On a time-dependent Eggenberger-Pólya urn model

May-Ru Chen
National Sun Yat-sen University

Outline

(1) Review
(2) Multiple balls drawn
(3) Time-Dependent

Pólya-Eggenberger Urn (1923)

- Suppose an urn initially contains w white and r red balls.
- One ball is drawn at random and then replaced together with c balls of the same color. Repeat the procedure ad infinitum.
- Denote the added balls situation by the replacement matrix

$$
M=\underset{\substack{\text { the drawn ball is red }}}{\text { the drawn ball is white }}\left(\begin{array}{cc}
c & 0 \\
0 & c
\end{array}\right)
$$

Pólya-Eggenberger Urn (1923)

- Suppose an urn initially contains w white and r red balls.
- One ball is drawn at random and then replaced together with c balls of the same color. Repeat the procedure ad infinitum.
- Denote the added balls situation by the replacement matrix

$$
M=\underset{\substack{ \\
\text { the drawn ball is red }}}{\substack{\text { white } \\
\text { thed } \\
0}}\left(\begin{array}{cc}
C & 0 \\
0 & C
\end{array}\right) .
$$

- After the nth action, let W_{n} be the number of white balls and T_{n} be the number of total balls. Also let

$$
X_{n}=W_{n} / T_{n} \text { and } \mathcal{F}_{n}=\sigma\left\{W_{1}, \ldots, W_{n}\right\}
$$

- After the nth action, let W_{n} be the number of white balls and T_{n} be the number of total balls. Also let

$$
X_{n}=W_{n} / T_{n} \text { and } \mathcal{F}_{n}=\sigma\left\{W_{1}, \ldots, W_{n}\right\}
$$

- Then $T_{n+1}=T_{n}+c$ and $W_{n+1} \stackrel{(d)}{=} W_{n}+c \xi_{n+1}$, where

$$
\xi_{n+1} \mid w_{n} \sim^{d} \operatorname{Ber}\left(X_{n}\right)
$$

- After the nth action, let W_{n} be the number of white balls and T_{n} be the number of total balls. Also let

$$
X_{n}=W_{n} / T_{n} \text { and } \mathcal{F}_{n}=\sigma\left\{W_{1}, \ldots, W_{n}\right\}
$$

- Then $T_{n+1}=T_{n}+c$ and $W_{n+1} \stackrel{(d)}{=} W_{n}+c \xi_{n+1}$, where

$$
\xi_{n+1} \mid w_{n} \sim^{d} \operatorname{Ber}\left(X_{n}\right)
$$

- Thus

$$
\begin{aligned}
X_{n+1} & \stackrel{(d)}{=} \frac{W_{n}+c \xi_{n+1}}{T_{n+1}} \\
& =\frac{T_{n}}{T_{n+1}} X_{n}+\frac{c \xi_{n+1}}{T_{n+1}} \\
& =X_{n}+\frac{c}{T_{n+1}}\left(\xi_{n+1}-X_{n}\right)
\end{aligned}
$$

- Note that $E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\xi_{n+1} \mid W_{n}\right]=X_{n}$ a.s.
- Note that $E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\xi_{n+1} \mid W_{n}\right]=X_{n}$ a.s.
- Then

$$
E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}+\frac{c}{T_{n+1}}\left(E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]-X_{n}\right)=X_{n}
$$

- Note that $E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\xi_{n+1} \mid W_{n}\right]=X_{n}$ a.s.
- Then

$$
E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}+\frac{c}{T_{n+1}}\left(E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]-X_{n}\right)=X_{n}
$$

- Hence $\left\{X_{n}\right\}$ is a bounded martingale.
- Note that $E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\xi_{n+1} \mid W_{n}\right]=X_{n}$ a.s.
- Then

$$
E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}+\frac{c}{T_{n+1}}\left(E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]-X_{n}\right)=X_{n}
$$

- Hence $\left\{X_{n}\right\}$ is a bounded martingale.
- By martingale convergence theorem, $\left\{X_{n}\right\}$ converges almost surely. Furthermore, the distribution of $\lim _{n \rightarrow \infty} X_{n}$ follows a beta distribution with parameters b / c and r / c.

Pemantle's urn (1989)

- Suppose an urn initially contains w white and r red balls.
- At time n, one ball is drawn at random and then replaced together with c_{n} balls of the same color, where c_{n} is a positive integer. Repeat the procedure ad infinitum.
- Then after the nth drawn, the replacement matrix

$$
M_{n}=\left(\begin{array}{cc}
c_{n} & 0 \\
0 & c_{n}
\end{array}\right)
$$

- After the nth action, let W_{n}, T_{n} and X_{n} defined as before.
- After the nth action, let W_{n}, T_{n} and X_{n} defined as before.
- Then $T_{n+1}=T_{n}+c_{n+1}$ and $W_{n+1} \stackrel{(d)}{=} W_{n}+c_{n+1} \xi_{n+1}$, where $\xi_{n+1} \mid w_{n} \sim^{d} \operatorname{Ber}\left(X_{n}\right)$.
- After the nth action, let W_{n}, T_{n} and X_{n} defined as before.
- Then $T_{n+1}=T_{n}+c_{n+1}$ and $W_{n+1} \stackrel{(d)}{=} W_{n}+c_{n+1} \xi_{n+1}$, where $\xi_{n+1} \mid W_{n} \sim^{d} \operatorname{Ber}\left(X_{n}\right)$.
- Thus

$$
\begin{aligned}
X_{n+1} & \stackrel{(d)}{=} \frac{T_{n}}{T_{n+1}} X_{n}+\frac{c_{n+1} \xi_{n+1}}{T_{n+1}} \\
& =X_{n}+\frac{c_{n+1}}{T_{n+1}}\left(\xi_{n+1}-X_{n}\right)
\end{aligned}
$$

and so $E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$.

- After the nth action, let W_{n}, T_{n} and X_{n} defined as before.
- Then $T_{n+1}=T_{n}+c_{n+1}$ and $W_{n+1} \stackrel{(d)}{=} W_{n}+c_{n+1} \xi_{n+1}$, where $\xi_{n+1} \mid W_{n} \sim^{d} \operatorname{Ber}\left(X_{n}\right)$.
- Thus

$$
\begin{aligned}
X_{n+1} & \stackrel{(d)}{=} \frac{T_{n}}{T_{n+1}} X_{n}+\frac{c_{n+1} \xi_{n+1}}{T_{n+1}} \\
& =X_{n}+\frac{c_{n+1}}{T_{n+1}}\left(\xi_{n+1}-X_{n}\right)
\end{aligned}
$$

and so $E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$.

- Hence $\left\{X_{n}\right\}$ is a bounded martingale and so X_{n} converges almost surely to a random variable X.

Pemantle (1989) showed that
(i) the distribution of X has no atoms on $(0,1)$;

Pemantle (1989) showed that
(i) the distribution of X has no atoms on $(0,1)$;
(ii) $\sum_{n=1}^{\infty}\left(\frac{c_{n}}{T_{n-1}}\right)^{2}=\infty$ if and only if $X \sim^{d} \operatorname{Bernoulli}\left(\frac{w}{w+r}\right)$.

Pemantle (1989) showed that
(i) the distribution of X has no atoms on $(0,1)$;
(ii) $\sum_{n=1}^{\infty}\left(\frac{c_{n}}{T_{n-1}}\right)^{2}=\infty$ if and only if $X \sim^{d} \operatorname{Bernoulli}\left(\frac{w}{w+r}\right)$.

If $\sum_{n=1}^{\infty}\left(\frac{c_{n}}{T_{n-1}}\right)^{2}<\infty$, what is the distribution of X ?
$\sum_{n=1}^{\infty}\left(\frac{c_{n}}{T_{n-1}}\right)^{2}<\infty$

Figure 1. $c_{n}=n$
Figure 2. $c_{n}=n^{2}$
$\sum_{n=1}^{\infty}\left(\frac{c_{n}}{T_{n-1}}\right)^{2}<\infty$
$\mathrm{w}=2, \mathrm{r}=3, \mathrm{c}(\mathrm{n})=\ln (\mathrm{n})$, simul ate 1000 , time $=100000$

Figure 3. $c_{n}=\ln (n)$
$\mathrm{w}=2, \mathrm{r}=3, \mathrm{c}(\mathrm{n})=\ln (\ln (\mathrm{n}))$, simulate 1000 , time $=10000$

Figure 4. $c_{n}=\ln (\ln (n))$

Example

For Pemantle's urn, if $w=r=1$ and $c_{n}=n$, then the probability that all drawn are of the same color is $\frac{2}{3} \times \frac{6}{7} \times \cdots>0$. Thus the probability of $X \in\{0,1\}$ is positive.

Example

For Pemantle's urn, if $w=r=1$ and $c_{n}=n$, then the probability that all drawn are of the same color is $\frac{2}{3} \times \frac{6}{7} \times \cdots>0$. Thus the probability of $X \in\{0,1\}$ is positive.

In 1989, Pemantle showed that if $\left\{c_{n}\right\}_{n \geq 1}$ is a bounded sequence, then $\mathbb{P}(X=0)=\mathbb{P}(X=1)=0$, that is, X has no atoms on $[0,1]$.

The urn of Johnson, Kotz, and Mahmoud (2004)

- Johnson et al. (2004) proposed a general Pólya urn models with multiple drawn.
- In their model, the drawn, say $m \geq 1$, can be with or without replacement and the replacement matrix is

- They gave an recursion formula for the distribution of white balls.
- They also gave the expectation and the variance of the number of white balls.

Chen-Wei Urn (2005)

- Suppose an urn initially contains w white and r red balls.
- Chen-Wei considered that at each step, $m \geq 1$ balls are randomly drawn and then note their colors, say k white and $m-k$ red balls. Replace the drawn balls together with $c k$ white and $c(m-k)$ red balls. Repeat the procedure ad infinitum.

- After the nth action, let W_{n} be the number of white balls and T_{n} be the number of total balls in the urn. Also let

$$
X_{n}=W_{n} / T_{n}
$$

- After the nth action, let W_{n} be the number of white balls and T_{n} be the number of total balls in the urn. Also let

$$
X_{n}=W_{n} / T_{n}
$$

- Then $T_{n+1}=T_{n}+c m$ and $W_{n+1} \stackrel{(d)}{=} W_{n}+c \xi_{n+1}$, where $\xi_{n+1} \mid W_{n} \sim^{d} \operatorname{Hypgeo}\left(W_{n}, T_{n}-W_{n}, m\right)$, that is,

$$
\mathbb{P}\left\{\xi_{n+1}=k \mid W_{n}\right\}=\frac{\binom{W_{n}}{k}\binom{T_{n}-W_{n}}{m-k}}{\binom{T_{n}}{m}}=\frac{\binom{T_{n} X_{n}}{k}\binom{T_{n}\left(1-X_{n}\right)}{m-k}}{\binom{T_{n}}{m}},
$$

where $0 \leq k \leq m$.

- Then

$$
\begin{aligned}
X_{n+1} & =\frac{T_{n}}{T_{n+1}} X_{n}+\frac{c}{T_{n+1}} \xi_{n+1} \\
& =X_{n}+\frac{c}{T_{n+1}}\left(\xi_{n+1}-m X_{n}\right)
\end{aligned}
$$

and so $E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$.

- Note that $E\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=\sum_{k=0}^{m} \frac{k\binom{T_{k} \chi_{n}}{k}\left(T_{m}^{T_{n}^{n}\left(1-X_{n}\right)}\right.}{\binom{m}{m}}=m X_{n}$.
- Then

$$
\begin{aligned}
X_{n+1} & =\frac{T_{n}}{T_{n+1}} X_{n}+\frac{c}{T_{n+1}} \xi_{n+1} \\
& =X_{n}+\frac{c}{T_{n+1}}\left(\xi_{n+1}-m X_{n}\right)
\end{aligned}
$$

and so $E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$.

- Hence $\left\{X_{n}\right\}$ is a bounded martingale.

- Then

$$
\begin{aligned}
X_{n+1} & =\frac{T_{n}}{T_{n+1}} X_{n}+\frac{c}{T_{n+1}} \xi_{n+1} \\
& =X_{n}+\frac{c}{T_{n+1}}\left(\xi_{n+1}-m X_{n}\right)
\end{aligned}
$$

and so $E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$.

- Hence $\left\{X_{n}\right\}$ is a bounded martingale.
- Furthermore, as $n \rightarrow \infty, X_{n}$ converges almost surely to an absolutely continuous random variable.

The urn of Aoudia and Perron (2012)

- Aoudia and Perron (2012) proposed a new model which at time n, M_{n} balls are sampled and a multiple of C_{n} of the drawn balls are added, where M_{n} and C_{n} are random variables.
- They showed that $\left\{X_{n}\right\}$ is a bounded martingale and converges almost surely.
- They also showed that $X \sim^{d} \operatorname{Bernoulli}\left(\frac{w}{w+r}\right)$ if and only if $\sum_{n=1}^{\infty} E\left[\frac{C_{n+1}^{2} M_{n+1} X_{n}\left(1-X_{n}\right)\left(T_{n}-M_{n+1}\right)}{T_{n+1}^{2}\left(T_{n}-1\right)}\right]=\frac{w r}{(w+r)^{2}}$.
- Assume an urn initially contains w white and r red balls.
- After the nth adding balls, suppose $m \geq 1$ balls are randomly drawn and then note their colors, say k white and $m-k$ red balls.
- Replace the drawn balls together with $c_{n+1} k$ white and $c_{n+1}(m-k)$ red balls. Repeat the procedure ad infinitum.
- If $m=1$, then the above model is Pemantle's urn.
- If $c_{1}=c_{2}=\cdots=c$, then the above model is Chen-Wei urn.

The replacement matrix at time n is
$M_{n}=\left(\begin{array}{cc}m c_{n} & 0 \\ (m-1) c_{n} & c_{n} \\ \vdots & \vdots \\ c_{n} & (m-1) c_{n} \\ 0 & m c_{n}\end{array}\right)$.

- After the nth action, let W_{n}, T_{n} and X_{n} defined as before.
- Then $\left\{X_{n}\right\}$ is a bounded martingale and so X_{n} converges almost surely to a random variable, say X.
- Let $\rho_{n}=c_{n} / T_{n-1}, n \in \mathbb{N}$.
- After the nth action, let W_{n}, T_{n} and X_{n} defined as before.
- Then $\left\{X_{n}\right\}$ is a bounded martingale and so X_{n} converges almost surely to a random variable, say X.
- Let $\rho_{n}=c_{n} / T_{n-1}, n \in \mathbb{N}$.

Theorem 1.

(i) If $\sum_{j=1}^{\infty} \rho_{j+1}^{2}=\infty$, then X follows a Bernoulli distribution with parameter $w /(w+r)$.
(ii) If $\left\{c_{n}\right\}_{n \geq 1}$ is a bounded sequence by c, then X is absolutely continuous.

Proposition 1. (Chen and Wei(2005))

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space and let $\left(\Omega_{n}\right)_{n \geq 1}$ be a sequence of increasing events such that $\mathbb{P}\left\{\cup_{n=1}^{\infty} \Omega_{n}\right\}=1$. If there exist nonnegative Borel measurable functions $\left(f_{n}\right)_{n \geq 1}$ such that $\mathbb{P}\left(\Omega_{n} \cap X^{-1}(B)\right)=\int_{B} f_{n}(x) d x$ for all Borel sets B, then $f=\lim _{n \rightarrow \infty} f_{n}$ exists almost everywhere, and f is the density of X.

Proposition 2.
For $n \geq 1$, let

$$
\Omega_{n}=\left\{\omega: c m \leq W_{n}(\omega) \leq T_{n}-c m\right\} .
$$

Then $\Omega_{n+1} \supset \Omega_{n}$ and $P\left(\cup_{n=1}^{\infty} \Omega_{n}\right)=1$.

The proof of Theorem 1.(ii) with $m=1$

- By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \geq c$.

The proof of Theorem 1.(ii) with $m=1$

- By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \geq c$.
- Recall $\rho_{n}=c_{n} / T_{n-1}, n \in \mathbb{N}$. Since $\left\{c_{n}\right\}_{n \geq 1}$ is bounded by $c, \sum_{j=1}^{\infty} \rho_{j}^{2}<\infty$.

The proof of Theorem 1.(ii) with $m=1$

- By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \geq c$.
- Recall $\rho_{n}=c_{n} / T_{n-1}, n \in \mathbb{N}$. Since $\left\{c_{n}\right\}_{n \geq 1}$ is bounded by $c, \sum_{j=1}^{\infty} \rho_{j}^{2}<\infty$.
- For any given $\epsilon>0$, choose

$$
\delta=\epsilon /\left(T_{\ell-1} \exp \left\{-\sum_{j=\ell}^{\infty} \rho_{j}^{2}\right\}\right)>0
$$

The proof of Theorem 1.(ii) with $m=1$

- By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \geq c$.
- Recall $\rho_{n}=c_{n} / T_{n-1}, n \in \mathbb{N}$. Since $\left\{c_{n}\right\}_{n \geq 1}$ is bounded by $c, \sum_{j=1}^{\infty} \rho_{j}^{2}<\infty$.
- For any given $\epsilon>0$, choose

$$
\delta=\epsilon /\left(T_{\ell-1} \exp \left\{-\sum_{j=\ell}^{\infty} \rho_{j}^{2}\right\}\right)>0
$$

- Let $x_{1}<x_{1}^{\prime} \leq x_{2}<x_{2}^{\prime} \leq \cdots<x_{s}<x_{s}^{\prime}$ and $\sum_{i=1}^{s}\left(x_{i}^{\prime}-x_{i}\right)<\delta$.

Then by Fatou's lemma,

$$
\begin{aligned}
\sum_{i=1}^{s} \operatorname{Pr}\left(\left\{x_{i}<X<x_{i}^{\prime}\right\} \mid \Omega_{\ell}\right) & =\sum_{i=1}^{s} E\left[1_{\left\{x_{i}<x<x_{i}^{\prime}\right\}} \mid \Omega_{\ell}\right] \\
& \leq \sum_{i=1}^{s} \liminf _{n \rightarrow \infty} E\left[1_{\left\{x_{i}<x_{n}<x_{i}^{\prime}\right\}} \mid \Omega_{\ell}\right] \\
& =\sum_{i=1}^{s} \liminf _{n \rightarrow \infty} P\left(x_{i}<x_{n}<x_{i}^{\prime} \mid \Omega_{\ell}\right) .
\end{aligned}
$$

Since $X_{n}=W_{n} / T_{n}$,

$$
\begin{aligned}
& \sum_{i=1}^{s} \liminf _{n \rightarrow \infty} P\left(x_{i}<X_{n}<x_{i}^{\prime} \mid \Omega_{\ell}\right) \\
& =\sum_{i=1}^{s} \liminf _{n \rightarrow \infty} P\left(T_{n} x_{i}<W_{n}<T_{n} x_{i}^{\prime} \mid \Omega_{\ell}\right) \\
& =\sum_{i=1}^{s} \liminf _{n \rightarrow \infty}\left[\sum_{T_{n} x_{i}<k<T_{n} x_{i}^{\prime}} \operatorname{Pr}\left(W_{n}=k \mid \Omega_{\ell}\right)\right] \\
& \leq\left[\sum_{i=1}^{s}\left(x_{i}^{\prime}-x_{i}\right)\right]\left[\liminf _{n \rightarrow \infty} T_{n}\left(\max _{k} \operatorname{Pr}\left(W_{n}=k \mid \Omega_{\ell}\right)\right)\right] \\
& \leq \delta \liminf _{n \rightarrow \infty} T_{n}\left(\max _{k} \operatorname{Pr}\left(W_{n}=k \mid \Omega_{\ell}\right)\right) .
\end{aligned}
$$

Since $\rho_{n}=c_{n} / T_{n-1}$,
$T_{n}=T_{n-1}+c_{n}=T_{n-1}\left(1+\rho_{n}\right)=\cdots=T_{\ell-1} \prod_{s=\ell}^{n}\left(1+\rho_{s}\right)$.

Since $\rho_{n}=c_{n} / T_{n-1}$,

$$
T_{n}=T_{n-1}+c_{n}=T_{n-1}\left(1+\rho_{n}\right)=\cdots=T_{\ell-1} \prod_{s=\ell}^{n}\left(1+\rho_{s}\right) .
$$

Thus

$$
\begin{aligned}
& \sum_{i=1}^{s} \operatorname{Pr}\left(\left\{x_{i}<X<x_{i}^{\prime}\right\} \mid \Omega_{\ell}\right) \\
& \leq \delta T_{\ell-1} \liminf _{n \rightarrow \infty}\left[\prod_{j=1}^{n}\left(1+\rho_{j}\right)\right]\left[\max _{k} \operatorname{Pr}\left(W_{n}=k \mid \Omega_{\ell}\right)\right] .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \max _{k} \operatorname{Pr}\left(W_{n}=k \mid \Omega_{\ell}\right) \\
& =\max _{k}\left\{\operatorname{Pr}\left(W_{n}=k \mid W_{n-1}=k\right) \operatorname{Pr}\left(W_{n-1}=k \mid \Omega_{\ell}\right)\right. \\
& \\
& \left.\quad+\operatorname{Pr}\left(W_{n}=k \mid W_{n-1}=k-c_{n}\right) \operatorname{Pr}\left(W_{n-1}=k-c_{n} \mid \Omega_{\ell}\right)\right\} \\
& \leq\left(1-\frac{k}{T_{n-1}}+\frac{k-c_{n}}{T_{n-1}}\right)\left(\max _{k} \operatorname{Pr}\left(W_{n-1}=k \mid \Omega_{\ell}\right)\right) \\
& =\left(1-\rho_{n}\right) \max _{k} \operatorname{Pr}\left(W_{n-1}=k \mid \Omega_{\ell}\right) \\
& \vdots \\
& \leq \prod_{j=\ell}^{n}\left(1-\rho_{j}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{i=1}^{s} \operatorname{Pr}\left(x_{i}<X<x_{i}^{\prime} \mid \Omega_{\ell}\right) \\
\leq & \delta T_{\ell-1} \liminf _{n \rightarrow \infty}\left[\prod_{j=\ell}^{n}\left(1+\rho_{j}\right)\right]\left[\prod_{j=\ell}^{n}\left(1-\rho_{j}\right)\right] \\
\leq & \delta T_{\ell-1} \exp \left\{-\sum_{j=\ell}^{\infty} \rho_{j}^{2}\right\}\left(\text { since } 1-x \leq e^{-x}\right) \\
< & \epsilon
\end{aligned}
$$

Hence by Theorem 31.7 of Billingsley (1995), the restriction of X to Ω_{ℓ} has a density.

References

圊 Billingsley，P．（1995）．Probability and Measure，Third Edition． New York：John Wiley and Sons．
囯 M．－R．Chen and C．－Z．Wei，A New Urn Model，J．of Appl．Prob．42， 964－976， 2005.
䡒 F．Eggenberger and G．Pólya，Über die Statistik verketteter Vorgänge．Z．Angewandte Math．Mech．1，279－289， 1923.
图 Johnson，N，Kotz，S．and H．Mahmoud（2004）．Pólya－type urn models with multiple drawings，Journal of the Iranian Statistical Society，3，165－173．
R．Pemantle，A time－dependent version of Pólya＇s Urn，J．Theor． Prob．3，627－637， 1990.

Thanks for Your Attention

$$
\max _{k} \operatorname{Pr}\left(W_{n}=k \mid \Omega_{\ell}\right)
$$

$$
=\max _{k}\left\{\sum _ { i = 0 } ^ { m } \operatorname { P r } (W _ { n } = k | W _ { n - 1 } = k - i c _ { n }) \operatorname { P r } \left(W_{n-1}=k-i c_{n} \mid \Omega_{\ell}\right.\right.
$$

$$
\leq\left(\max _{k} \operatorname{Pr}\left(W_{n-1}=k \mid \Omega_{\ell}\right)\right) \max _{k}\left\{\sum_{i=0}^{m} \frac{\binom{k-i c_{n}}{i}\binom{T_{n-1}-k+i c_{n}}{m-i}}{\binom{T_{n-1}}{m}}\right\}
$$

$$
\leq \max _{k} \operatorname{Pr}\left(W_{n-1}=k \mid \Omega_{\ell}\right)\left(1-\rho_{n}+\frac{\rho_{n} c_{n}(m-1)}{T_{n-1}-1}\right)
$$

$$
\leq \prod_{j=\ell}^{n}\left(1-\rho_{j}+\frac{\rho_{j} c_{j}(m-1)}{T_{j-1}-1}\right)
$$

