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Motivation

“A major step in making the equation more relevant is to add a small

stochastic term. ... It seems fair to say that all differential equations

are better models of the world when a stochastic term is added and

that their classical analysis is useful only if it is stable in an

appropriate sense to such perturbations”. (David Mumford, the
Fields Medal in 1974 and the Wolf Prize in 2008)

Problem: How to reveal the connections between deterministic
systems and their stochastic perturbation systems ?
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Some Works on Zero-Noise Limits

Freidlin and Wentzell, 1979
• For the non-degenerate diffusion case, via large-deviation technique to

estimate the concentration

P. Dupuis, E.s. Eills, 1997
• a weak convergence approach to the theory of Large deviations

Chii-Ruey Hwang, 1980, Ann. Probability
• Gibbs measures for gradient system with additive noise

Tu Sheng Zhang, etc
• large-deviation on SPED with small perturbation
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Some Works on Zero-Noise Limits-Continued

Lai-Sang, Young 2002, 2005, J. Statis. Physics, Ergod. Th.
& Dynam. Sys.
• SRB measures can be realized

Huang, Ji, Liu and Yi, 2015, 2016, Ann. Probability,
Physica D
• ODE + small white noise, including gradient systems

Yao Li and Ying Fei Yi, 2016, Comm. Pure Appl. Math.
• Study the systematic measures of biological network

and so on ...
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Heuristics

The weak limits of the stationary measures for small random
perturbations systems represent idealizations of what we want
to see.
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Problem Statement

Objects

ε — the noise intensity which is small;

Xε(t, x) — solution of stochastic differential equations
driven by Lévy noise with the intensity ε;

Φ(t, x) := X0(t, x) — the corresponding deterministic
dynamical system while ε = 0;

• The map Φ : R+ ×M −→M is called the dynamical system if the
following properties hold:
(i) Φt(x) are continuous, for all t ∈ R+, x ∈M ,
(ii) Φ0 = id, Φt ◦ Φs(x) = Φt+s(x), for all t, s ∈ R+, x ∈M . Here ◦
denotes composition of mappings.
• Probability measures µε and µ on B(M) are called stationary or
invariant with respect to {P εt }t≥0 and {Φt}t≥0, respectively, if

P εt µ
ε = µε for any t ≥ 0, and

µ ◦ Φ−1t = µ for any t ≥ 0, respectively.
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Problem Statement-Continued

Objects

Iε — stationary measures for Xε(t, x). I :=
⋃

0<ε≤ε0 I
ε;

ML — weak limits: µεi
w→ µ as εi → 0;

S := {supp(µ) : µ ∈ML}.
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Problems

• The most important questions are now what the constraction
of S is ? and how the dynamics on (S,Φ|S) is ?

S is contained in the Birkhoff Center

B(Φ) := {x ∈M : x ∈ ω(x)}.

which responds to the complexity of dynamical system.

• What kind of invariant measures for dynamical system can be
approximated by stationary measures for small perturbations
systems ?

Strongly depends on the type of noise.
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Concrete Noise Perturbed Processes

• SODEs Driven by a Lévy process:

dXε,x(t) =b(Xε,x(t))dt+ εσ(Xε,x(t))dWt

+ ε

∫
|y|Rl<c

F (Xε,x(t−), y)Ñ(dt, dy)
(1.1)

with initial condition Xε,x(0) = x ∈ Rm and ε, c > 0. The
mappings b : Rm → Rm, σ : Rm → L2(Rk,Rm), and
F : Rm × Rl → Rm satisfy the some normal conditions.
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Concrete Noise Perturbed Processes-Continued

• Stochastic Reaction Diffusion Equation
dX(t, x) =ν∆X(t, x)dt+ g(x,X(t, x))dt

+ εσ(x,X(t, x))dW (t),

X(t, x) =0, x ∈ ∂Λ, t > 0,

X(0) =h ∈ L2(Λ).

(1.2)

Here ν > 0, g : Λ× R→ R and σ : Λ× R→ l2 are two
measurable functions. W (t) = (Wk(t))k∈N is a sequence of
independent one dimensional standard Brownian motions.
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Concrete Noise Perturbed Processes-Continued

• 2D Stochastic Navier-Stokes Equation Driven by
Lévy Noise

dXε,h
t =

(
νAXε,h

t +Xε,h
t · ∇X

ε,h
t + h0(Xε,h

t )
)
dt

+ εB(Xε,h
t )dWt + ε

∫
Z
f(Xε,h

t− , z)Ñ(dt, dz),

divXε,h
t =0.

(1.3)

with a initial value Xε,h
0 = h.
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Concrete Noise Perturbed Processes-Continued

• 1D Stochastic Burgers Equation Driven by Lévy Noise

dXε,h
t =

(
∆Xε,h

t +Xε,h
t · ∇X

ε,h
t

)
dt

+ εB(Xε,h
t )dWt + ε

∫
Z
f(Xε,h

t− , z)Ñ(dt, dz),
(1.4)

with initial value Xε,h
0 = h.
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Concrete Noise Perturbed Processes-Continued

• Stochastic Functional Differential Equations (SFDEs)

dXε,φ(t) = b(Xε,φ
t )dt+ εσ(Xε,φ

t )dW (t),

Xε,φ
0 = φ ∈ C := C([−τ, 0],Rm),

(1.5)

where W = {Wt = (W 1
t , · · · ,W k

t ), t ≥ 0} is a k-dimensional
Wiener process, b(·) : C → Rm and σ(·) : C → Rm×k satisfy the
regular conditions.
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Basic Assumption

Let (M,ρ) be a Polish space, (Ω,F ,P) a probability space. Assume

that Xε(t, x) and Φ(t, x) are noise driven process and deterministic

semi dynamical system on (M,ρ), respectively.

Hypothesis (PC)

For any T > 0, δ > 0 and compact set K ⊂M , one has

lim
ε→0

sup
x∈K

P
{
ρ
(
Xε(T, x),Φ(T, x)

)
≥ δ
}

= 0.
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Main Result

The probability transition function

P εt (x,A) = P
(
Xε(t, x) ∈ A

)
, t ≥ 0, x ∈M,A ∈ B(M).

Theorem 1 (Φ-Invariance)

Assume that (PC) holds. Let µεi be a sequence of invariant
probability measure. If µεi

w→ µ as εi → 0, then µ is Φ-invariant.

Corollary (Birkhoff, Poincaré and Conley)

If µ is Φ-invariant, then supp(µ) is positively invariant for Φ,
and

supp(µ) ⊂ B(Φ) = {x ∈M : x ∈ ω(x)} − Birkhoff Center.
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SODEs Driven by a Lévy Process

dXε,x(t) =b(Xε,x(t))dt+ εσ(Xε,x(t))dWt

+ ε

∫
|y|Rl<c

F (Xε,x(t−), y)Ñ(dt, dy).
(3.1)

For a C2 scalar function V and ε ≥ 0, define an operator

LεV (x) :=〈∇V (x), b(x)〉+
ε2

2

m∑
i,j=1

aij(x)
∂2V (x)

∂xi∂xj

+

∫
|y|Rl<c

(
V (x+ εF (x, y))− V (x)− 〈∇V (x), εF (x, y)〉

)
ν(dy),

where A(x) = (aij(x)) = σ(x)σT (x) is the diffusion matrix.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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SODEs Driven by a Lévy Process-Continued

Theorem 3 (Support on weak limits)

Let b(x), σ(x) and F (x, y) in (3.1) be locally Lipschitz
continuous. Suppose that there exists a nonnegative function
V (x) ∈ C2(Rm) such that

inf
|x|>R

V (x)→ +∞, as R→∞, and (3.2)

sup
|x|>R

LεV (x) ≤ −AR → −∞ asR→∞. (3.3)

Then
(1)(PC) holds.
(2) There exists an invariant probability measure µεx for
ε > 0, x ∈ Rm.
(3) There exists µεix ∈ Iεi such that µεix

w→ µx as εi → 0.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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SODEs Driven by a Lévy Process-Continued

In fact,

Lemma (Sufficient conditions for (PC))

Let b, σ and F be locally Lipschitz continuous. If there exist a
nonnegative function V (x) ∈ C2(Rm), ε0 > 0 and a constant
c∗ < +∞, such that (3.2) and

LεV (x) ≤ c∗V (x), ∀ε ∈ [0, ε0] (3.4)

hold. Then there exists a global unique solution Xε,x(t) to (3.1)
for all x ∈ Rm, ε ∈ [0, ε0]. Moreover the (PC) holds.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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Sketch of the Proof

• The global existence and uniqueness of solution to (3.1) are similar
as the proof in Khasminskii.

• Let τ ε,xn = inf{t : |Xε,x(t)| > n}, τ0,xn = inf{t : |X0,x(t)| > n} &
Sn(r) be a nonincreasing C∞ function with values in [0, 1] such that

Sn(r) =

{
1 if r ∈ [0, n],
n+ 1

2

r if r ∈ [n+ 1,+∞).

Construct functions

bn(x) = b
(
xSn(|x|)

)
, (3.5)

σn(x) and Fn(x, y) similarly. Then bn(x), σn(x) and Fn(x, y) satisfy

global Lipschitz and linear growth conditions.
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Sketch of the Proof-Continued

Let Xε,x
n (t) be the solution associated with functions bn(x), σn(x) and

Fn(x, y). Then Xε,x(t) = Xε,x
n (t) for t ≤ τ ε,xn . For large n,

sup
x∈K

P(τ ε,xn ≤ T ) is sufficiently small & inf
x∈K

τ0,xn > T . Therefore,

sup
x∈K

P{|Xε,x(T )−X0,x(T )| ≥ δ}

≤ sup
x∈K

P{|Xε,x
n (T )−X0,x

n (T )| ≥ δ, T < τ ε,xn ∧ τ0,xn }

+ sup
x∈K

P(τ ε,xn ∧ τ0,xn ≤ T )

≤ 1

δ2
sup
x∈K

E|Xε,x
n (T )−X0,x

n (T )|2 + sup
x∈K

P(τ ε,xn ≤ T )→ 0, as ε→ 0.
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SODEs Driven by a Lévy Process

Lemma (The existence and tightness of stationary measure)

Suppose that b(x), σ(x) and F (x, y) in (3.1) are locally
Lipschitz continuous, and that there exists a scalar function
V (x) ∈ C2(Rm,R+) such that (3.2) and (3.3) hold. Then Iε is
nonempty, and the set I =

⋃
0<ε≤ε0 I

ε of stationary measures is
tight.

The idea of the proof is borrowed from Khasminskii to the
prove the existence of stationary measures. Using Portmanteau
Theorem to prove the tightness.
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Nonlinear Case: Polynomial Growth

Corollary

Suppose that b(x), σ(x) and F (x, y) in (3.1) are locally
Lipschitz continuous. If there are positive constants c1, c2 and
q ≥ 2 such that for |x| sufficiently large, one has

〈b(x), x〉 ≤ −c1|x|q,

1

2
‖σ(x)‖22 +

∫
|y|Rl<c

|F (x, y))|2ν(dy) ≤ c2|x|q,

then the conclusions of Theorem 3 hold.

Proof Note that V (x) = 1
2 |x|

2.
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Nonlinear Case: Monotone Cyclic Feedback Systems

Consider a typical monotone cyclic feedback system driven by
Lévy process

dxi(t) =
[
− bixi(t) + f i(xi+1(t))

]
dt

+ ε

k∑
j=1

σij(x(t))dWj(t) + ε

∫
|y|Rl<c

F i(x(t−), y)Ñ(dt, dy),

(3.6)

where bi is positive constant, f i is bounded and continuously
differentiable with bounded derivative for i = 0, 1, · · · , N ,
(N + 1)× k-dispersion matrix σ(x) = (σij(x)) and F have
global Lipschitz continuous and linear growth properties.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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Nonlinear Case: Monotone Cyclic Feedback Systems

Note Let V (x) = 1
2 |x|

2, it is easy to see that the assumptions of
Theorem 3 hold, therefore S ⊂ B(Φ). Furthermore,

Theorem 7 (Mallet-Paret and Smith, 2002)

Let Φ(t) be a solution of unperturbed system (3.6) on [0,∞). Then
B(Φ) = E ∪ P. More precisely, either
(1) ω(x) is a single non-constant periodic orbit; or
(2) for solutions with u(t) ∈ ω(x) for all t ∈ R, we have that

α(u) ∪ ω(u) ⊂ E .

Here
• E and P denote the set of equilibria and nontrivial periodic
orbits, respectively.
• α(x) and ω(x) denote the α- and ω-limit sets of solution in
the phase space RN+1, respectively.
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FDE: Hopfield Neural Network Models

Consider the stochastic delayed Hopfield equations

dXε(t) = [−BXε(t) +Ag(Xε(t− τ))]dt+ εσ(Xε
t )dW (t) (3.7)

where B = diag(b1, · · · , bm), g(x) = (g1(x1), · · · , gm(xm))T ,
A = (aij)m×m, and σ(φ) = (σij(φ)) is an m×m matrix defined on
C = C([−τ, 0],Rm).
Assumptions on g and σ:
(A1) There exists a positive constant L̃,M such that for all x, y ∈ Rm

|g(x)− g(y)| ≤ L̃|x− y|, |g(x)| ≤M.

(A2) There exists a positive constant L such that for all φ, ψ ∈ C

‖σ(φ)− σ(ψ)‖2 ≤ L‖φ− ψ‖.

(A3) The diffusion matrix σσT is uniformly elliptic in C

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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FDE: Hopfield Neural Network Models

Theorem 8

Assume (A1)− (A3). Let γ = 9[ 2
√
κ−1

(
√
κ−1)2 + 1]. If

min
1≤i≤m

bi >
γ2e6τ

(
16L̃3|A|3

)2
(1− κe−3τ )2

, κ ∈ (1, e3τ ), (3.8)

then
(1) for each ε ∈ (0, 1], the system (3.7) has a unique invariant
measure µε for the segment process {Xε

t }t≥0.
(2) µε weakly converges to δp as ε→ 0, where p is a globally
asymptotically stable equilibrium for differential equations (3.7) with
ε = 0.
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Stochastic Reaction Diffusion Equation with a
Polynomial Nonlinearity

Let Λ ⊂ R be a bounded domain with smooth boundary ∂Λ,

g(u) =

2k−1∑
i=0

aiu
i, a2k−1 < 0. (3.9)

Stochastic reaction diffusion equation with Dirichlet boundary
conditions:

dX(t, x) = ∆X(t, x)dt+ g(X(t, x))dt+ εσ(x,X(t, x))dW (t),

X(t, x) = 0, x ∈ ∂Λ, t > 0,

X(0) = h ∈ L2(Λ).
(3.10)

Here σ : Λ× R→ l2 is measurable function.
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Stochastic Reaction Diffusion Equation with a
Polynomial Nonlinearity-Continued

(C) There exist c1, c2 > 0 and h ∈ L1(Λ) such that for all u, u′ ∈ R
and x ∈ Λ,

‖σ(x, u)− σ(x, u′)‖2l2 ≤ c1|u− u′|2,
‖σ(x, u)‖2l2 ≤ c2|u|2 + h(x).

Theorem 9

Assume that g is given in (3.9) and σ satisfies condition (C), then any
limiting measures of stationary measures for (3.10) are supported in
the set of equilibrium points E of (3.10) with ε = 0.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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Important facts: Deeply Depends on the Type of Noise

Suppose that X0,x0(t) is a bounded solution of ẋ = b(x).

Denote by Ix0
the set of invariant measures generated by the family

of probability measures

P 0,t(x0, B) =
1

t

∫ t

0

δX0,x0 (s)(B)ds

via Krylov-Bogoliubov procedure.

Choose r = r(x0) > 0 such that γ+(x0) = {X0,x0(t) : t ≥ 0} ⊂ Br(O).
Then construct a C∞ diffusion term σ:

σ(x) =

{
zero matrix 0 if x ∈ Br(O),

constant matrix J if x ∈ (B̄r+1(O))c.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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Important facts: Deeply Depends on the Type of
Noise-Continued

Then for SDEs

dXε,x0(t) = b(Xε,x0(t))dt+ εσ(Xε,x0(t))dWt, Xε,x0(0) = x0 (4.1)

has a unique solution Xε,x0 = X0,x0 .

Furthermore, we have

Facts

Xε,x0(t) = X0,x0(t) for all t ≥ 0 and Ix0 ⊂ I for all ε. In particular,

for any µε,x0 = µ ∈ Ix0
, one has µε,x0

w→ µ as ε→ 0.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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Important facts: Deeply Depends on the Type of
Noise-Continued

Theorem 10 (Uniquely ergodic)

Suppose the assumptions of Theorem 3 are satisfied. If the matrix

a(x) := σ(x)σT (x) is invertible, (4.2)

then the semigroup Pt is irreducible. Furthermore, if
(a) for any n > 1, there exists a nonnegative function

cn ∈ L2(Rl,B(Rl), ν) such that sup|x|≤n |F (x, y)| ≤ cn(y), y ∈ Rl,
(b) there exist positive constants C and Cr for any r > 0 such that∫

|y|Rl<c
‖DxF (0, y)‖22ν(dy) ≤ C,∫

|y|Rl<c
‖DxF (x1, y)−DxF (x2, y)‖22ν(dy) ≤ Cr|x1−x2|2, |x1|∨|x2| ≤ r,

then the semigroup Pt has the strong Feller property.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems
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Example 1: The Bernoulli Lemniscate System

Example (The Bernoulli Lemniscate System)

Let I(x, y) = (x2 + y2)2 − 4(x2 − y2). Define

V (I) :=
I2

2(1 + I2)
3
4

, H(I) :=
I

(1 + I2)
3
8

.

Consider the vector field

b(x, y) := −

[
∇V (I) +

(
∂H(I)

∂y
,−∂H(I)

∂x

)T]
.

For the deterministic system
dx

dt
= b1(x, y),

dy

dt
= b2(x, y).

(4.3)
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The global behavior of (4.3) are sketched in following Figure.

Figure: The phase portrait of (4.3) with b(x, y) = −∇V (x, y)−Θ(x, y).

The Birkhoff center B(Φ) = {O(0, 0), P+(
√

2, 0), P−(−
√

2, 0)}, where

O is a saddle point, P+, P− are unstable spirals.
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Proposition

The system (4.3) has the equilibria O(0, 0), P+(
√

2, 0) and
P−(−

√
2, 0). V (I) is its Lyapunov function.

(1) The Birkhoff center B(Φ) = {O,P+, P−}.

(2) When the initial point p locates outside of the Bernoulli
Lemniscate:

L : (x2 + y2)2 = 4(x2 − y2), (4.4)

its ω-limit set ω(p) = L, which is a red curve in Figure;

(3) When the initial point p 6= P− (resp. p 6= P+ ) locates left (resp.
right) inside of the Bernoulli Lemniscate, its ω-limit set the left (resp.
right) branch of L.
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For the perturbed system driven by Brownian motion:{
dx = b1(x, y)dt+ ε[σ11(x, y)dW 1

t + σ12(x, y)dW 2
t ],

dy = b2(x, y)dt+ ε[σ21(x, y)dW 1
t + σ22(x, y)dW 2

t ].
(4.5)

Theorem 12

Suppose that σij(i, j ∈ {1, 2}) satisfies global Lipschtiz condition, thus
there exist nonnegative constants C1, C2 such that

|aij(x, y)| = |
(
σ(x, y)σT (x, y)

)
ij
| ≤ C1|(x, y)|2 + C2, for i, j = 1, 2,

(i) if C1 = 0, then for any ε, the system (4.5) admits at least one
stationary measure µε;

(ii) if C1 > 0, then the system (4.5) possesses at least one stationary
measure µε for 0 < ε < 1

8
√
26C1

.

If, in addition, the diffusion matrix a(x, y) is positively definite
everywhere, then for a given ε as above, the stationary measure µε is
unique, and µε

w→ δO(·) as ε→ 0, where O is a saddle point.
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Sketch of the Proof

1 The conclusions of Theorem 3 hold because of the following fact

LεV (x, y) ≤ −[
1

4
√

2
−208

√
2C1ε

2]r2+208
√

2C2ε
2 → −∞ as r →∞.

This implies (i), (ii) and supp(µ) ⊂ {O,P+, P−}, where µ is the
weak limit measure.

2 Also the uniqueness of µε follows from Theorem 10.

3 To show µ({P+, P−}) = 0.
By the measure estimate theorem [Huang-Ji-Liu-Yi], it is easy to see
that

µε(Ωρ0) ≤ µε(Ωρ)e−
m̃

M̃

∫ ρ
ρ0

1
t
dt ≤ e−

m̃

M̃

∫ ρ
ρ0

1
t
dt
, ρ ∈ (ρ0, ρM ).

Then, using the fact of µε
w−−→ µ and the openness of Ωρ0 . Finally,

letting ρ0 → 0, one has µ({P+}) = 0.
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Example 2: The May-Leonard System

Example ( The May-Leonard system)

Consider the May-Leonard system with a white noise
perturbation:

dy1 = y1(1− y1 − βy2 − γy3)dt+ εy1 ◦ dWt,
dy2 = y2(1− y2 − βy3 − γy1)dt+ εy2 ◦ dWt,
dy3 = y3(1− y3 − βy1 − γy2)dt+ εy3 ◦ dWt,

(4.6)

where ◦ denotes the Stratonovich stochastic integral, β, γ > 0
and ε denotes noise intensity.
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Stochastic Decomposition Formula

Theorem 14 (Chen, Dong, Jiang, Niu and Zhai)

Let Φε, Φ0 be the solutions of (4.6) and the corresponding
deterministic system without noise, respectively. Then

Φε(t, ω, y) = gε(t, ω, g0)Φ0(

∫ t

0
gε(s, ω, g0)ds,

y

g0
), (4.7)

where gε is the solution of stochastic logistic equation

dg = g(1− g)dt+ εg ◦ dWt. (4.8)
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Asymptotic Properties for Φ0

• M. Hirsch (1988) pointed out that the flow Φ0 admits an invariant
surface Σ (called carrying simplex), such that every trajectory in
R3

+ \ {O} is asymptotic to one in Σ. So we draw phase portraits on Σ.
Here carrying simplex Σ is homeomorphic to {y ∈ R3

+ :
∑
i yi = 1}.

• Φ0 always possesses

(1) equilibria: O(0, 0, 0);

(2) three axial equilibria: R1(1, 0, 0), R2(0, 1, 0), R3(0, 0, 1);

(3) the unique positive equilibrium: P = 1
1+β+γ (1, 1, 1);

(4) possible planar equilibria: R12 = 1
1−βγ (1− β, 1− γ, 0),

R23 = 1
1−βγ (0, 1− β, 1− γ), R31 = 1

1−βγ (1− γ, 0, 1− β).
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Table: The classification for the flow Φ0 on Σ

Parameter conditions Equilibria Phase Portrait

a: 0 < β, γ < 1 O,R1, R2, R3, R12, R13, R23, P P

R1 R2

R3

R13 R23

R12

b:
(i) β + γ < 2
(ii) β ≥ 1, γ < 1
or γ ≥ 1, β < 1

O,R1, R2, R3, P

R1 R2

R3

P

c:
(i) β + γ = 2
(ii) β, γ 6= 1

O,R1, R2, R3, P P

R1 R2

R3
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Table: continued

Parameter conditions Equilibria Phase Portrait

d:
(i) β + γ > 2
(ii) γ > 1, β ≤ 1
or γ ≤ 1, β > 1

O,R1, R2, R3, P P

R1 R2

R3

e: β, γ > 1 O,R1, R2, R3, R12, R13, R23, P

R1 R2

R3

R12

R23
R13

P

f: β = γ = 1 ∀x ∈ Σ ∪ {O}

R1 R2

R3

∑
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Complete Depiction

Theorem 15 (Chen, Dong, Jiang, Niu and Zhai)

(i) For any equilibrium Q ∈ E, µεQ(·) w→ δQ(·) as ε→ 0, which
is valid to the cases a, b, e, f.

(ii) For the case c, νεh converges weakly to the Haar measure on
the closed orbit Γ(h) as ε→ 0, 0 < h ≤ 1

27 .

(iii) For the case d, if µi := νε
i

y ∈MS(ε0), i = 1, 2, · · · ,
satisfying εi → 0 and µi

w→ µ as i→∞, then
µ({R1, R2, R3}) = 1.
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Conlusions

♠ The Bernoulli Lemniscate Example shows that the Birkhoff center
consists of the origin O (saddle point) and strongly unstable spirals
{P+, P−}. Relatively, the O is more stable than {P+, P−}.

All weak limits support at the O under the diffusion matrix is
nondegenerate.

• The most unstable positions for the deterministic system may be
recognised by the added small stochastic term.

♠ The May-Leonard Example in case d indicates that the Birkhoff
center of Φ0 on Σ = {y ∈ R3

+ :
∑
i yi = 1} is composed of P (which is

strongly repelling on Σ) and three saddles {R1, R2, R3}(which are
relatively more stable than P ).

The weak limits are more complex, but keep the original deterministic
classification.
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Journal of Differential Equations, 251 (2011), pp. 196–222.

M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New

York, 1998.

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III.

Competing species, Nonlinearity, 1 (1988), pp. 51–71.

W. Huang, M. Ji, Z. Liu, and Y. Yi, Integral identity and measure estimates for stationary

Fokker-Planck equations, The Annals of Probability, 43 (2015), pp. 1712–1730.

R. Z. Khasminskii, Stochastic Stability of Differential Equations, Springer, New York, 2012.

L.-S. Young, What are SRB measures, and which dynamical systems have them?, Journal of

Statistical Physics, 108 (2002), pp. 733–754.

Zhao Dong Limiting Behavior of Stochastic Evolution Systems



Introduction General Framework Applications Two ExamplesExample 1: The Bernoulli Lemniscate System Example 2: The May-Leonard System

Thank you!
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