Explicit Convergence Rates for Subgeometric Ergodic Markov Processes under Subordination

Chang-Song Deng Wuhan University

> Wuhan July 17, 2017

C.-S. Deng (Wuhan University) () Explicit Convergence Rates for Subgeometri

Wuhan July 17, 2017

- Let X_t be a Markov process with state space E, transition function $P^t(x, \cdot)$, and stationary distribution π .
- Quantitative convergence rate:

 $||P^t(x,\cdot) - \pi||_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0,$

where $r: [0,\infty) \to (0,1]$ is the nondecreasing rate function.

- Typical examples for the rate r are $(\theta > 0, \delta \in (0, 1], \beta, \gamma > 0)$ $r(t) = e^{-\theta t^{\delta}}, \quad r(t) = (1+t)^{-\beta}, \quad r(t) = [1 + \log(1+t)]^{-\gamma}.$
- Example: the following SDE admits such rates

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}Z_t,$$

2 / 25

- Let X_t be a Markov process with state space E, transition function $P^t(x, \cdot)$, and stationary distribution π .
- Quantitative convergence rate:

 $\|P^t(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0,$ where $r : [0,\infty) \to (0,1]$ is the nondecreasing rate function.

- Typical examples for the rate r are $(\theta > 0, \delta \in (0, 1], \beta, \gamma > 0)$ $r(t) = e^{-\theta t^{\delta}}, \quad r(t) = (1+t)^{-\beta}, \quad r(t) = [1 + \log(1+t)]^{-\gamma}.$
- Example: the following SDE admits such rates

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}Z_t,$$

2 / 25

- Let X_t be a Markov process with state space E, transition function $P^t(x, \cdot)$, and stationary distribution π .
- Quantitative convergence rate:

 $\|P^t(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0,$ where $r : [0,\infty) \to (0,1]$ is the nondecreasing rate function.

• Typical examples for the rate r are $(\theta > 0, \delta \in (0, 1], \beta, \gamma > 0)$ $r(t) = e^{-\theta t^{\delta}}, \quad r(t) = (1 + t)^{-\beta}, \quad r(t) = [1 + \log(1 + t)]^{-\gamma}.$

• Example: the following SDE admits such rates

 $\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}Z_t,$

2 / 25

- Let X_t be a Markov process with state space E, transition function $P^t(x, \cdot)$, and stationary distribution π .
- Quantitative convergence rate:

 $\|P^t(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0,$ where $r : [0,\infty) \to (0,1]$ is the nondecreasing rate function.

- Typical examples for the rate r are $(\theta > 0, \delta \in (0, 1], \beta, \gamma > 0)$ $r(t) = e^{-\theta t^{\delta}}, \quad r(t) = (1 + t)^{-\beta}, \quad r(t) = [1 + \log(1 + t)]^{-\gamma}.$
- Example: the following SDE admits such rates

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}Z_t,$$

2 / 25

٠

$\|P^t(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0.$

• $X_t \rightsquigarrow X_{S_t}$: transition function $P_{\phi}^t(x, \cdot)$; S_t is an independent subordinator with Laplace exponent ϕ (introduced in detail later).

• Qualitative:
$$P^t_{\phi}(x,\cdot) \to \pi$$
 as $t \to \infty$

• Aim: describe r_{ϕ} via the rate function r of the original process: $\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{\mathrm{TV}} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• Explicit r_{ϕ} for

$$||P^t(x, \cdot) - \pi||_{\text{TV}} \le C(x)r(t), \quad x \in E, t \ge 0.$$

• $X_t \rightsquigarrow X_{S_t}$: transition function $P_{\phi}^t(x, \cdot)$; S_t is an independent subordinator with Laplace exponent ϕ (introduced in detail later).

• Qualitative:
$$P^t_{\phi}(x,\cdot) \to \pi$$
 as $t \to \infty$

• Aim: describe r_{ϕ} via the rate function r of the original process: $\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{\mathrm{TV}} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• Explicit r_{ϕ} for

$$\|P^t(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0.$$

- $X_t \rightsquigarrow X_{S_t}$: transition function $P_{\phi}^t(x, \cdot)$; S_t is an independent subordinator with Laplace exponent ϕ (introduced in detail later).
- Qualitative: $P_{\phi}^{t}(x, \cdot) \rightarrow \pi$ as $t \rightarrow \infty$

• Aim: describe r_{ϕ} via the rate function r of the original process: $\|P_{\phi}^{t}(x,\cdot) - \pi\|_{TV} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• Explicit r_{ϕ} for

$$\|P^t(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0.$$

• $X_t \rightsquigarrow X_{S_t}$: transition function $P_{\phi}^t(x, \cdot)$; S_t is an independent subordinator with Laplace exponent ϕ (introduced in detail later).

• Qualitative:
$$P^t_\phi(x,\cdot) \to \pi$$
 as $t \to \infty$

• Aim: describe r_{ϕ} via the rate function r of the original process: $\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{\mathrm{TV}} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• Explicit r_{ϕ} for

$$\|P^t(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(t), \quad x \in E, t \ge 0.$$

• $X_t \rightsquigarrow X_{S_t}$: transition function $P_{\phi}^t(x, \cdot)$; S_t is an independent subordinator with Laplace exponent ϕ (introduced in detail later).

• Qualitative:
$$P^t_{\phi}(x,\cdot) \to \pi$$
 as $t \to \infty$

• Aim: describe r_{ϕ} via the rate function r of the original process:

$$\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{\mathrm{TV}} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$$

• Explicit r_{ϕ} for

$$r(t) = e^{-\theta t^{\delta}}, \quad r(t) = (1+t)^{-\beta}, \quad r(t) = [1 + \log(1+t)]^{-\gamma}.$$

• X_n is a discrete time Markov chain with invariant measure π ,

 $||P^n(x,\cdot) - \pi||_{\mathrm{TV}} \le C(x)r(n), \quad x \in E, n \in \mathbb{N}.$

- $X_n \rightsquigarrow X_{T_n}$: transition kernel $P_{\phi}^n(x, \cdot)$; T_n is an independent discrete subordinator with Laplace exponent ϕ in in the sense of Bendikov and Saloff-Coste (Math. Nachr., 2012).
- Question: what can we say about r_{ϕ} ?

 $\left\|P_{\phi}^{n}(x,\cdot) - \pi\right\|_{\mathrm{TV}} \leq C(x)r_{\phi}(n), \quad x \in E, \ n \in \mathbb{N}.$

• X_n is a discrete time Markov chain with invariant measure π ,

$$\|P^n(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(n), \quad x \in E, n \in \mathbb{N}.$$

• $X_n \rightsquigarrow X_{T_n}$: transition kernel $P_{\phi}^n(x, \cdot)$; T_n is an independent discrete subordinator with Laplace exponent ϕ in in the sense of Bendikov and Saloff-Coste (Math. Nachr., 2012).

• Question: what can we say about r_{ϕ} ?

 $\left\|P_{\phi}^{n}(x,\cdot)-\pi\right\|_{\mathrm{TV}} \leq C(x)r_{\phi}(n), \quad x \in E, \ n \in \mathbb{N}.$

• X_n is a discrete time Markov chain with invariant measure π ,

$$\|P^n(x,\cdot) - \pi\|_{\mathrm{TV}} \le C(x)r(n), \quad x \in E, n \in \mathbb{N}.$$

- $X_n \rightsquigarrow X_{T_n}$: transition kernel $P_{\phi}^n(x, \cdot)$; T_n is an independent discrete subordinator with Laplace exponent ϕ in in the sense of Bendikov and Saloff-Coste (Math. Nachr., 2012).
- Question: what can we say about r_{ϕ} ?

 $\left\|P_{\phi}^{n}(x,\cdot) - \pi\right\|_{\mathrm{TV}} \leq C(x)r_{\phi}(n), \quad x \in E, \ n \in \mathbb{N}.$

• For generality, we replace the total variance norm by the so-called *f*-norm.

• Let $f: E \to [1, \infty)$. The f-norm of a signed measure μ is defined by

$$\|\mu\|_f := \sup_{|g| \le f} \left| \int_E^{\cdot} g \,\mathrm{d}\mu \right|.$$

• Clearly, $\|\cdot\|_f \geq \|\cdot\|_{\mathrm{TV}}$.

• If f is bounded, $\|\cdot\|_f$ and $\|\cdot\|_{\mathrm{TV}}$ are even equivalent.

- For generality, we replace the total variance norm by the so-called *f*-norm.
- Let $f: E \to [1, \infty)$. The *f*-norm of a signed measure μ is defined by $\| f \|_{H^{-1}} = \| f \|_{H^{-1}}$

$$\|\mu\|_f := \sup_{|g| \le f} \left| \int_E g \,\mathrm{d}\mu \right|.$$

- Clearly, $\|\cdot\|_f \geq \|\cdot\|_{\mathrm{TV}}$.
- If f is bounded, $\|\cdot\|_f$ and $\|\cdot\|_{\mathrm{TV}}$ are even equivalent.

- For generality, we replace the total variance norm by the so-called *f*-norm.
- Let f : E → [1,∞). The f-norm of a signed measure μ is defined by
 ||μ||_c := sup | ∫ a dμ|

$$\|\mu\|_f := \sup_{|g| \le f} \left| \int_E g \,\mathrm{d}\mu \right|.$$

• Clearly, $\|\cdot\|_f \geq \|\cdot\|_{\mathrm{TV}}$.

• If f is bounded, $\|\cdot\|_f$ and $\|\cdot\|_{TV}$ are even equivalent.

- For generality, we replace the total variance norm by the so-called *f*-norm.
- Let $f: E \to [1, \infty)$. The *f*-norm of a signed measure μ is defined by

$$\|\mu\|_f := \sup_{|g| \le f} \left| \int_E g \,\mathrm{d}\mu \right|.$$

- Clearly, $\|\cdot\|_f \geq \|\cdot\|_{\mathrm{TV}}$.
- If f is bounded, $\|\cdot\|_f$ and $\|\cdot\|_{\mathrm{TV}}$ are even equivalent.

• A subordinator S_t is an increasing Lévy process on $[0,\infty)$ with Laplace transform

$$\mathbb{E} e^{-uS_t} = e^{-t\phi(u)}, \quad u > 0, \ t \ge 0.$$

- $\phi: (0,\infty) \to (0,\infty)$ is a Bernstein function, i.e. $\phi \in C^{\infty}$ and $(-1)^{n-1}\phi^{(n)} \ge 0$ for all $n \in \mathbb{N}$.
- Every Bernstein function enjoys a unique (Lévy–Khintchine) representation

$$\phi(u) = bu + \int_{(0,\infty)} (1 - e^{-uy}) \nu(dy), \quad u > 0.$$

 Schilling-Song-Vondraček: Bernstein Functions. Theory and Applications (2nd edn), 2012

• A subordinator S_t is an increasing Lévy process on $[0,\infty)$ with Laplace transform

$$\mathbb{E} e^{-uS_t} = e^{-t\phi(u)}, \quad u > 0, \ t \ge 0.$$

- $\phi: (0,\infty) \to (0,\infty)$ is a Bernstein function, i.e. $\phi \in C^{\infty}$ and $(-1)^{n-1}\phi^{(n)} \ge 0$ for all $n \in \mathbb{N}$.
- Every Bernstein function enjoys a unique (Lévy–Khintchine) representation

$$\phi(u) = bu + \int_{(0,\infty)} (1 - e^{-uy}) \nu(dy), \quad u > 0.$$

 Schilling-Song-Vondraček: Bernstein Functions. Theory and Applications (2nd edn), 2012

• A subordinator S_t is an increasing Lévy process on $[0,\infty)$ with Laplace transform

$$\mathbb{E} e^{-uS_t} = e^{-t\phi(u)}, \quad u > 0, \ t \ge 0.$$

- $\phi: (0,\infty) \to (0,\infty)$ is a Bernstein function, i.e. $\phi \in C^{\infty}$ and $(-1)^{n-1}\phi^{(n)} \ge 0$ for all $n \in \mathbb{N}$.
- Every Bernstein function enjoys a unique (Lévy–Khintchine) representation

$$\phi(u) = bu + \int_{(0,\infty)} (1 - e^{-uy}) \nu(dy), \quad u > 0.$$

 Schilling-Song-Vondraček: *Bernstein Functions*. *Theory and Applications* (2nd edn), 2012

• A subordinator S_t is an increasing Lévy process on $[0,\infty)$ with Laplace transform

$$\mathbb{E} e^{-uS_t} = e^{-t\phi(u)}, \quad u > 0, \ t \ge 0.$$

- $\phi: (0,\infty) \to (0,\infty)$ is a Bernstein function, i.e. $\phi \in C^{\infty}$ and $(-1)^{n-1}\phi^{(n)} \ge 0$ for all $n \in \mathbb{N}$.
- Every Bernstein function enjoys a unique (Lévy–Khintchine) representation

$$\phi(u) = bu + \int_{(0,\infty)} (1 - e^{-uy}) \nu(dy), \quad u > 0.$$

• Schilling-Song-Vondraček: *Bernstein Functions. Theory and Applications* (2nd edn), 2012

• Assume that X_t and S_t are independent.

- If X_t is a Lévy process, then so does the subordinate process X_{S_t} .
- Example: α -stable process B_{S_t} , where B_t is a standard Brownian motion and S_t is an independent $\alpha/2$ -stable subordinator.

• Generator:
$$A \rightsquigarrow -\phi(-A)$$

 \bullet By independence, $P_{\phi}^t(x,\cdot)$ is given by

$$P_{\phi}^{t}(x,\cdot) = \int_{[0,\infty)} P^{s}(x,\cdot) \mathbb{P}(S_{t} \in \mathrm{d}s).$$

• A natural question: which (fine) properties can be preserved under subordination?

- Assume that X_t and S_t are independent.
- If X_t is a Lévy process, then so does the subordinate process X_{S_t} .
- Example: α -stable process B_{S_t} , where B_t is a standard Brownian motion and S_t is an independent $\alpha/2$ -stable subordinator.

• Generator:
$$A \rightsquigarrow -\phi(-A)$$

 \bullet By independence, $P_{\phi}^t(x,\cdot)$ is given by

$$P_{\phi}^{t}(x,\cdot) = \int_{[0,\infty)} P^{s}(x,\cdot) \mathbb{P}(S_{t} \in \mathrm{d}s).$$

• A natural question: which (fine) properties can be preserved under subordination?

- Assume that X_t and S_t are independent.
- If X_t is a Lévy process, then so does the subordinate process X_{S_t} .
- Example: α -stable process B_{S_t} , where B_t is a standard Brownian motion and S_t is an independent $\alpha/2$ -stable subordinator.

• Generator:
$$A \rightsquigarrow -\phi(-A)$$

• By independence, $P_{\phi}^{t}(x, \cdot)$ is given by

$$P_{\phi}^{t}(x,\cdot) = \int_{[0,\infty)} P^{s}(x,\cdot) \mathbb{P}(S_{t} \in \mathrm{d}s).$$

• A natural question: which (fine) properties can be preserved under subordination?

- Assume that X_t and S_t are independent.
- If X_t is a Lévy process, then so does the subordinate process X_{S_t} .
- Example: α -stable process B_{S_t} , where B_t is a standard Brownian motion and S_t is an independent $\alpha/2$ -stable subordinator.
- Generator: $A \rightsquigarrow -\phi(-A)$
- By independence, $P_{\phi}^{t}(x, \cdot)$ is given by

$$P_{\phi}^{t}(x,\cdot) = \int_{[0,\infty)} P^{s}(x,\cdot) \mathbb{P}(S_{t} \in \mathrm{d}s).$$

• A natural question: which (fine) properties can be preserved under subordination?

- Assume that X_t and S_t are independent.
- If X_t is a Lévy process, then so does the subordinate process X_{S_t} .
- Example: α -stable process B_{S_t} , where B_t is a standard Brownian motion and S_t is an independent $\alpha/2$ -stable subordinator.
- Generator: $A \rightsquigarrow -\phi(-A)$
- By independence, $P_{\phi}^t(x,\cdot)$ is given by

$$P_{\phi}^{t}(x,\cdot) = \int_{[0,\infty)} P^{s}(x,\cdot) \mathbb{P}(S_{t} \in \mathrm{d}s).$$

• A natural question: which (fine) properties can be preserved under subordination?

- Assume that X_t and S_t are independent.
- If X_t is a Lévy process, then so does the subordinate process X_{S_t} .
- Example: α -stable process B_{S_t} , where B_t is a standard Brownian motion and S_t is an independent $\alpha/2$ -stable subordinator.

• Generator:
$$A \rightsquigarrow -\phi(-A)$$

 \bullet By independence, $P_{\phi}^t(x,\cdot)$ is given by

$$P_{\phi}^{t}(x,\cdot) = \int_{[0,\infty)} P^{s}(x,\cdot) \mathbb{P}(S_{t} \in \mathrm{d}s).$$

• A natural question: which (fine) properties can be preserved under subordination?

C.-S. Deng (Wuhan University) () Explicit Convergence Rates for Subgeometri

Wuhan July 17, 2017 7 / 25

- Eigenvalues estimates for subordinate process: Z.-Q. Chen-R. Song (2005, JFA), (2006, Math. Z.)
- Heat kernel estimates and potential theory for subordinate BM: Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček
- Harnack inequalities for subordinate semigroup: Gordina-Röckner-F.-Y. Wang (2011, Potential Anal.)
- Nash and Poincaré inequalities under subordination: Schilling-J. Wang (2012, Math. Z.), Gentil-Maheux (2015, Semigroup Forum)
- Shift Harnack inequalities for subordinate semigroup: D.-Schilling (2015, SPA)
- Our question:

Convergence rate in the *f*-norm under subordination

- Eigenvalues estimates for subordinate process: Z.-Q. Chen-R. Song (2005, JFA), (2006, Math. Z.)
- Heat kernel estimates and potential theory for subordinate BM: Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček
- Harnack inequalities for subordinate semigroup: Gordina-Röckner-F.-Y. Wang (2011, Potential Anal.)
- Nash and Poincaré inequalities under subordination: Schilling-J. Wang (2012, Math. Z.), Gentil-Maheux (2015, Semigroup Forum)
- Shift Harnack inequalities for subordinate semigroup: D.-Schilling (2015, SPA)
- Our question:

Convergence rate in the *f*-norm under subordination

- Eigenvalues estimates for subordinate process: Z.-Q. Chen-R. Song (2005, JFA), (2006, Math. Z.)
- Heat kernel estimates and potential theory for subordinate BM: Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček
- Harnack inequalities for subordinate semigroup: Gordina-Röckner-F.-Y. Wang (2011, Potential Anal.)
- Nash and Poincaré inequalities under subordination: Schilling-J. Wang (2012, Math. Z.), Gentil-Maheux (2015, Semigroup Forum)
- Shift Harnack inequalities for subordinate semigroup: D.-Schilling (2015, SPA)
- Our question:

Convergence rate in the *f*-norm under subordination

- Eigenvalues estimates for subordinate process: Z.-Q. Chen-R. Song (2005, JFA), (2006, Math. Z.)
- Heat kernel estimates and potential theory for subordinate BM: Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček
- Harnack inequalities for subordinate semigroup: Gordina-Röckner-F.-Y. Wang (2011, Potential Anal.)
- Nash and Poincaré inequalities under subordination: Schilling-J. Wang (2012, Math. Z.), Gentil-Maheux (2015, Semigroup Forum)
- Shift Harnack inequalities for subordinate semigroup: D.-Schilling (2015, SPA)
- Our question:

Convergence rate in the *f*-norm under subordination

- Eigenvalues estimates for subordinate process: Z.-Q. Chen-R. Song (2005, JFA), (2006, Math. Z.)
- Heat kernel estimates and potential theory for subordinate BM: Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček
- Harnack inequalities for subordinate semigroup: Gordina-Röckner-F.-Y. Wang (2011, Potential Anal.)
- Nash and Poincaré inequalities under subordination: Schilling-J. Wang (2012, Math. Z.), Gentil-Maheux (2015, Semigroup Forum)
- Shift Harnack inequalities for subordinate semigroup: D.-Schilling (2015, SPA)
- Our question:

Convergence rate in the *f*-norm under subordination

- Eigenvalues estimates for subordinate process: Z.-Q. Chen-R. Song (2005, JFA), (2006, Math. Z.)
- Heat kernel estimates and potential theory for subordinate BM: Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček
- Harnack inequalities for subordinate semigroup: Gordina-Röckner-F.-Y. Wang (2011, Potential Anal.)
- Nash and Poincaré inequalities under subordination: Schilling-J. Wang (2012, Math. Z.), Gentil-Maheux (2015, Semigroup Forum)
- Shift Harnack inequalities for subordinate semigroup: D.-Schilling (2015, SPA)

• Our question:

Convergence rate in the *f*-norm under subordination

٠

$\left\|P^t(x,\cdot) - \pi\right\|_f \le C(x)r(t), \quad x \in E, \ t \ge 0.$

• We focus on the following (sub-geometric) rates:

$$\begin{split} r(t) &= \mathrm{e}^{-\theta t^{\delta}}, \quad r(t) = (1+t)^{-\beta}, \quad r(t) = [1+\log(1+t)]^{-\gamma}, \\ \text{where } \theta > 0 \text{, } \delta \in (0,1] \text{ and } \beta, \gamma > 0. \end{split}$$

• Our aim: For such rates, determine r_{ϕ} such that $\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• For simplicity, we only state our result for the special case $\phi(u) = u^{\alpha}$, $\alpha \in (0, 1)$.

$$\left\|P^t(x,\cdot)-\pi\right\|_f\leq C(x)r(t),\quad x\in E,\ t\geq 0.$$

• We focus on the following (sub-geometric) rates:

$$\begin{split} r(t) &= \mathrm{e}^{-\theta t^{\delta}}, \quad r(t) = (1+t)^{-\beta}, \quad r(t) = \left[1 + \log(1+t)\right]^{-\gamma}, \\ \text{where } \theta > 0, \ \delta \in (0,1] \text{ and } \beta, \gamma > 0. \end{split}$$

• Our aim: For such rates, determine r_{ϕ} such that $\left\|P_{\phi}^{t}(x,\cdot)-\pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• For simplicity, we only state our result for the special case $\phi(u) = u^{\alpha}$, $\alpha \in (0, 1)$.

$$\left\|P^t(x,\cdot)-\pi\right\|_f\leq C(x)r(t),\quad x\in E,\ t\geq 0.$$

• We focus on the following (sub-geometric) rates:

$$r(t) = e^{-\theta t^{\circ}}, \quad r(t) = (1+t)^{-\beta}, \quad r(t) = [1 + \log(1+t)]^{-\gamma},$$

where $\theta > 0, \ \delta \in (0, 1]$ and $\beta, \gamma > 0.$

• Our aim: For such rates, determine r_{ϕ} such that $\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• For simplicity, we only state our result for the special case $\phi(u) = u^{\alpha}$, $\alpha \in (0, 1)$.

$$\left\|P^t(x,\cdot)-\pi\right\|_f\leq C(x)r(t),\quad x\in E,\ t\geq 0.$$

• We focus on the following (sub-geometric) rates:

$$r(t) = e^{-\theta t^{\delta}}, \quad r(t) = (1+t)^{-\beta}, \quad r(t) = [1 + \log(1+t)]^{-\gamma},$$

where $\theta > 0$, $\delta \in (0, 1]$ and $\beta, \gamma > 0$.

• Our aim: For such rates, determine r_{ϕ} such that $\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$

• For simplicity, we only state our result for the special case $\phi(u)=u^{\alpha}$, $\alpha\in(0,1).$

Main result (in the special case $\phi(u) = u^{\alpha}$)

$$\left\|P^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r(t), \quad x \in E, \ t \geq 0.$$
 (★)

 $\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$ (**)

Theorem (D.-Schilling-Song, Adv. Appl. Probab., 2017) (sub-exponential rate)

(1) If (\bigstar) holds with rate $r(t) = e^{-\theta t^{\delta}}$ for $\theta > 0$ and $\delta \in (0, 1]$, then so does $(\bigstar \bigstar)$ with rate

$$r_{\phi}(t) = \exp{igg[-C\,t^{rac{\delta}{lpha(1-\delta)+\delta}}igg]},$$

where $C = C(\theta, \delta, \alpha) > 0$.

10 / 25

Main result (in the special case $\phi(u) = u^{\alpha}$)

$$\left\|P^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r(t), \quad x \in E, \ t \geq 0.$$
 (★)

$$\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$$
 (**)

Theorem (D.-Schilling-Song, Adv. Appl. Probab., 2017) (sub-exponential rate)

(1) If (\bigstar) holds with rate $r(t) = e^{-\theta t^{\delta}}$ for $\theta > 0$ and $\delta \in (0, 1]$, then so does $(\bigstar \bigstar)$ with rate

$$r_{\phi}(t) = \exp{igg[-C\,t^{rac{\delta}{lpha(1-\delta)+\delta}}igg]},$$

where $C = C(\theta, \delta, \alpha) > 0$.

10 / 25

Main result (cont.)

$$\left\|P^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r(t), \quad x \in E, \ t \geq 0.$$
 (★)

11 / 25

$$\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$$
 (**)

Theorem (algebraic rate)

(2) If (\bigstar) holds with rate $r(t) = (1+t)^{-\beta}$ for $\beta > 0$, then so does $(\bigstar \bigstar)$ with rate

$$r_{\phi}(t)=(1+t)^{-eta/lpha}.$$

Main result (cont.)

$$\left\|P^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r(t), \quad x \in E, \ t \geq 0.$$
 (★)

$$\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$$
 (**)

Theorem (logarithmic rate)

(3) If
$$(\bigstar)$$
 holds with rate $r(t) = [1 + \log (1+t)]^{-\gamma}$
for $\gamma > 0$, then so does $(\bigstar \bigstar)$ with rate

$$r_{\phi}(t) = [1 + \log(1 + t)]^{-\gamma}.$$

original process X_t	subordinate process X_{S_t}
e^{-t}	e^{-t}
$\mathrm{e}^{-t^{\delta}}$	${\rm e}^{-t^{\overline{\alpha(1-\delta)}+\delta}}$
t^{-eta}	$t^{-eta/lpha}$
$\log^{-\gamma}(1+t)$	$\log^{-\gamma}(1+t)$

< □ > < ---->

э.

-

3

$$\|P^t(x,\cdot) - \pi\|_f \le C(x)r(t), \quad x \in E, \ t \ge 0.$$
 (*)

$$\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$$
 (**)

Lemma

If (\bigstar) holds with some rate function r, then so does $(\bigstar\bigstar)$ with rate function $r_{\phi}(t) = \mathbb{E} r(S_t)$.

Proof:

$$\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} = \left\|\int_{[0,\infty)} \left(P^{s}(x,\cdot) - \pi\right) \mu_{t}(\mathrm{d}s)\right\|_{f}$$

$$\leq \int_{[0,\infty)} \left\|P^{s}(x,\cdot) - \pi\right\|_{f} \mu_{t}(\mathrm{d}s) \leq C(x) \int_{[0,\infty)} r(s) \mu_{t}(\mathrm{d}s) = C(x)\mathbb{E}r(S_{t}).$$

$$\|P^t(x,\cdot) - \pi\|_f \le C(x)r(t), \quad x \in E, \ t \ge 0.$$
 (*)

$$\left\|P_{\phi}^{t}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(t), \quad x \in E, \ t > 0.$$
 (**)

Lemma

If (\bigstar) holds with some rate function r, then so does $(\bigstar\bigstar)$ with rate function $r_{\phi}(t) = \mathbb{E} r(S_t)$.

Proof:

$$\begin{aligned} \left\| P_{\phi}^{t}(x,\cdot) - \pi \right\|_{f} &= \left\| \int_{[0,\infty)} \left(P^{s}(x,\cdot) - \pi \right) \mu_{t}(\mathrm{d}s) \right\|_{f} \\ &\leq \int_{[0,\infty)} \left\| P^{s}(x,\cdot) - \pi \right\|_{f} \mu_{t}(\mathrm{d}s) \leq C(x) \int_{[0,\infty)} r(s) \mu_{t}(\mathrm{d}s) = C(x) \mathbb{E} r(S_{t}). \end{aligned}$$

14 / 25

C.-S. Deng (Wuhan University) () Explicit Convergence Rates for Subgeometri Wuhan July 17, 2017

Our task

- Recall typical examples for the rate r of the original process are $r(t) = e^{-\theta t^{\delta}}, \ r(t) = (1+t)^{-\beta}, \ r(t) = [1 + \log(1+t)]^{-\gamma}$ for $\theta > 0, \ \delta \in (0, 1]$ and $\beta, \gamma > 0$.
- To get explicit rates for the subordinate process, the crucial point is to bound
 - $\mathbb{E}\,\mathrm{e}^{- heta S_t^\delta}, \quad \mathbb{E}S_t^{-eta}, \quad \mathbb{E}\log^{-\gamma}(1+S_t)$

15 / 25

for large t.

• Byproduct: moment estimates for general subordinator

Our task

• Recall typical examples for the rate r of the original process are

 $r(t) = e^{-\theta t^{\delta}}, \ r(t) = (1+t)^{-\beta}, \ r(t) = [1 + \log(1+t)]^{-\gamma}$ for $\theta > 0, \ \delta \in (0, 1]$ and $\beta, \gamma > 0$.

• To get explicit rates for the subordinate process, the crucial point is to bound

 $\mathbb{E}\,\mathrm{e}^{- heta S_t^\delta}, \quad \mathbb{E} S_t^{-eta}, \quad \mathbb{E} \log^{-\gamma}(1+S_t)$

15 / 25

for large t.

• Byproduct: moment estimates for general subordinator

Our task

• Recall typical examples for the rate r of the original process are

 $r(t) = e^{-\theta t^{\delta}}, \ r(t) = (1+t)^{-\beta}, \ r(t) = [1 + \log(1+t)]^{-\gamma}$ for $\theta > 0, \ \delta \in (0, 1]$ and $\beta, \gamma > 0$.

• To get explicit rates for the subordinate process, the crucial point is to bound

 $\mathbb{E}\,\mathrm{e}^{- heta S_t^\delta}, \quad \mathbb{E} S_t^{-eta}, \quad \mathbb{E}\log^{-\gamma}(1+S_t)$

for large t.

• Byproduct: moment estimates for general subordinator

Theorem

If
$$\nu(dy) \ge c y^{-1-\alpha} dy$$
 for $c > 0, \alpha \in (0, 1)$, then for some $C = C(\theta, \delta, c, \alpha) > 0$
$$\mathbb{E} e^{-\theta S_t^{\delta}} \le \exp\left[-C t^{\frac{\delta}{\alpha(1-\delta)+\delta}}\right] \quad \text{for all } t \gg 1.$$

C.-S. Deng (Wuhan University) () Explicit Convergence Rates for Subgeometri Wuhan July 17, 2017 16 / 25

Theorem

(1) We always have

$$\mathbb{E}S_t^{-\beta} \ge \frac{1}{\mathrm{e}\beta\Gamma(\beta)} \left[\phi^{-1}\left(\frac{1}{t}\right)\right]^{\beta} \quad \text{for all } t > 0.$$

(2) If

 $\liminf_{u \to \infty} \frac{\phi(\lambda u)}{\phi(u)} > 1 \quad \text{for some (hence, all) } \lambda > 1,$

then for some $C = C(\beta) > 0$

$$\mathbb{E}S_t^{-\beta} \leq C\left[\phi^{-1}\left(\frac{1}{t}\right)\right]^{\beta} \quad \text{for all } t \in (0,1]$$

C.-S. Deng (Wuhan University) () Explicit Convergence Rates for Subgeometri

()

< □ > < ---->

э

Theorem

(1) We always have

$$\mathbb{E}S_t^{-\beta} \ge \frac{1}{\mathrm{e}\beta\Gamma(\beta)} \left[\phi^{-1}\left(\frac{1}{t}\right)\right]^{\beta} \quad \text{for all } t > 0.$$

(2) If

 $\liminf_{u\to\infty} \frac{\phi(\lambda u)}{\phi(u)} > 1 \quad \text{for some (hence, all) } \lambda > 1,$

then for some $C = C(\beta) > 0$

$$\mathbb{E}S_t^{-\beta} \le C\left[\phi^{-1}\left(\frac{1}{t}\right)\right]^{\beta} \quad \text{for all } t \in (0,1].$$

C.-S. Deng (Wuhan University) () Explicit Convergence Rates for Subgeometri

A B < A B </p>

< 口 > < 同 >

э

Theorem

(3) If

$$\liminf_{u\to\infty} \frac{\phi(u)}{\log u} > 0 \quad \text{and} \quad \liminf_{u\downarrow 0} \frac{\phi(\lambda u)}{\phi(u)} > 1 \quad \text{for some (hence, all) } \lambda > 1, \quad (\clubsuit)$$

then for some $C=C(\beta)>0$

$$\mathbb{E}S_t^{-\beta} \leq C\left[\phi^{-1}\left(\frac{1}{t}\right)\right]^\beta \quad \text{for all } t \gg 1.$$

•
$$\phi(u) = \log(1+u);$$

•
$$\phi(u) = u^{\alpha} \log^{\beta}(1+u)$$
 with $\alpha \in (0,1)$ and $\beta \in [0, 1-\alpha)$;

- $\phi(u) = u^{\alpha} \log^{-\beta}(1+u)$ with $0 < \beta < \alpha < 1$;
- $\phi(u) = u(1+u)^{-\alpha}$ with $\alpha \in (0,1)$.

Theorem

(3) If

$$\liminf_{u\to\infty} \frac{\phi(u)}{\log u} > 0 \quad \text{and} \quad \liminf_{u\downarrow 0} \frac{\phi(\lambda u)}{\phi(u)} > 1 \quad \text{for some (hence, all) } \lambda > 1, \quad (\clubsuit)$$

then for some $C=C(\beta)>0$

$$\mathbb{E}S_t^{-\beta} \leq C\left[\phi^{-1}\left(\frac{1}{t}\right)\right]^\beta \quad \text{for all } t \gg 1.$$

Typical examples for Bernstein function ϕ satisfying (\blacklozenge) are

•
$$\phi(u) = \log(1+u);$$

• $\phi(u) = u^{\alpha} \log^{\beta}(1+u)$ with $\alpha \in (0,1)$ and $\beta \in [0, 1-\alpha)$;

- $\phi(u) = u^{\alpha} \log^{-\beta}(1+u)$ with $0 < \beta < \alpha < 1$;
- $\phi(u) = u(1+u)^{-\alpha}$ with $\alpha \in (0,1)$.

Theorem

(3) If

$$\liminf_{u\to\infty} \frac{\phi(u)}{\log u} > 0 \quad \text{and} \quad \liminf_{u\downarrow 0} \frac{\phi(\lambda u)}{\phi(u)} > 1 \quad \text{for some (hence, all) } \lambda > 1, \quad (\clubsuit)$$

then for some $C=C(\beta)>0$

$$\mathbb{E}S_t^{-\beta} \leq C\left[\phi^{-1}\left(\frac{1}{t}\right)\right]^\beta \quad \text{for all } t \gg 1.$$

Theorem

(3) If

$$\liminf_{u\to\infty} \frac{\phi(u)}{\log u} > 0 \quad \text{and} \quad \liminf_{u\downarrow 0} \frac{\phi(\lambda u)}{\phi(u)} > 1 \quad \text{for some (hence, all) } \lambda > 1, \quad (\clubsuit)$$

then for some $C=C(\beta)>0$

$$\mathbb{E}S_t^{-\beta} \leq C\left[\phi^{-1}\left(\frac{1}{t}\right)\right]^\beta \quad \text{for all } t \gg 1.$$

Theorem

(3) If

$$\liminf_{u\to\infty} \frac{\phi(u)}{\log u} > 0 \quad \text{and} \quad \liminf_{u\downarrow 0} \frac{\phi(\lambda u)}{\phi(u)} > 1 \quad \text{for some (hence, all) } \lambda > 1, \quad (\clubsuit)$$

then for some $C=C(\beta)>0$

$$\mathbb{E}S_t^{-\beta} \leq C\left[\phi^{-1}\left(\frac{1}{t}\right)\right]^\beta \quad \text{for all } t \gg 1.$$

•
$$\phi(u) = \log(1+u);$$

• $\phi(u) = u^{\alpha} \log^{\beta}(1+u)$ with $\alpha \in (0,1)$ and $\beta \in [0, 1-\alpha);$
• $\phi(u) = u^{\alpha} \log^{-\beta}(1+u)$ with $0 < \beta < \alpha < 1;$
• $\phi(u) = u(1+u)^{-\alpha}$ with $\alpha \in (0,1).$

Theorem

(1) If $\nu(dy) \ge cy^{-1-\alpha} dy$ for c > 0 and $\alpha \in (0, 1)$, then for $C = C(\gamma, c, \alpha) > 0$

$$\mathbb{E}\log^{-\gamma}(1+S_t) \le C\log^{-\gamma}\left(1+t^{1/\alpha}\right) \quad \text{for all } t > 0.$$

(2) If $\nu(dy) = cy^{-1-\alpha} dy$ for c > 0 and $\alpha \in (0, 1)$, then for $C = C(\gamma, c, \alpha) > 0$

 $\mathbb{E}\log^{-\gamma}(1+S_t) \ge C\log^{-\gamma}\left(1+t^{1/\alpha}\right) \quad \text{for all } t > 0.$

Theorem

(1) If $\nu(dy) \ge cy^{-1-\alpha} dy$ for c > 0 and $\alpha \in (0, 1)$, then for $C = C(\gamma, c, \alpha) > 0$

$$\mathbb{E}\log^{-\gamma}(1+S_t) \le C\log^{-\gamma}\left(1+t^{1/\alpha}\right) \quad \text{for all } t > 0.$$

(2) If
$$\nu(dy) = cy^{-1-\alpha} dy$$
 for $c > 0$ and $\alpha \in (0, 1)$, then for
 $C = C(\gamma, c, \alpha) > 0$
 $\mathbb{E} \log^{-\gamma}(1 + S_t) \ge C \log^{-\gamma} (1 + t^{1/\alpha})$ for all $t > 0$.

• ϕ is a Bernstein function of the form

$$\phi(u) = \int_{(0,\infty)} (1 - e^{-uy}) \nu(dy), \quad u > 0$$

such that $\phi(1) = 1$.

Set

$$c(\phi, m) = \frac{1}{m!} \int_{(0,\infty)} y^m \mathrm{e}^{-y} \,\nu(\mathrm{d}y), \quad m \in \mathbb{N}.$$

Since

$$\sum_{m=1}^{\infty} c(\phi, m) = \int_{(0,\infty)} \left(1 - e^{-y} \right) \, \nu(\mathrm{d}y) = \phi(1) = 1,$$

we know that $\{c(\phi, m) : m \in \mathbb{N}\}$ is a probab. measure on \mathbb{N} .

• Discrete time subordinator

$$T_n := \sum_{k=1}^n R_k,$$

20 / 25

where R_k are i.i.d. with $\mathbb{P}(R_k = m) = c(\phi, m)$

• ϕ is a Bernstein function of the form

$$\phi(u) = \int_{(0,\infty)} \left(1 - e^{-uy}\right) \nu(\mathrm{d}y), \quad u > 0$$

such that $\phi(1) = 1$.

Set

$$c(\phi,m) = \frac{1}{m!} \int_{(0,\infty)} y^m \mathrm{e}^{-y} \,\nu(\mathrm{d} y), \quad m \in \mathbb{N}.$$

Since

$$\sum_{m=1}^{\infty} c(\phi, m) = \int_{(0,\infty)} \left(1 - e^{-y} \right) \, \nu(\mathrm{d}y) = \phi(1) = 1,$$

we know that $\{c(\phi,m):m\in\mathbb{N}\}$ is a probab. measure on \mathbb{N} .

• Discrete time subordinator

$$T_n := \sum_{k=1}^n R_k,$$

where R_k are i.i.d. with $\mathbb{P}(R_k = m) = c(\phi, m)$

• ϕ is a Bernstein function of the form

$$\phi(u) = \int_{(0,\infty)} \left(1 - e^{-uy}\right) \nu(\mathrm{d}y), \quad u > 0$$

such that $\phi(1) = 1$.

Set

$$c(\phi,m) = \frac{1}{m!} \int_{(0,\infty)} y^m \mathrm{e}^{-y} \,\nu(\mathrm{d} y), \quad m \in \mathbb{N}.$$

Since

$$\sum_{m=1}^{\infty} c(\phi, m) = \int_{(0,\infty)} \left(1 - e^{-y} \right) \, \nu(\mathrm{d}y) = \phi(1) = 1,$$

we know that $\{c(\phi,m):m\in\mathbb{N}\}$ is a probab. measure on \mathbb{N} .

• Discrete time subordinator

$$T_n := \sum_{k=1}^n R_k,$$

where R_k are i.i.d. with $\mathbb{P}(R_k = m) = c(\phi, m)$

• ϕ is a Bernstein function of the form

$$\phi(u) = \int_{(0,\infty)} \left(1 - e^{-uy}\right) \nu(\mathrm{d}y), \quad u > 0$$

such that $\phi(1) = 1$.

Set

$$c(\phi,m) = \frac{1}{m!} \int_{(0,\infty)} y^m \mathrm{e}^{-y} \, \nu(\mathrm{d} y), \quad m \in \mathbb{N}.$$

Since

$$\sum_{m=1}^{\infty} c(\phi, m) = \int_{(0,\infty)} \left(1 - e^{-y} \right) \, \nu(\mathrm{d}y) = \phi(1) = 1,$$

we know that $\{c(\phi,m):m\in\mathbb{N}\}$ is a probab. measure on $\mathbb{N}.$

• Discrete time subordinator

$$T_n := \sum_{k=1}^n R_k,$$

where R_k are i.i.d. with $\mathbb{P}(R_k = m) = c(\phi, m)$.

20 / 25

- X_n is a discrete time Markov chain with invariant measure π , $\|P^n(x,\cdot) - \pi\|_f \leq C(x)r(n), \quad x \in E, n \in \mathbb{N}.$
- $X_n \rightsquigarrow X_{T_n}$: transition kernel $P_{\phi}^n(x, \cdot)$; T_n is an independent discrete subordinator with Laplace exponent ϕ .

• Generator:
$$I - P \rightsquigarrow \phi(I - P)$$
.

• Aim: If the rate functions are

$$r(n) = e^{-\theta n^{\delta}}, \quad r(n) = n^{-\beta}, \quad r(n) = \log^{-\gamma}(2+n),$$

$$\left\|P_{\phi}^{n}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(n), \quad x \in E, \ n \in \mathbb{N}.$$

- X_n is a discrete time Markov chain with invariant measure π , $\|P^n(x,\cdot) - \pi\|_f \leq C(x)r(n), \quad x \in E, n \in \mathbb{N}.$
- $X_n \rightsquigarrow X_{T_n}$: transition kernel $P_{\phi}^n(x, \cdot)$; T_n is an independent discrete subordinator with Laplace exponent ϕ .

• Generator:
$$I - P \rightsquigarrow \phi(I - P)$$
.

• Aim: If the rate functions are

$$r(n) = e^{-\theta n^{\delta}}, \quad r(n) = n^{-\beta}, \quad r(n) = \log^{-\gamma}(2+n),$$

$$\left\|P_{\phi}^{n}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(n), \quad x \in E, \ n \in \mathbb{N}.$$

- X_n is a discrete time Markov chain with invariant measure π , $\|P^n(x,\cdot) - \pi\|_f \leq C(x)r(n), \quad x \in E, n \in \mathbb{N}.$
- $X_n \rightsquigarrow X_{T_n}$: transition kernel $P_{\phi}^n(x, \cdot)$; T_n is an independent discrete subordinator with Laplace exponent ϕ .
- Generator: $I P \rightsquigarrow \phi(I P)$.
- Aim: If the rate functions are

$$r(n) = e^{-\theta n^{\delta}}, \quad r(n) = n^{-\beta}, \quad r(n) = \log^{-\gamma}(2+n),$$

$$\left\|P_{\phi}^{n}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(n), \quad x \in E, \ n \in \mathbb{N}.$$

- X_n is a discrete time Markov chain with invariant measure π , $\|P^n(x,\cdot) - \pi\|_f \leq C(x)r(n), \quad x \in E, n \in \mathbb{N}.$
- $X_n \rightsquigarrow X_{T_n}$: transition kernel $P_{\phi}^n(x, \cdot)$; T_n is an independent discrete subordinator with Laplace exponent ϕ .

• Generator:
$$I - P \rightsquigarrow \phi(I - P)$$
.

• Aim: If the rate functions are

$$r(n) = e^{-\theta n^{\delta}}, \quad r(n) = n^{-\beta}, \quad r(n) = \log^{-\gamma}(2+n),$$

$$\left\|P_{\phi}^{n}(x,\cdot) - \pi\right\|_{f} \leq C(x)r_{\phi}(n), \quad x \in E, \ n \in \mathbb{N}.$$

Main result (in the special case $\phi(u) = u^{\alpha}$)

Theorem (D., arXiv:170605533)

Main results are collected in the following table:

original chain X_n	subordinate chain X_{T_n}
${\rm e}^{-n^{\delta}} (0<\delta\leq 1)$	${\rm e}^{-n^{\frac{\delta}{\alpha(1-\delta)+\delta}}}$
$n^{-eta}~~(eta>0)$	$n^{-eta/lpha}$
$\log^{-\gamma}(2+n) (\gamma>0)$	$\log^{-\gamma}(2+n)$

• As in the time-continuous case, we need to bound $\mathbb{E} e^{- heta T_n^\delta}, \quad \mathbb{E} T_n^{-eta}, \quad \mathbb{E} \log^{-\gamma}(1+T_n)$

as $n \to \infty$.

- To this aim, we need the technique from the theory of completely monotone functions.
- A function $g: (0, \infty) \to \mathbb{R}$ is called a completely monotone function if $g \in C^{\infty}$ and $(-1)^n g^{(n)} \ge 0$ for all $n = 0, 1, 2, \cdots$
- Bernstein theorem: g is a completely monotone function iff there exists a unique measure μ on [0,∞) s.t.

$$g(x) = \int_{[0,\infty)} e^{-xt} \mu(\mathrm{d}t).$$

23 / 25

• As in the time-continuous case, we need to bound

 $\mathbb{E}\,\mathrm{e}^{- heta T_n^\delta}, \quad \mathbb{E}\,T_n^{-eta}, \quad \mathbb{E}\log^{-\gamma}(1+T_n)$

as $n \to \infty$.

- To this aim, we need the technique from the theory of completely monotone functions.
- A function $g: (0, \infty) \to \mathbb{R}$ is called a completely monotone function if $g \in C^{\infty}$ and $(-1)^n g^{(n)} \ge 0$ for all $n = 0, 1, 2, \cdots$
- Bernstein theorem: g is a completely monotone function iff there exists a unique measure μ on [0, ∞) s.t.

$$g(x) = \int_{[0,\infty)} e^{-xt} \mu(\mathrm{d}t).$$

23 / 25

• As in the time-continuous case, we need to bound

 $\mathbb{E} \, \mathrm{e}^{- heta T_n^\delta}, \quad \mathbb{E} \, T_n^{-eta}, \quad \mathbb{E} \log^{-\gamma} (1+T_n)$

as $n \to \infty$.

- To this aim, we need the technique from the theory of completely monotone functions.
- A function $g: (0,\infty) \to \mathbb{R}$ is called a completely monotone function if $g \in C^{\infty}$ and $(-1)^n g^{(n)} \ge 0$ for all $n = 0, 1, 2, \cdots$
- Bernstein theorem: g is a completely monotone function iff there exists a unique measure μ on [0,∞) s.t.

$$g(x) = \int_{[0,\infty)} e^{-xt} \mu(\mathrm{d}t).$$

• As in the time-continuous case, we need to bound

 $\mathbb{E} \, \mathrm{e}^{- heta T_n^\delta}, \quad \mathbb{E} \, T_n^{-eta}, \quad \mathbb{E} \log^{-\gamma} (1+T_n)$

as $n \to \infty$.

- To this aim, we need the technique from the theory of completely monotone functions.
- A function $g: (0,\infty) \to \mathbb{R}$ is called a completely monotone function if $g \in C^{\infty}$ and $(-1)^n g^{(n)} \ge 0$ for all $n = 0, 1, 2, \cdots$
- Bernstein theorem: g is a completely monotone function iff there exists a unique measure μ on $[0, \infty)$ s.t.

$$g(x) = \int_{[0,\infty)} e^{-xt} \mu(\mathrm{d}t).$$

23 / 25

Lemma (D., arXiv:170605533)

Let T_n be a discrete time subordinator with Bernstein function ϕ , and S_t be a continuous time subordinator with the same Bernstein function ϕ . If g is a completely monotone function, then

 $\mathbb{E}g(T_n) \le \mathbb{E}g(S_n).$

Since the functions

$$x \mapsto e^{-x^{\delta}}, \quad x \mapsto x^{-\beta}, \quad x \mapsto \log^{-\gamma}(1+x)$$

are completely monotone functions, this allows us to bound

 $\mathbb{E}\,\mathrm{e}^{-T_n^\delta}, \quad \mathbb{E}\,T_n^{-eta}, \quad \mathbb{E}\log^{-\gamma}(1+T_n)$

by the corresponding estimates for continuous time subordinator $S_t.$

Lemma (D., arXiv:170605533)

Let T_n be a discrete time subordinator with Bernstein function ϕ , and S_t be a continuous time subordinator with the same Bernstein function ϕ . If g is a completely monotone function, then

 $\mathbb{E}g(T_n) \le \mathbb{E}g(S_n).$

Since the functions

$$x \mapsto e^{-x^{\delta}}, \quad x \mapsto x^{-\beta}, \quad x \mapsto \log^{-\gamma}(1+x)$$

are completely monotone functions, this allows us to bound

 $\mathbb{E} \, \mathrm{e}^{-T_n^\delta}, \quad \mathbb{E} \, T_n^{-eta}, \quad \mathbb{E} \log^{-\gamma}(1+T_n)$

by the corresponding estimates for continuous time subordinator $S_t.$

Lemma (D., arXiv:170605533)

Let T_n be a discrete time subordinator with Bernstein function ϕ , and S_t be a continuous time subordinator with the same Bernstein function ϕ . If g is a completely monotone function, then

 $\mathbb{E}g(T_n) \le \mathbb{E}g(S_n).$

Since the functions

$$x \mapsto e^{-x^{\delta}}, \quad x \mapsto x^{-\beta}, \quad x \mapsto \log^{-\gamma}(1+x)$$

are completely monotone functions, this allows us to bound

 $\mathbb{E} e^{-T_n^\delta}, \quad \mathbb{E} T_n^{-eta}, \quad \mathbb{E} \log^{-\gamma}(1+T_n)$

by the corresponding estimates for continuous time subordinator S_t .

Thanks for Your Attention!

C.-S. Deng (Wuhan University) () Explicit Convergence Rates for Subgeometri Wuhan July 17, 2017 25 / 25