◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

On a time-dependent Eggenberger-Pólya urn model

May-Ru Chen National Sun Yat-sen University

Review
000000000

Time-Dependent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

2 Multiple balls drawn

Pólya-Eggenberger Urn (1923)

- Suppose an urn initially contains w white and r red balls.
- One ball is drawn at random and then replaced together with *c* balls of the same color. Repeat the procedure *ad infinitum*.
- Denote the added balls situation by the replacement matrix

$$M={}^{
m the \ drawn \ ball \ is \ white}$$

the drawn ball is red

$$\begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Pólya-Eggenberger Urn (1923)

- Suppose an urn initially contains w white and r red balls.
- One ball is drawn at random and then replaced together with *c* balls of the same color. Repeat the procedure *ad infinitum*.
- Denote the added balls situation by the replacement matrix

$$M = \frac{\text{the drawn ball is white}}{\text{the drawn ball is red}} \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 After the *n*th action, let W_n be the number of white balls and T_n be the number of total balls. Also let X_n = W_n/T_n and F_n = σ{W₁,..., W_n}.

After the *n*th action, let W_n be the number of white balls and T_n be the number of total balls. Also let X_n = W_n/T_n and F_n = σ{W₁,..., W_n}.
Then T_{n+1} = T_n + c and W_{n+1} ^(d) = W_n + cξ_{n+1}, where ξ_{n+1} |_{W_n}~^d Ber(X_n).

After the *n*th action, let W_n be the number of white balls and T_n be the number of total balls. Also let X_n = W_n/T_n and F_n = σ{W₁,..., W_n}.
Then T_{n+1} = T_n + c and W_{n+1} ^(d) = W_n + cξ_{n+1}, where ξ_{n+1} |_{W_n}~^d Ber(X_n).

Thus

$$X_{n+1} \stackrel{(d)}{=} \frac{W_n + c\xi_{n+1}}{T_{n+1}} \\ = \frac{T_n}{T_{n+1}} X_n + \frac{c\xi_{n+1}}{T_{n+1}} \\ = X_n + \frac{c}{T_{n+1}} (\xi_{n+1} - X_n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Time-Dependent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Note that $E[\xi_{n+1} | \mathcal{F}_n] = E[\xi_{n+1} | W_n] = X_n$ a.s.

Time-Dependent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Note that $E[\xi_{n+1} | \mathcal{F}_n] = E[\xi_{n+1} | W_n] = X_n$ a.s.

• Then

$$E[X_{n+1} \mid \mathcal{F}_n] = X_n + \frac{c}{T_{n+1}}(E[\xi_{n+1} \mid \mathcal{F}_n] - X_n) = X_n$$

Review
00000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• Note that $E[\xi_{n+1} | \mathcal{F}_n] = E[\xi_{n+1} | W_n] = X_n$ a.s.

• Then

$$E[X_{n+1} \mid \mathcal{F}_n] = X_n + \frac{c}{T_{n+1}}(E[\xi_{n+1} \mid \mathcal{F}_n] - X_n) = X_n$$

• Hence $\{X_n\}$ is a bounded martingale.

Review
00000000

• Note that $E[\xi_{n+1} | \mathcal{F}_n] = E[\xi_{n+1} | W_n] = X_n$ a.s.

• Then

$$E[X_{n+1} \mid \mathcal{F}_n] = X_n + \frac{c}{T_{n+1}}(E[\xi_{n+1} \mid \mathcal{F}_n] - X_n) = X_n$$

- Hence $\{X_n\}$ is a bounded martingale.
- By martingale convergence theorem, $\{X_n\}$ converges almost surely. Furthermore, the distribution of $\lim_{n\to\infty} X_n$ follows a beta distribution with parameters b/c and r/c.

Pemantle's urn (1989)

- Suppose an urn initially contains w white and r red balls.
- At time n, one ball is drawn at random and then replaced together with c_n balls of the same color, where c_n is a positive integer. Repeat the procedure ad infinitum.
- Then after the *n*th drawn, the replacement matrix $M_n = \begin{pmatrix} c_n & 0 \\ 0 & c_n \end{pmatrix}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

• After the *n*th action, let W_n , T_n and X_n defined as before.

Review
000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- After the *n*th action, let W_n , T_n and X_n defined as before.
- Then $T_{n+1} = T_n + c_{n+1}$ and $W_{n+1} \stackrel{(d)}{=} W_n + c_{n+1}\xi_{n+1}$, where $\xi_{n+1} \mid_{W_n} \sim^d \text{Ber}(X_n)$.

Review	
000000000	,

Time-Dependent

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- After the *n*th action, let W_n , T_n and X_n defined as before.
- Then $T_{n+1} = T_n + c_{n+1}$ and $W_{n+1} \stackrel{(d)}{=} W_n + c_{n+1}\xi_{n+1}$, where $\xi_{n+1} \mid_{W_n} \sim^d \text{Ber}(X_n)$.

Thus

$$X_{n+1} \stackrel{(d)}{=} \frac{T_n}{T_{n+1}} X_n + \frac{c_{n+1}\xi_{n+1}}{T_{n+1}}$$
$$= X_n + \frac{c_{n+1}}{T_{n+1}} (\xi_{n+1} - X_n).$$

and so $E[X_{n+1} | \mathcal{F}_n] = X_n$.

- After the *n*th action, let W_n , T_n and X_n defined as before.
- Then $T_{n+1} = T_n + c_{n+1}$ and $W_{n+1} \stackrel{(d)}{=} W_n + c_{n+1}\xi_{n+1}$, where $\xi_{n+1} \mid_{W_n} \sim^d \text{Ber}(X_n)$.
- Thus

$$X_{n+1} \stackrel{(d)}{=} \frac{T_n}{T_{n+1}} X_n + \frac{c_{n+1}\xi_{n+1}}{T_{n+1}}$$
$$= X_n + \frac{c_{n+1}}{T_{n+1}} (\xi_{n+1} - X_n).$$

and so $E[X_{n+1} \mid \mathcal{F}_n] = X_n$.

• Hence {X_n} is a bounded martingale and so X_n converges almost surely to a random variable X.

Pemantle (1989) showed that

(i) the distribution of X has no atoms on (0, 1);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pemantle (1989) showed that

(i) the distribution of X has no atoms on (0, 1);

(ii)
$$\sum_{n=1}^{\infty} \left(\frac{c_n}{T_{n-1}}\right)^2 = \infty$$
 if and only if $X \sim^d$ Bernoulli $\left(\frac{w}{w+r}\right)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pemantle (1989) showed that

(i) the distribution of X has no atoms on (0, 1);

(ii)
$$\sum_{n=1}^{\infty} \left(\frac{c_n}{T_{n-1}}\right)^2 = \infty$$
 if and only if $X \sim^d$ Bernoulli $\left(\frac{w}{w+r}\right)$.

If
$$\sum_{n=1}^{\infty} \left(\frac{c_n}{T_{n-1}}\right)^2 < \infty$$
, what is the distribution of X?

Multiple drawn 0000000 Time-Dependent

 $\sum_{n=1}^{\infty} \left(\frac{c_n}{T_{n-1}}\right)^2 < \infty$

Multiple drawn

Time-Dependent

 $\sum_{n=1}^{\infty} \left(\frac{c_n}{T_{n-1}}\right)^2 < \infty$

Figure 3. $c_n = \ln(n)$

Figure 4. $c_n = \ln(\ln(n))$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Review
00000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example

For Pemantle's urn, if w = r = 1 and $c_n = n$, then the

probability that all drawn are of the same color is

 $\frac{2}{3} \times \frac{6}{7} \times \cdots > 0$. Thus the probability of $X \in \{0, 1\}$ is positive.

Review
00000000

Example

For Pemantle's urn, if w = r = 1 and $c_n = n$, then the probability that all drawn are of the same color is $\frac{2}{3} \times \frac{6}{7} \times \cdots > 0$. Thus the probability of $X \in \{0, 1\}$ is positive.

In 1989, Pemantle showed that if $\{c_n\}_{n\geq 1}$ is a bounded sequence, then $\mathbb{P}(X=0) = \mathbb{P}(X=1) = 0$, that is , X has no atoms on [0, 1].

The urn of Johnson, Kotz, and Mahmoud (2004)

- Johnson *et al.* (2004) proposed a general Pólya urn models with multiple drawn.
- In their model, the drawn, say m ≥ 1, can be with or without replacement and the replacement matrix is

$$M = \begin{bmatrix} \# \text{white balls drawn} \\ m \\ m-1 \\ \vdots \\ 1 \\ 0 \end{bmatrix} \begin{pmatrix} -(m-1) & m \\ -(m-2) & m-1 \\ \vdots & \vdots \\ 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

- They gave an recursion formula for the distribution of white balls.
- They also gave the expectation and the variance of the number of white balls.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chen-Wei Urn (2005)

- Suppose an urn initially contains *w* white and *r* red balls.
- Chen-Wei considered that at each step, m ≥ 1 balls are randomly drawn and then note their colors, say k white and m - k red balls. Replace the drawn balls together with ck white and c(m - k) red balls. Repeat the procedure ad infinitum.

Review	Multiple drawn	Time-Dependent
00000000	000000	00000000000

The replacement matrix is
$$M = \left(egin{array}{ccc} cm & 0 \\ c(m-1) & c \\ \vdots & \vdots \\ c & c(m-1) \\ 0 & cm \end{array}
ight)$$

1

.

Review	Multiple drawn 0000●00	Time-Dependent

• After the *n*th action, let W_n be the number of white balls and T_n be the number of total balls in the urn. Also let $X_n = W_n/T_n$.

- After the *n*th action, let W_n be the number of white balls and T_n be the number of total balls in the urn. Also let $X_n = W_n/T_n$.
- Then $T_{n+1} = T_n + cm$ and $W_{n+1} \stackrel{(d)}{=} W_n + c\xi_{n+1}$, where $\xi_{n+1} \mid_{W_n} \sim^d$ Hypgeo $(W_n, T_n W_n, m)$, that is,

$$\mathbb{P}\{\xi_{n+1}=k|W_n\}=\frac{\binom{W_n}{k}\binom{T_n-W_n}{m-k}}{\binom{T_n}{m}}=\frac{\binom{T_nX_n}{k}\binom{T_n(1-X_n)}{m-k}}{\binom{T_n}{m}},$$

where $0 \le k \le m$.

• Note that
$$E[\xi_{n+1} \mid \mathcal{F}_n] = \sum_{k=0}^m \frac{k\binom{T_n X_n}{k}\binom{T_n(1-X_n)}{m-k}}{\binom{T_n}{m}} = m X_n.$$

Multiple drawn 0000000 Time-Dependent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Note that
$$E[\xi_{n+1} \mid \mathcal{F}_n] = \sum_{k=0}^m \frac{k\binom{T_n X_n}{k}\binom{T_n(1-X_n)}{m-k}}{\binom{T_n}{m}} = m X_n.$$

• Then

$$X_{n+1} = \frac{T_n}{T_{n+1}} X_n + \frac{c}{T_{n+1}} \xi_{n+1}$$

= $X_n + \frac{c}{T_{n+1}} (\xi_{n+1} - mX_n)$

and so $E[X_{n+1} | \mathcal{F}_n] = X_n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Note that
$$E[\xi_{n+1} \mid \mathcal{F}_n] = \sum_{k=0}^m \frac{k\binom{T_n X_n}{k}\binom{T_n(1-X_n)}{m-k}}{\binom{T_n}{m}} = m X_n.$$

• Then

$$X_{n+1} = \frac{T_n}{T_{n+1}} X_n + \frac{c}{T_{n+1}} \xi_{n+1}$$

= $X_n + \frac{c}{T_{n+1}} (\xi_{n+1} - mX_n)$

and so $E[X_{n+1} | \mathcal{F}_n] = X_n$.

• Hence $\{X_n\}$ is a bounded martingale.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Note that
$$E[\xi_{n+1} \mid \mathcal{F}_n] = \sum_{k=0}^m \frac{k\binom{T_n X_n}{k}\binom{T_n(1-X_n)}{m-k}}{\binom{T_n}{m}} = m X_n.$$

Then

$$X_{n+1} = \frac{T_n}{T_{n+1}} X_n + \frac{c}{T_{n+1}} \xi_{n+1}$$

= $X_n + \frac{c}{T_{n+1}} (\xi_{n+1} - mX_n)$

and so $E[X_{n+1} | \mathcal{F}_n] = X_n$.

- Hence $\{X_n\}$ is a bounded martingale.
- Furthermore, as $n \to \infty$, X_n converges almost surely to an absolutely continuous random variable.

The urn of Aoudia and Perron (2012)

- Aoudia and Perron (2012) proposed a new model which at time n, M_n balls are sampled and a multiple of C_n of the drawn balls are added, where M_n and C_n are random variables.
- They showed that {X_n} is a bounded martingale and converges almost surely.
- They also showed that $X \sim^d$ Bernoulli $\left(\frac{w}{w+r}\right)$ if and only if $\sum_{n=1}^{\infty} E\left[\frac{C_{n+1}^2 M_{n+1} X_n (1-X_n) (T_n M_{n+1})}{T_{n+1}^2 (T_n 1)}\right] = \frac{wr}{(w+r)^2}.$

Review
000000000

- Assume an urn initially contains w white and r red balls.
- After the *n*th adding balls, suppose $m \ge 1$ balls are randomly drawn and then note their colors, say k white and m - k red balls.
- Replace the drawn balls together with $c_{n+1}k$ white and $c_{n+1}(m-k)$ red balls. Repeat the procedure *ad infinitum*.
- If m = 1, then the above model is Pemantle's urn.
- If $c_1 = c_2 = \cdots = c$, then the above model is Chen-Wei urn.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The replacement matrix at time *n* is $M_n = \begin{pmatrix} mc_n & 0\\ (m-1)c_n & c_n\\ \vdots & \vdots\\ c_n & (m-1)c_n\\ 0 & mc_n \end{pmatrix}.$

Review
000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- After the *n*th action, let W_n , T_n and X_n defined as before.
- Then {X_n} is a bounded martingale and so X_n converges almost surely to a random variable, say X.

• Let
$$\rho_n = c_n/T_{n-1}$$
, $n \in \mathbb{N}$.

Review
000000000

- After the *n*th action, let W_n , T_n and X_n defined as before.
- Then {X_n} is a bounded martingale and so X_n converges almost surely to a random variable, say X.

• Let
$$\rho_n = c_n / T_{n-1}$$
, $n \in \mathbb{N}$.

Theorem 1.

(i) If $\sum_{j=1}^{\infty} \rho_{j+1}^2 = \infty$, then X follows a Bernoulli distribution with parameter w/(w+r).

(ii) If $\{c_n\}_{n\geq 1}$ is a bounded sequence by c, then X is absolutely continuous.

Proposition 1. (Chen and Wei(2005))

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space and let $(\Omega_n)_{n\geq 1}$ be a sequence of increasing events such that $\mathbb{P}\{\bigcup_{n=1}^{\infty}\Omega_n\} = 1$. If there exist nonnegative Borel measurable functions $(f_n)_{n\geq 1}$ such that $\mathbb{P}(\Omega_n \cap X^{-1}(B)) = \int_B f_n(x) dx$ for all Borel sets B, then $f = \lim_{n \to \infty} f_n$ exists almost everywhere, and f is the density of X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition 2.

For $n \geq 1$, let

$$\Omega_n = \{ \omega : cm \leq W_n(\omega) \leq T_n - cm \}.$$

Then $\Omega_{n+1} \supset \Omega_n$ and $P(\bigcup_{n=1}^{\infty} \Omega_n) = 1$.

Multiple drawn 0000000 Time-Dependent

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The proof of Theorem 1.(ii) with m = 1

• By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \ge c$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The proof of Theorem 1.(ii) with m = 1

- By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \ge c$.
- Recall $\rho_n = c_n/T_{n-1}$, $n \in \mathbb{N}$. Since $\{c_n\}_{n \ge 1}$ is bounded by c, $\sum_{j=1}^{\infty} \rho_j^2 < \infty$.

The proof of Theorem 1.(ii) with m = 1

- By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \ge c$.
- Recall $\rho_n = c_n/T_{n-1}$, $n \in \mathbb{N}$. Since $\{c_n\}_{n \ge 1}$ is bounded by c, $\sum_{j=1}^{\infty} \rho_j^2 < \infty$.
- For any given $\epsilon > 0$, choose $\delta = \epsilon / (T_{\ell-1} \exp \left\{ -\sum_{j=\ell}^{\infty} \rho_j^2 \right\}) > 0.$

The proof of Theorem 1.(ii) with m = 1

- By Propositions 1 and 2, it is sufficient to show that the restriction of X to Ω_{ℓ} has a density for all positive integer $\ell \ge c$.
- Recall $\rho_n = c_n/T_{n-1}$, $n \in \mathbb{N}$. Since $\{c_n\}_{n \ge 1}$ is bounded by c, $\sum_{j=1}^{\infty} \rho_j^2 < \infty$.

• For any given $\epsilon > 0$, choose

$$\delta = \epsilon / (T_{\ell-1} \exp\left\{-\sum_{j=\ell}^{\infty} \rho_j^2\right\}) > 0.$$

• Let $x_1 < x'_1 \le x_2 < x'_2 \le \cdots < x_s < x'_s$ and $\sum_{i=1}^{s} (x'_i - x_i) < \delta.$

Then by Fatou's lemma,

$$\sum_{i=1}^{s} \Pr(\{x_{i} < X < x_{i}^{'}\} \mid \Omega_{\ell}) = \sum_{i=1}^{s} E[1_{\{x_{i} < X < x_{i}^{'}\}} \mid \Omega_{\ell}]$$

$$\leq \sum_{i=1}^{s} \liminf_{n \to \infty} E[1_{\{x_{i} < X_{n} < x_{i}^{'}\}} \mid \Omega_{\ell}]$$

$$= \sum_{i=1}^{s} \liminf_{n \to \infty} P(x_{i} < X_{n} < x_{i}^{'} \mid \Omega_{\ell}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Since
$$X_n = W_n / T_n$$
,

$$\sum_{i=1}^{s} \liminf_{n \to \infty} P(x_i < X_n < x'_i \mid \Omega_\ell)$$

$$= \sum_{i=1}^{s} \liminf_{n \to \infty} P(T_n x_i < W_n < T_n x'_i \mid \Omega_\ell)$$

$$= \sum_{i=1}^{s} \liminf_{n \to \infty} \left[\sum_{T_n x_i < k < T_n x'_i} \Pr(W_n = k \mid \Omega_\ell) \right]$$

$$\leq \left[\sum_{i=1}^{s} (x'_i - x_i) \right] \left[\liminf_{n \to \infty} T_n \left(\max_k \Pr(W_n = k \mid \Omega_\ell) \right) \right]$$

$$\leq \delta \liminf_{n \to \infty} T_n \left(\max_k \Pr(W_n = k \mid \Omega_\ell) \right).$$

Since
$$\rho_n = c_n / T_{n-1}$$
,
 $T_n = T_{n-1} + c_n = T_{n-1}(1 + \rho_n) = \cdots = T_{\ell-1} \prod_{s=\ell}^n (1 + \rho_s)$.

Since
$$\rho_n = c_n / T_{n-1}$$
,
 $T_n = T_{n-1} + c_n = T_{n-1}(1 + \rho_n) = \cdots = T_{\ell-1} \prod_{s=\ell}^n (1 + \rho_s)$.
Thus

$$\sum_{i=1}^{s} \Pr\left(\{x_i < X < x'_i\} \mid \Omega_\ell\right)$$

$$\leq \delta T_{\ell-1} \liminf_{n \to \infty} \left[\prod_{j=1}^{n} (1+\rho_j)\right] \left[\max_{k} \Pr(W_n = k \mid \Omega_\ell)\right].$$

Time-Dependent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Observe that

$$\max_{k} \Pr(W_{n} = k \mid \Omega_{\ell})$$

$$= \max_{k} \{\Pr(W_{n} = k \mid W_{n-1} = k) \Pr(W_{n-1} = k \mid \Omega_{\ell})$$

$$+ \Pr(W_{n} = k \mid W_{n-1} = k - c_{n}) \Pr(W_{n-1} = k - c_{n} \mid \Omega_{\ell})\}$$

$$\leq \left(1 - \frac{k}{T_{n-1}} + \frac{k - c_{n}}{T_{n-1}}\right) \left(\max_{k} \Pr(W_{n-1} = k \mid \Omega_{\ell})\right)$$

$$= (1 - \rho_{n}) \max_{k} \Pr(W_{n-1} = k \mid \Omega_{\ell})$$

$$\vdots$$

$$\leq \prod_{j=\ell}^{n} (1 - \rho_{j}).$$

Time-Dependent

Therefore,

$$\sum_{i=1}^{s} \Pr(x_i < X < x'_i \mid \Omega_\ell)$$

$$\leq \delta T_{\ell-1} \liminf_{n \to \infty} \left[\prod_{j=\ell}^n (1+\rho_j) \right] \left[\prod_{j=\ell}^n (1-\rho_j) \right]$$

$$\leq \delta T_{\ell-1} \exp\left\{ -\sum_{j=\ell}^\infty \rho_j^2 \right\} \text{ (since } 1-x \le e^{-x})$$

$$<\epsilon.$$

Hence by Theorem 31.7 of Billingsley (1995), the restriction of X to Ω_{ℓ} has a density.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

References

- BILLINGSLEY, P. (1995). *Probability and Measure*, Third Edition. New York: John Wiley and Sons.
- M.-R. Chen and C. -Z. Wei, A New Urn Model, *J. of Appl. Prob.* 42, 964–976, 2005.
- F. Eggenberger and G. Pólya, Über die Statistik verketteter Vorgänge. Z. Angewandte Math. Mech. 1, 279–289, 1923.
- JOHNSON, N, KOTZ, S. AND H. MAHMOUD (2004). Pólya-type urn models with multiple drawings, Journal of the Iranian Statistical Society, **3**, 165–173.
- R. Pemantle, A time-dependent version of Pólya's Urn, J. Theor. Prob. 3, 627–637, 1990.

Time-Dependent

Thanks for Your Attention

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

÷

Multiple drawn 0000000 Time-Dependent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\max_{k} \Pr(W_{n} = k \mid \Omega_{\ell})$$

$$= \max_{k} \{\sum_{i=0}^{m} \Pr(W_{n} = k \mid W_{n-1} = k - ic_{n}) \Pr(W_{n-1} = k - ic_{n} \mid \Omega_{\ell})\}$$

$$\leq \left(\max_{k} \Pr(W_{n-1} = k \mid \Omega_{\ell})\right) \max_{k} \left\{\sum_{i=0}^{m} \frac{\binom{k-ic_{n}}{i}\binom{T_{n-1}-k+ic_{n}}{m-i}}{\binom{T_{n-1}}{m}}\right\}$$
$$\leq \max_{k} \Pr(W_{n-1} = k \mid \Omega_{\ell}) \left(1 - \rho_{n} + \frac{\rho_{n}c_{n}(m-1)}{T_{n-1}-1}\right)$$

•

$$\leq \prod_{j=\ell}^n \left(1-
ho_j+rac{
ho_j c_j(m-1)}{T_{j-1}-1}
ight)$$