, 1, 2, . . .

an: order amount from an finite set A(in),

bn: supply amount from an finite set B(in),

zn: amount of the product’s demand during the period n,

r(in, an, bn): a reward function

Thus, the stock level evolves as follows

in+1 := min{(in + min{an, bn} − zn)+,M}, n = 0, 1, . . .
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{zn} is re assumed to be i.i.d. with a distribution P (zn =

k) =: pk and independent of the stock level.

Then, the state space is S := {0, · · · ,M}, and the transition

law is the following: for any j ∈ S,

Q(j|i, a, b) :=

+∞∑
k=0

I{j}[min{(i + min{a, b} − k)+,M)}]pk

Let D := {0}, this means that the game plays only there is

at least one stock amount.

To ensure the existence of a pair of optimal policies for this

inventory system, we impose the following hypothesis:
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(C1) For some k0 such that k0 ≥M + min{‖a‖, ‖b‖}, pk0 > 0,

where ‖a‖ := maxa∈A(i) a and ‖b‖ := maxb∈B(i) b.

Proposition 1. Under the hypothesis C1, there exists a

pair of optimal policies for the inventory system above.
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Many thanks for your attention !


