Cutoff for 1 -dim variable speed random walks

Guan-Yu Chen (Joint with Takashi Kumagai)

Chiao Tung Uniersity, Taiwan
The 13th Workshop on Markov Processes and Related Topics
(1) Notations and reviews
(2) Randomized products of random walks
(3) Variable speed random walks
(4) Perspective and references

Outline

(1) Notations and reviews

(2) Randomized products of random walks

(3) Variable speed random walks
(4) Perspective and references

Total variation and its mixing time

Consider an irreducible Markov chain on a finite set \mathcal{S} with transition matrix K and stationary distribution π.

- The total variation of (\mathcal{S}, K, π) is defined by

$$
d_{\mathrm{TV}}(t):=\max _{x \in \mathcal{S}}\left\|K^{t}(x, \cdot)-\pi\right\|_{\mathrm{TV}}=\max _{x \in \mathcal{S}, A \subset \mathcal{S}}\left\{K^{t}(x, A)-\pi(A)\right\}
$$

- The mixing time of the total variation is defined by

$$
T_{\mathrm{TV}}(\epsilon)=\min \left\{t \geq 0 \mid d_{\mathrm{TV}}(t) \leq \epsilon\right\}, \quad \forall \epsilon \in(0,1)
$$

Simple random walks with reflecting boundaries

Let $\mathcal{S}=\{0,1, \ldots, n\}$ and K, π be given by

$$
\left\{\begin{array}{l}
K(i, i \pm 1)=1 / 2, \forall 0<i<n, \\
K(0,1)=K(n, n-1)=1,
\end{array}, \quad\left\{\begin{array}{l}
\pi(i)=1 / n, \forall 0<i<n \\
\pi(0)=\pi(n)=1 /(2 n)
\end{array}\right.\right.
$$

Let $\mathcal{S}^{\prime}=\mathbb{Z}_{2 n}$ and K^{\prime}, π^{\prime} be given by

$$
K^{\prime}(i, i \pm 1)=1 / 2, \quad \pi^{\prime}(i)=1 /(2 n)
$$

Through the mapping $\{i, 2 n-i\} \subset \mathcal{S}^{\prime} \mapsto i \in \mathcal{S}$, one has

$$
d_{\mathrm{TV}}(t):=\max _{x \in \mathcal{S}}\left\|K^{t}(x, \cdot)-\pi\right\|_{\mathrm{TV}}=d_{\mathrm{TV}}^{\prime}(t):=\max _{y \in \mathcal{S}^{\prime}}\left\|\left(K^{\prime}\right)^{t}(y, \cdot)-\pi^{\prime}\right\|_{\mathrm{TV}} .
$$

Bounding mixing times using spectral information

Observe that K^{\prime} has the following eigenvalues and normalized eigenvectors

$$
\beta_{i}=\cos \frac{\pi i}{n}, \quad \phi_{i}(j)=\sqrt{2} \cos \frac{\pi i j}{n}, \quad i, j \in \mathcal{S}^{\prime}
$$

To see an upper bound, set $d_{2}^{\prime}(t)=\max _{x}\left\|\left(K^{\prime}\right)^{t}(x, \cdot) / \pi^{\prime}-1\right\|_{\ell^{2}\left(\pi^{\prime}\right)}$. Then,

$$
d_{\mathrm{TV}}^{\prime}(t) \leq \frac{1}{2} d_{2}^{\prime}(t)=\frac{1}{2}\left(\sum_{i=1}^{n} \beta_{i}^{2 t}\right)^{1 / 2}=\frac{1}{2}\left(\sum_{i=1}^{n}\left(\cos \frac{\pi i}{n}\right)^{2 t}\right)^{1 / 2}
$$

For a lower bound, taking ϕ_{1} as a testing function yields

$$
d_{\mathrm{TV}}^{\prime}(t)=\frac{1}{2}\left\|\left(K^{\prime}\right)^{t}-\pi^{\prime}\right\|_{\ell \infty\left(\pi^{\prime}\right) \rightarrow \ell^{\infty}\left(\pi^{\prime}\right)} \geq \frac{\left(K^{\prime}\right)^{t}\left(0, \phi_{1} / \sqrt{2}\right)}{2}=\frac{1}{2}\left(\cos \frac{\pi}{n}\right)^{t}
$$

Constant speed random walks

As the random walk $\left(\mathcal{S}^{\prime}, K^{\prime}, \pi^{\prime}\right)$ does not converge (in distribution), let's consider one continuous time variant, called the constant speed random walk, $\left(\mathcal{S}^{\prime}, Q, \pi^{\prime}\right)$ with infinitesimal generator

$$
Q(i, j)=K^{\prime}(i, j) \quad \forall i \neq j, \quad Q(i, i)=-1 \quad \forall i .
$$

By setting $H_{t}=e^{t Q}$ and $d_{\mathrm{TV}}^{\prime \prime}(t):=\max _{y}\left\|H_{t}(y, \cdot)-\pi^{\prime}\right\|_{\mathrm{TV}}$, one has

$$
\frac{1}{2} e^{-\lambda_{1} t} \leq d_{\mathrm{TV}}^{\prime \prime}(t) \leq \frac{1}{2}\left(\sum_{i=1}^{n} e^{-2 \lambda_{i} t}\right)^{1 / 2}
$$

where $\lambda_{i}=1-\cos (\pi i / n)$. As a result of $\theta^{2} / 5 \leq 1-\cos \theta \leq \theta^{2} / 2$ with $|\theta| \leq \pi$, there are $C(\epsilon)>1$ for $\epsilon \in(0,1)$ such that

$$
C(\epsilon)^{-1} n^{2} \leq T_{\mathrm{TV}}^{\prime \prime}(\epsilon) \leq C(\epsilon) n^{2} \quad \text { for } n \text { large enough. }
$$

Some remarks on classical techniques

Remarks.

- A similar upper bound can be obtained by the tail probability of a random time, say the coupling time or the strong stationary time.
- A similar lower bound can be derived by the Kolmogorov inequality.
- For multi-dimensional walks, let $d \in \mathbb{N}, \mathcal{S}=\left(\mathbb{Z}_{2 n}\right)^{d}, \pi(x)=(2 n)^{-d}$ and

$$
Q(x, y)=\frac{1}{2 d} \quad \forall|x-y|=\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|=1, \quad Q(x, x)=-1 \quad \forall x .
$$

For $\epsilon \in(0,1)$, there are $C(\epsilon)>1$ such that

$$
C(\epsilon)^{-1}(d \log d) n^{2} \leq T_{\mathrm{TV}}(\epsilon) \leq C(\epsilon)(d \log d) n^{2} \quad \text { for } n \text { large enough. }
$$

Cutoffs for Markov chains

A family of continuous time Markov chains, $\mathcal{F}=\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)_{n=1}^{\infty}$, with mixing times, $\left(T_{n, \mathrm{TV}}\right)_{n=1}^{\infty}$, presents a cutoff in the total variation if

$$
\lim _{n \rightarrow \infty} \frac{T_{n, \mathrm{Tv}}(\epsilon)}{T_{n, \mathrm{TV}}(1-\epsilon)}=1 \quad \forall \epsilon \in(0,1)
$$

or, equivalently, there is a sequence of positive reals $\left(t_{n}\right)_{n=1}^{\infty}$ s.t.

$$
\lim _{n \rightarrow \infty} d_{n, \mathrm{TV}}\left(a t_{n}\right)= \begin{cases}0 & \text { for } a>1 \\ 1 & \text { for } 0<a<1\end{cases}
$$

The sequence $\left(t_{n}\right)_{n=1}^{\infty}$ is called a total variation cutoff time for \mathcal{F}.
Remark. For the d-dimensional constant speed random walks, the family indexed by the sizes of state spaces has no cutoff in the total variation.

Mixing times and cutoffs

Outline

(1) Notations and reviews
(2) Randomized products of random walks

(3) Variable speed random walks

(4) Perspective and references

Randomized products

For $n \geq 1$, let $\mathcal{X}_{n}=\{0,1, \ldots, n\}$ and R_{n} be a Q-matrix on \mathcal{X}_{n} given by

$$
\left\{\begin{array}{l}
R_{n}(i, i+1)=R_{n}(i, i-1)=1 / 2, \quad \forall 0<i<n \\
R_{n}(0,1)=R_{n}(n, n-1)=1, R_{n}(i, i)=-1
\end{array}\right.
$$

Consider the family $\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)_{n=1}^{\infty}$, where $\mathcal{S}_{n}=\mathcal{X}_{n}^{n}$ and

$$
Q_{n}(x, y)=\sum_{i=1}^{n} \xi_{i} \delta_{\check{x}_{i}}\left(\check{y}_{i}\right) R_{n}\left(x_{i}, y_{i}\right) \quad \forall x, y \in \mathcal{S}_{n}
$$

where $\check{x}_{i}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ and $\left(\xi_{n}\right)_{n=1}^{\infty}$ is a sequence of positive random variables.

Convergence of randomized products

If ν_{n} is the stationary distribution of R_{n}, then

$$
\pi_{n}(x)=\nu_{n}\left(x_{1}\right) \times \cdots \times \nu_{n}\left(x_{n}\right)
$$

Let $P_{n, t}=e^{t R_{n}}$ and $H_{n, t}=e^{t Q_{n}}$. Then, one has

$$
H_{n, t}(x, y)=P_{n, t \xi_{1}}\left(x_{1}, y_{1}\right) \times \cdots \times P_{n, t \xi_{n}}\left(x_{n}, y_{n}\right) .
$$

How to analyze the total variation of $\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)$?

- Coupling for multi-dimensional random walks.
- Spectral analysis with $(n+1)^{n}$ eigenvalues and eigenvectors.
- The total variation of $\left(\mathcal{X}_{n}, R_{n}, \nu_{n}\right)$.

The Hellinger distance

For any irreducible Markov chain (\mathcal{S}, K, π), the Hellinger distance is defined by

$$
d_{H}(t)=\sup _{x \in \mathcal{S}}\left(\frac{1}{2} \sum_{y \in \mathcal{S}}\left(\sqrt{K^{t}(x, y)}-\sqrt{\pi(y)}\right)^{2}\right)^{1 / 2} \in[0,1] .
$$

(C. and Kumagai 2016) If d_{TV} is the total variation of (\mathcal{S}, K, π), then

$$
1-\sqrt{1-d_{\mathrm{TV}}^{2}(t)} \leq d_{H}^{2}(t) \leq d_{\mathrm{TV}}(t)
$$

This implies
Cutoff in the total variation \Leftrightarrow Cutoff in the Hellinger distance.

Hellinger distances of product chains

Let $d_{n, H}, D_{n, H}$ be Hellinger distances of $\left(\mathcal{X}_{n}, R_{n}, \nu_{n}\right),\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)$. Then,

$$
1-D_{n, H}^{2}(t)=\prod_{i=1}^{n}\left(1-d_{n, H}^{2}\left(\xi_{i} t\right)\right) \leq 1-d_{n, H}^{2}\left(\zeta_{n} t\right)
$$

where $\zeta_{n}=\min \left\{\xi_{1}, \ldots, \xi_{n}\right\}$, and there is a universal constant $C>1$ s.t.

$$
C^{-1} e^{-C t / n^{2}} \leq d_{n, H}(t) \leq \frac{C e^{-C^{-1} t / n^{2}}}{1-e^{-C^{-1} t / n^{2}}} \quad \forall t>0, n \geq 1 .
$$

This implies that, for $a>0$,

$$
-\log \left(1-D_{n, H}^{2}(t)\right) \asymp \sum_{i=1}^{n} d_{n, H}^{2}\left(\xi_{i} t\right) \quad \forall t \geq a \zeta_{n}^{-1} n^{2}
$$

Cutoffs for randomized products

(C. and Kumagai 2017) The family $\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)_{n=1}^{\infty}$ has a cutoff if and only if there is a sequence of positive reals $\left(t_{n}\right)_{n=1}^{\infty}$ such that

$$
\lim _{n \rightarrow \infty} f_{n}\left(a t_{n}\right)=\left\{\begin{array}{ll}
\infty & \forall a \in(0,1), \tag{1}\\
0 & \forall a \in(1, \infty),
\end{array} \quad f_{n}(t)=\sum_{i=1}^{n} e^{-\xi_{i} t / n^{2}}\right.
$$

(C. and Saloff-Coste 2010) Let $\left(\xi_{i}^{(n)}\right)_{i=1}^{n}$ be an order statistics of $\left(\xi_{i}\right)_{i=1}^{n}$. Then, (1) holds if and only if

$$
\lim _{n \rightarrow \infty} \xi_{1}^{(n)} \max _{1 \leq i \leq n} \frac{\log (i+1)}{\xi_{i}^{(n)}}=\infty
$$

Some examples

1. For some $c>0, \mathbb{P}\left(\xi_{n}=c, \forall n\right)=1$. In this case, there is a total variation cutoff for $\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)_{n=1}^{\infty}$ and $T_{n, \mathrm{Tv}}(\epsilon) \asymp n^{2} \log n$.
2. Suppose that there is an increasing sequence $\left(a_{n}\right)_{n=1}^{\infty}$ such that ξ_{n} / a_{n} converges a.s. to a positive random variable. Then, $\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)_{n=1}^{\infty}$ has a cutoff with probability one if and only if $\sup _{n} \log (n+1) / a_{n}=\infty$.
3. If $\left(\theta_{n}\right)_{n=1}^{\infty}$ is a i.i.d. sequence of positive random variables with finite mean and $\xi_{n}=\theta_{1}+\cdots+\theta_{n}$, then, in the setting of 2 ., one has $a_{n}=n$ and thus $\left(\mathcal{S}_{n}, Q_{n}, \pi_{n}\right)_{n=1}^{\infty}$ has no cutoff with probability one.

Outline

(1) Notations and reviews
(2) Randomized products of random walks
(3) Variable speed random walks

4 Perspective and references

Random walks with random hopping times

For $n \in \mathbb{N}$, let $\mathcal{S}_{n}=\{0,1, \ldots, n\}$ and K_{n} be given by

$$
K_{n}(i, i \pm 1)=1 / 2 \quad \forall 0<i<n, \quad K_{n}(0,1)=K_{n}(n, n-1)=1 .
$$

Let $\left(\xi_{n}\right)_{n=1}^{\infty}$ be a sequence of positive random variables and set

$$
Q_{n}(i, j)=\xi_{i} K_{n}(i, j) \quad \forall i \neq j, \quad Q_{n}(i, i)=-\xi_{i}
$$

The continuous time Markov chain with Q-matrix Q_{n} has stationary distribution

$$
\pi_{n}(i)=\pi_{n}(0) \frac{2 \xi_{0}}{\xi_{i}} \quad \forall 0<i<n, \quad \pi_{n}(n)=\pi_{n}(0) \frac{\xi_{0}}{\xi_{n}}
$$

Review of cutoff criterion

(C. and Saloff-Coste, 2015) Consider the family $\mathcal{F}=\left(\mathcal{S}_{n}, Q_{n}\right)_{n=1}^{\infty}$, where $\mathcal{S}_{n}=\{0, \ldots, n\}$ and Q_{n} is a Q-matrix satisfying $Q_{n}(i, i \pm k)=0$ for $k>1$.

Notations:

1. Let $\tau_{i}^{(n)}$ be the first hitting time to i of the chain $\left(\mathcal{S}_{n}, Q_{n}\right)$.
2. Let M_{n} be a state such that $\pi_{n}\left(\left[0, M_{n}\right]\right) \asymp \pi_{n}\left(\left[M_{n}, n\right]\right)$.
3. Set $t_{n}=\mathbb{E}_{0} \tau_{M_{n}}^{(n)} \vee \mathbb{E}_{n} \tau_{M_{n}}^{(n)}$ and $b_{n}^{2}=\operatorname{Var}_{0} \tau_{M_{n}}^{(n)} \vee \operatorname{Var}_{n} \tau_{M_{n}}^{(n)}$.

Then, one has

$$
\mathcal{F} \text { has a cutoff in the total variation } \Leftrightarrow b_{n}=o\left(t_{n}\right) .
$$

Further, t_{n} is the cutoff time.

Computations of means and variances of hitting times

By writing $Q_{n}=\left(q_{i, j}^{(n)}\right)$, one has

$$
\mathbb{E}_{i} \tau_{i+1}^{(n)}=\frac{\pi_{n}([0, i])}{\pi_{n}(i) q_{i, i+1}^{(n)}}, \operatorname{Var}_{i} \tau_{i+1}^{(n)}=\frac{1}{\pi_{n}(i) q_{i, i+1}^{(n)}} \sum_{j=0}^{i} \pi_{n}(j)\left(\mathbb{E}_{j} \tau_{i}^{(n)}+\mathbb{E}_{j} \tau_{i+1}^{(n)}\right)
$$

In the case of VSRW, we have

$$
\mathbb{E}_{0} \tau_{i}^{(n)}=i \xi_{0}^{-1}+2 \sum_{k=1}^{i-1}\left(\xi_{1}^{-1}+\cdots+\xi_{k}^{-1}\right) \asymp \sum_{k=0}^{i-1}\left(\xi_{0}^{-1}+\cdots+\xi_{k}^{-1}\right)
$$

and

$$
\operatorname{Var}_{0} \tau_{i}^{(n)} \asymp \sum_{j=0}^{i-1} \sum_{k=0}^{j}\left(\xi_{0}^{-1}+\cdots+\xi_{k}^{-1}\right)^{2}
$$

Cutoffs for variable speed birth and death chains

(C. and Kumagai, 2017, ongoing)

Assumption: $\left(\xi_{n}^{-1}\right)_{n=0}^{\infty}$ is an i.i.d. sequence with finite mean, say μ.
By the SLLN, we may select $M_{n}=[n / 2]$ almost surely and obtain

$$
\mathbb{E}_{0} \tau_{M_{n}}^{(n)} \asymp \sum_{k=0}^{M_{n}-1}\left(\xi_{0}^{-1}+\cdots+\xi_{k}^{-1}\right) \sim \frac{\mu n^{2}}{4} \quad \text { almost surely },
$$

and

$$
\operatorname{Var}_{0} \tau_{M_{n}}^{(n)} \asymp \sum_{j=0}^{M_{n}-1} \sum_{k=0}^{j}\left(\xi_{0}^{-1}+\cdots+\xi_{k}^{-1}\right)^{2} \sim \frac{\mu^{2} n^{4}}{192} \quad \text { alomost surely. }
$$

Cutoffs for variable speed birth and death chains

By writing

$$
\xi_{n-k}^{-1}+\cdots+\xi_{n}^{-1}=\left(\xi_{0}^{-1}+\cdots+\xi_{n}^{-1}\right)-\left(\xi_{0}^{-1}+\cdots+\xi_{n-k-1}^{-1}\right),
$$

one may apply the same computation as before to achieve

$$
\mathbb{E}_{n} \tau_{M_{n}-1}^{(n)} \asymp \sum_{k=0}^{n-M_{n}-1}\left(\xi_{n-k}^{-1}+\cdots+\xi_{n}^{-1}\right) \sim \frac{\mu n^{2}}{4} \quad \text { almost surely },
$$

and

$$
\operatorname{Var}_{n} \tau_{M_{n}}^{(n)} \asymp \sum_{j=0}^{n-M_{n}-1} \sum_{k=0}^{j}\left(\xi_{n-k}^{-1}+\cdots+\xi_{n}^{-1}\right)^{2} \sim \frac{\mu^{2} n^{4}}{192} \quad \text { alomost surely. }
$$

This implies that \mathcal{F} has no cutoff with probability one.

Some remarks

- (C. and Saloff-Coste 2013) Let λ_{n} be the spectral gap of Q_{n}, i.e. the smallest non-zero eigenvalue of $-Q_{n}$. Then,

$$
\mathcal{F} \text { has a cutoff } \Leftrightarrow t_{n} \lambda_{n} \rightarrow \infty, \quad t_{n}=\mathbb{E}_{0} \tau_{M_{n}}^{(n)} \vee \mathbb{E}_{n} \tau_{M_{n}}^{(n)}
$$

As no subfamily of $\left(\mathcal{S}_{n}, Q_{n}\right)_{n=1}^{\infty}$ presents a cutoff, $\lambda_{n} \asymp t_{n}^{-1} \asymp n^{-2}$ almost surely.

- (M.-F. Chen) Let $C=\pi_{n}\left(\left[0, M_{n}\right]\right) \wedge \pi_{n}\left(\left[M_{n}, n\right]\right)$ and

$$
\ell_{n}=\max \left\{\max _{j<M_{n}} \sum_{k=j}^{M_{n}-1} \frac{\pi_{n}([0, j])}{\pi_{n}(k) q_{k, k+1}^{(n)}}, \max _{j>M_{n}} \sum_{k=M_{n}+1}^{j} \frac{\pi_{n}([j, n])}{\pi_{n}(k) q_{k, k-1}^{(n)}}\right\}
$$

Then,

$$
\frac{1}{4 \ell_{n}} \leq \lambda_{n} \leq \frac{2}{C \ell_{n}} .
$$

Outline

(1) Notations and reviews

(2) Randomized products of random walks

(3) Variable speed random walks
4) Perspective and references

Perspectives of future work

What could we say about:

- the cutoff for the randomized product of random walks with i.i.d. $\left(\xi_{n}\right)_{n=1}^{\infty}$;
- the cutoff for the one-dimensional VSRW with i.i.d. $\left(\xi_{n}^{-1}\right)_{n=1}^{\infty}$ and $\mathbb{E} \xi_{1}^{-1}=\infty$;
- the cutoff for the randomized product of random walks with random hopping times;
- the scaling limit process and its mixing time.

Reference

1. Chen, G.-Y. and Saloff-Coste, L. The L^{2}-cutoff for reversible Markov processes, 2010.
2. Chen, G.-Y. and Saloff-Coste, L. Computing cutoff times for birth and death chains, 2015.
3. Chen, G.-Y. and Kumagai, T. Cutoffs for product chains, 2017.
4. Chen, G.-Y. and Kumagai, T. Products of random walks on finite groups with moderate growth, 2017.

Thank you for your attention!

