ASYMPTOTIC BEHAVIOR FOR A LONG-RANGE DOMANY-KINZEL MODEL

Lung-Chi CHEN Department of Mathematical Sciences, National Chengchi University, Taiwan, E-mail: lcchen@nccu.edu.tw

Abstract: We consider a long-range Domany-Kinzel model. In this model, for every site (i, j) in a two-dimensional lattice there is a directed bond present from site (i, j) to (i + 1, j) with probability one. There are also m + 1 directed bonds present from (i, j) to (i - k, j + 1), k = -1, 0, ..., m - 1 with respective probabilities p_{k+1} where m is any positive integer. Given any m > 0, Let $\tau_m(M, N)$ be the probability that there is at least one connected-directed path of occupied edges from (0, 0) to (M, N). In this talk I present that for each aspect ratio $\alpha = M/N$, there is an $\alpha_{m,c} = \frac{\sum_{k=1}^{m} q_k q_{k+1}^2 \cdots q_m^{m-k+1} - (m-1)}{1 - q_0 q_1 \cdots q_m}$ such that as $N \to \infty$, $\tau(M, N)$ is 1, 0 and 1/2 for $\alpha > \alpha_c$, $\alpha < \alpha_c$ and $\alpha = \alpha_c$, respectively. I also present the rate of convergence of $\tau_m(M, N)$ and the asymptotic behavior of $\tau_m(M_N^-, N)$ and $\tau_m(M_N^+, N)$ where $M_N^-/N \uparrow \alpha_c$ and $M_N^+/N \downarrow \alpha_c$ as $N \uparrow \infty$. In particular, let $m \to \infty$ and $p_n = p/(n+a)^s$ for some a, p > 0 and $n \ge 0$. Let $\tau(M, N) = \lim_{m \to \infty} \tau_m(N, M)$. I also discuss the rate of convergence of $\tau(M, N)$ and the asymptotic behavior of $\tau(M_N^-, N)$ and $\tau(M_N^+, N)$ depending on s > 0 where $M_N^-/N \uparrow \alpha_c$ and $M_N^+/N \downarrow \alpha_c$ as $N \uparrow \infty$. This is a joint work with Shu-Chiuan Chang.