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Gini

Consider a population of individuals and their incomes. The graph
consisting of points (x , y), where the bottom x% of the population make
y% of the total income, is called the Lorenz curve.
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Gini
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Gini

Let A denote the area below the line of equality and above the curve and
B the area below the curve. Then the Gini coefficient is

A

A + B
.

A large value of Gini index corresponds to a high degree of concentration
of wealth in a small percentage of the population. The most equal
population has Gini index zero.
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Simpson

Consider a population of individuals belonging to up to countable number
of types labelled 1, 2, . . . . The proportion of type i is pi . Then ([14])

Simpson Index =
N∑
i=1

p2
i ,

where N can be finite or infinite.

Clearly high degree of concentration corresponds to large value of Simpson
Index. In population genetics, the index is called the homozygosity. It is
also related to the Herfindahl-Hirschmam index ([10],[11]) in economics.
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True Diversity

For any r > 0, r 6= 1, and any discrete distribution p = (p1, p2, . . .), the
True Diversity Index is defined as

D(p; r) =

(
N∑
i=1

pri

)1/(1−r)

.

D(p; r) represents the number of equally abundant types needed for the
average proportional abundance of the types to equal that observed in the
dataset of interest. In someway it can be viewed as the effective number
of types.
The reciprocal of D(p; 2) is simply the Simpson index.
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Shannon

The Shannon Index for a given p is given by

S(p) = −
N∑
i=1

pi log pi .

The case r = 1 is not defined for the true diversity index. But when N is
finite one has

lim
r→1

D(p; r) = D(p; 1) = exp{−
N∑
i=1

pi log pi}.
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Random Indexes

The diversity index becomes random when the discrete distribution p is
replaced by random discrete distribution P. Below are two constructions of
random discrete distributions.

Jumps of subordinators (equilibrium)

Marginal distributions of measure-valued processes (non-equilibrium)
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Equilibrium

A subordinator ρ(t) is Lévy process with Lévy measure Λ(d x), x > 0. In
the sequel, we assume all subordinators are drift free.

Example 1. The one-dimensional Poisson process Nt with parameter
γ > 0 is a subordinator with Lévy measure Λ(d x) = γδ1(d x).

Example 2. For α ∈ (0, 1), let Λ(d x) = Cα
Γ(1−α)x

−(1+α)d , x > 0. The

corresponding subordinator ρ(t) is called the stable subordinator with
index α.
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Equilibrium

Example 3. The subordinator {ρ(t) : t ≥ 0} is called a Gamma
subordinator if its Lévy measure is

Λ(dx) = x−1e−xd x , x > 0.

Example 4. The subordinator {ρ(t) : t ≥ 0} is a generalized Gamma
subordinator with scale parameter one ([1]) if its Lévy measure is
Λ(d x) = Γ(1− α)−1x−(1+α)e−xd x , x > 0, 0 < α < 1.
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Equilibrium

Given a subordinator ρ(t), a fixed time T , let J1(T ), J2(T ), . . . denote the
jump sizes of all jumps occurred between time zero and T . Assuming that
the number of jumps is infinite and ρ(T ) is almost surely finite. Then a
random discrete distribution can be constructed as

P(ρ;T ) = (P1(ρ,T ),P2(ρ,T ), . . .) = (
J1(T )

ρ(T )
,
J2(T )

ρ(T )
, . . .)

which arises as equilibrium distributions of some processes.
For any r > 0, the equilibrium random index discussed below has the form

Hr (P(ρ;T )) =
∞∑
i=1

P r
i (ρ,T ).

12 / 27



Non-equilibrium

Probability-valued processes offer a rich source of random discrete
distributions that can be used to construct random indexes.

Example 1 (Wright-Fisher Diffusion). For any N ≥ 2, let

∆N = {(p1, . . . , pN) : 1 ≤ pi ≤ 1, i = 1, . . . ,N,
N∑

k=1

pk = 1}.

The Wright-Fisher diffusion is a ∆N -valued process P(t) with generator

1

2
[

N∑
i ,j=1

pi (δij − pj)
∂2

∂pi∂pj
+ θ

N∑
i=1

(
1

N − 1
− N

N − 1
pi )

∂

∂pi
].
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Non-equilibrium

Example 2 (Infinitely-Many-Neutral-Alleles Model [5]). Let

∇∞ = {(p1, p2, . . .) : p1 ≥ p2 ≥ . . . ≥ 0,
∞∑
k=1

pk = 1}.

The Infinitely-Many-Neutral-Alleles Model is a ∇∞-valued process P(t)
with generator

1

2
[
∞∑

i ,j=1

pi (δij − pj)
∂2

∂pi∂pj
−
∞∑
i=1

θpi
∂

∂pi
].
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Non-equilibrium

Example 3 (Petrov Diffusion [13]). This is a ∇∞-valued process P(t)
with generator

1

2
[
∞∑

i ,j=1

pi (δij − pj)
∂2

∂pi∂pj
−
∞∑
i=1

(α + θpi )
∂

∂pi
].
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Non-equilibrium

Example 4 (GEM Process [8]). Let

∆ = {(x1, x2, . . .) : 1 ≤ xi ≤ 1, i = 1, . . . ,
∞∑
k=1

xk = 1}.

The GEM process is a ∆-valued diffusion process P(t) with generator
∞∑

i ,j=1

aij(x)∂2
ij +

∞∑
i=1

bi (x)∂i ,

where

aij(x) := xixj

i∧j∑
k=1

(δki (1−
∑k−1

l=1 xl)− xk)(δkj(1−
∑k−1

l=1 xl)− xk)

xk(1−
∑k

l=1 xl)
,

bi (x) := xi

i∑
k=1

(δik
(
1−

∑k−1
l=1 xl

)
− xk)(ak

(
1−

∑k−1
l=1 xl

)
− (ak + bk)xk)

xk(1−
∑k

l=1 xl)
.

and ak , bk > 0, inf i bi ≥ 1
2 .
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Non-equilibrium

Example 5 (Weak Interaction Process [7]). This is a ∆-valued
diffusion process P(t) with generator

∞∑
k=1

[
xk(1− ||x||)∂2

k + (αk(1− ||x||)− α∞xk)∂k

]
where ||x|| =

∑∞
i=1 xi , (α1, α2, . . . , α∞) ∈ ∆.
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Math Issue

The random discrete distribution P usually depends on some parameters.
The random diversity index can serve as a good estimator for some of
these parameters. It is thus natural to consider

The consistency or law of large numbers

The confidence interval or fluctuation results such as CLT

More refined asymptotic information such as moderate deviations and
large deviations
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Math Issue: One Fully Understood Case

Let ρ(t) be the gamma subordinator, r ≥ 2, and T = θ. Asymptotic
behaviour of the random diversity index

Hr (P(ρ; θ))

is known completely when θ converges to infinity.
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LLN and CLT

LLN: Hr (P(ρ; θ))→ 0, θ →∞.

Gaussian Limit([9],[12]):

√
θ[
θr−1

Γ(r)
Hr (P(ρ; θ))− 1]⇒ Zr

where Zr is a normal random variable with mean zero and variance

Γ(2r)

Γ2(r)
− r2.
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Large Deviations

Theorem (Dawson and F (06))

The family {Hr (P(ρ; θ)) : θ > 0} satisfies a LDP with speed θ and rate
function

I (y) =

{
log 1

1−y1/r , y ∈ [0, 1]

∞, else.
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Moderate Deviations

Let a(θ) satisfy

lim
θ→∞

a(θ) =∞, lim
θ→∞

a(θ)√
θ

= 0.

Theorem (Gao and F (08))

The family a(θ)
(
θr−1

Γ(r) Hr (P(ρ; θ))− 1
)

satisfies a LDP with speed a2(θ)
θ

and rate function x2

2(Γ(2r)/Γ(r)2−r2)
, x ∈ R.
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Large Deviations

Theorem (Dawson and F(16))

A large deviation principle holds for θr−1

Γ(r) Hr (P(ρ; θ)) as θ converges to

infinity on space R with speed θ1/m and good rate function

S(x) =

{
[Γ(r)(x − 1)]1/r , x ≥ 1,
+∞, otherwise.
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Math Issue: Future Studies

Other subordinators

Non-equilibrium case
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