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Pólya-Eggenberger Urn (1923)

Suppose an urn initially contains w white and r red balls.

One ball is drawn at random and then replaced together

with c balls of the same color. Repeat the procedure ad

infinitum.

Denote the added balls situation by the replacement

matrix white red

M =
the drawn ball is white

the drawn ball is red

(
c 0

0 c

)
.
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After the nth action, let Wn be the number of white balls

and Tn be the number of total balls. Also let

Xn = Wn/Tn and Fn = σ{W1, . . . ,Wn}.

Then Tn+1 = Tn + c and Wn+1
(d)
= Wn + cξn+1, where

ξn+1 |Wn∼d Ber(Xn).

Thus

Xn+1
(d)
=

Wn + cξn+1

Tn+1

=
Tn

Tn+1
Xn +

cξn+1

Tn+1

= Xn +
c

Tn+1
(ξn+1 − Xn).
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After the nth action, let Wn be the number of white balls
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Note that E [ξn+1 | Fn] = E [ξn+1 |Wn] = Xn a.s.

Then

E [Xn+1 | Fn] = Xn +
c

Tn+1
(E [ξn+1 | Fn]− Xn) = Xn

Hence {Xn} is a bounded martingale.

By martingale convergence theorem, {Xn} converges

almost surely. Furthermore, the distribution of limn→∞Xn

follows a beta distribution with parameters b/c and r/c .
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Pemantle’s urn (1989)

Suppose an urn initially contains w white and r red balls.

At time n, one ball is drawn at random and then replaced

together with cn balls of the same color, where cn is a

positive integer. Repeat the procedure ad infinitum.

Then after the nth drawn, the replacement matrix

Mn =

(
cn 0

0 cn

)
.
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After the nth action, let Wn, Tn and Xn defined as before.

Then Tn+1 = Tn + cn+1 and Wn+1
(d)
= Wn + cn+1ξn+1,

where ξn+1 |Wn∼d Ber(Xn).

Thus

Xn+1
(d)
=

Tn

Tn+1
Xn +

cn+1ξn+1

Tn+1

= Xn +
cn+1

Tn+1
(ξn+1 − Xn).

and so E [Xn+1 | Fn] = Xn.

Hence {Xn} is a bounded martingale and so Xn converges

almost surely to a random variable X .
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Pemantle (1989) showed that

(i) the distribution of X has no atoms on (0, 1);

(ii)
∑∞

n=1

(
cn

Tn−1

)2
=∞ if and only if X ∼d Bernoulli( w

w+r ).

If
∑∞

n=1

(
cn

Tn−1

)2
<∞, what is the distribution of X ?
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∑∞
n=1

(
cn

Tn−1

)2

<∞

Figure 1. cn = n Figure 2. cn = n2
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∑∞
n=1

(
cn

Tn−1

)2

<∞

Figure 3. cn = ln(n) Figure 4. cn = ln(ln(n))
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Example

For Pemantle’s urn, if w = r = 1 and cn = n, then the

probability that all drawn are of the same color is

2
3 ×

6
7 ×· · · > 0. Thus the probability of X ∈ {0, 1} is positive.

In 1989, Pemantle showed that if {cn}n≥1 is a bounded

sequence, then P(X = 0) = P(X = 1) = 0, that is , X has no

atoms on [0, 1].
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The urn of Johnson, Kotz, and Mahmoud (2004)

Johnson et al. (2004) proposed a general Pólya urn

models with multiple drawn.

In their model, the drawn, say m ≥ 1, can be with or

without replacement and the replacement matrix is

#white balls drawn

M =

m

m-1
...

1

0



−(m − 1) m

−(m − 2) m − 1
...

...

0 1

1 0


.
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They gave an recursion formula for the distribution of

white balls.

They also gave the expectation and the variance of the

number of white balls.
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Chen-Wei Urn (2005)

Suppose an urn initially contains w white and r red balls.

Chen-Wei considered that at each step, m ≥ 1 balls are

randomly drawn and then note their colors, say k white

and m − k red balls. Replace the drawn balls together

with ck white and c(m − k) red balls. Repeat the

procedure ad infinitum.
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The replacement matrix is M =



cm 0

c(m − 1) c
...

...

c c(m − 1)

0 cm


.
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After the nth action, let Wn be the number of white balls

and Tn be the number of total balls in the urn. Also let

Xn = Wn/Tn.

Then Tn+1 = Tn + cm and Wn+1
(d)
= Wn + cξn+1, where

ξn+1 |Wn∼d Hypgeo(Wn,Tn −Wn,m), that is,

P{ξn+1 = k |Wn} =

(
Wn

k

)(
Tn−Wn

m−k
)(

Tn

m

) =

(
TnXn

k

)(
Tn(1−Xn)

m−k
)(

Tn

m

) ,

where 0 ≤ k ≤ m.
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Note that E [ξn+1 | Fn] =
∑m

k=0

k(TnXnk )(Tn(1−Xn)m−k )
(Tnm )

= mXn.

Then

Xn+1 =
Tn

Tn+1
Xn +

c
Tn+1

ξn+1

= Xn +
c

Tn+1
(ξn+1 −mXn)

and so E [Xn+1 | Fn] = Xn.

Hence {Xn} is a bounded martingale.

Furthermore, as n →∞, Xn converges almost surely to

an absolutely continuous random variable.
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The urn of Aoudia and Perron (2012)

Aoudia and Perron (2012) proposed a new model which

at time n, Mn balls are sampled and a multiple of Cn of

the drawn balls are added, where Mn and Cn are random

variables.

They showed that {Xn} is a bounded martingale and

converges almost surely.

They also showed that X ∼d Bernoulli( w
w+r ) if and only if∑∞

n=1 E
[
C 2
n+1Mn+1Xn(1−Xn)(Tn−Mn+1)

T 2
n+1(Tn−1)

]
= wr

(w+r)2 .
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Assume an urn initially contains w white and r red balls.

After the nth adding balls, suppose m ≥ 1 balls are

randomly drawn and then note their colors, say k white

and m − k red balls.

Replace the drawn balls together with cn+1k white and

cn+1(m− k) red balls. Repeat the procedure ad infinitum.

If m = 1, then the above model is Pemantle’s urn.

If c1 = c2 = · · · = c , then the above model is Chen-Wei

urn.
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The replacement matrix at time n is

Mn =



mcn 0

(m − 1)cn cn
...

...

cn (m − 1)cn

0 mcn


.
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After the nth action, let Wn, Tn and Xn defined as before.

Then {Xn} is a bounded martingale and so Xn converges

almost surely to a random variable, say X .

Let ρn = cn/Tn−1, n ∈ N.

Theorem 1.

(i) If
∑∞

j=1 ρ
2
j+1 =∞, then X follows a Bernoulli distribution

with parameter w/(w + r ).

(ii) If {cn}n≥1 is a bounded sequence by c , then X is

absolutely continuous.
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Proposition 1. (Chen and Wei(2005))

Let (Ω,F ,P) be the probability space and let (Ωn)n≥1 be a

sequence of increasing events such that P{∪∞n=1Ωn} = 1.

If there exist nonnegative Borel measurable functions (fn)n≥1

such that P(Ωn ∩ X−1(B)) =
∫
B
fn(x)dx for all Borel sets B ,

then f = limn→∞ fn exists almost everywhere, and f is the

density of X .
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Proposition 2.

For n ≥ 1, let

Ωn = {ω : cm ≤Wn(ω) ≤ Tn − cm}.

Then Ωn+1 ⊃ Ωn and P(∪∞n=1 Ωn) = 1.
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The proof of Theorem 1.(ii) with m = 1

By Propositions 1 and 2, it is sufficient to show that the

restriction of X to Ω` has a density for all positive integer

` ≥ c .

Recall ρn = cn/Tn−1, n ∈ N. Since {cn}n≥1 is bounded

by c ,
∑∞

j=1 ρ
2
j <∞.

For any given ε > 0, choose

δ = ε/(T`−1 exp
{
−
∑∞

j=` ρ
2
j

}
) > 0.

Let x1 < x
′

1 ≤ x2 < x ′2 ≤ · · · < xs < x
′

s and∑s
i=1(x

′

i − xi ) < δ.
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Then by Fatou’s lemma,

s∑
i=1

Pr
(
{xi < X < x

′

i } | Ω`

)
=

s∑
i=1

E [1{xi<X<x
′
i }
| Ω`]

≤
s∑

i=1

lim inf
n→∞

E [1{xi<Xn<x
′
i }
| Ω`]

=

s∑
i=1

lim inf
n→∞

P(xi < Xn < x
′

i | Ω`).
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Since Xn = Wn/Tn,

s∑
i=1

lim inf
n→∞

P(xi < Xn < x
′

i | Ω`)

=

s∑
i=1

lim inf
n→∞

P(Tnxi <Wn < Tnx
′

i | Ω`)

=

s∑
i=1

lim inf
n→∞

 ∑
Tnxi<k<Tnx

′
i

Pr(Wn = k | Ω`)


≤

[
s∑

i=1

(x
′

i − xi )

][
lim inf
n→∞

Tn

(
max
k

Pr(Wn = k | Ω`)
)]

≤ δ lim inf
n→∞

Tn

(
max
k

Pr(Wn = k | Ω`)
)
.
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Since ρn = cn/Tn−1,

Tn = Tn−1 + cn = Tn−1(1 + ρn) = · · · = T`−1
∏n

s=`(1 + ρs).

Thus

s∑
i=1

Pr
(
{xi < X < x

′

i } | Ω`

)
≤ δT`−1 lim inf

n→∞

 n∏
j=1

(1 + ρj)

[max
k

Pr(Wn = k | Ω`)
]
.
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Observe that

max
k

Pr(Wn = k | Ω`)

= max
k
{Pr(Wn = k |Wn−1 = k) Pr(Wn−1 = k | Ω`)

+ Pr(Wn = k |Wn−1 = k − cn) Pr(Wn−1 = k − cn | Ω`)}

≤
(

1− k
Tn−1

+
k − cn
Tn−1

)(
max
k

Pr(Wn−1 = k | Ω`)
)

= (1− ρn) max
k

Pr(Wn−1 = k | Ω`)

...

≤
n∏

j=`

(1− ρj).
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Therefore,

s∑
i=1

Pr(xi < X < x
′

i | Ω`)

≤δT`−1 lim inf
n→∞

 n∏
j=`

(1 + ρj)

 n∏
j=`

(1− ρj)


≤δT`−1 exp

−
∞∑
j=`

ρ2j

 (since 1− x ≤ e−x)

<ε.

Hence by Theorem 31.7 of Billingsley (1995), the restriction of

X to Ω` has a density.
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F. Eggenberger and G. Pólya, Über die Statistik verketteter

Vorgänge. Z. Angewandte Math. Mech. 1, 279–289, 1923.

Johnson, N, Kotz, S. and H. Mahmoud (2004). Pólya-type
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max
k

Pr(Wn = k | Ω`)

= max
k
{

m∑
i=0

Pr(Wn = k |Wn−1 = k − icn) Pr(Wn−1 = k − icn | Ω`)}

≤
(

max
k

Pr(Wn−1 = k | Ω`)
)

max
k

{
m∑
i=0

(
k−icn

i

)(
Tn−1−k+icn

m−i
)(

Tn−1

m

) }

≤ max
k

Pr(Wn−1 = k | Ω`)

(
1− ρn +

ρncn(m − 1)

Tn−1 − 1

)
...

≤
n∏

j=`

(
1− ρj +

ρjcj(m − 1)

Tj−1 − 1

)
.
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