Survival-extinction behaviors for nonlinear continuous state branching processes

Xiaowen Zhou

Concordia University

Joint work with Peisen Li and Xu Yang

Workshop on Branching Processes and Related Topics May 8-12, 2017, Beijing Normal University

イロン 不同と 不同と 不同と

Outline of the Talk

Introduction

- Galton-Watson branching process
- Continuous state branching process
- Continuous state branching process with nonlinear branching
- Survive or die out?
- 2 The extinction and explosion behaviors of nonlinear branching process
 - The extinction
 - Possible explosion
 - About the proofs

Introduction

The extinction and explosion behaviors of nonlinear branching pro

Galton-Watson branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

Galton-Watson branching process

- Let $(\xi_{n,i})$ be i.i.d. random variables representing the number of children of the *i*-th individual in the (n-1)-th generation.
- Let

$$X_n := \sum_{i=1}^{X_{n-1}} \xi_{n,i}$$

be the population of the *n*-th generation. (X_n) a Galton-Watson branching process.

• Let ϕ be a nonnegative integer-valued function on \mathbb{N} .

$$X_n:=\sum_{i=1}^{\phi(X_{n-1})}\xi_{n,i}.$$

is a ϕ -controlled Galton-Watson branching process.

Introduction

The extinction and explosion behaviors of nonlinear branching pro

Galton-Watson branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

・ロン ・回と ・ヨン・

From Galton-Watson process to Feller diffusion

• Write
$$\mu = \mathbb{E}\xi_{1,1} < \infty$$
 and $b = 1 - \mu$. Then

$$X_k - X_{k-1} = (\mu - 1)X_{k-1} + \sum_{i=1}^{X_{k-1}} (\xi_{k,i} - \mu)$$

and

$$X_n - X_0 = -\sum_{k=1}^n b X_{k-1} + \sum_{k=1}^n \sum_{i=1}^{X_{k-1}} (\xi_{k,i} - \mu).$$

• If b = 0, the branching is critical.

・ロン ・回と ・ヨン ・ヨン

• Taking a time-space scaling limit, under certain conditions we have the Feller diffusion process

$$X_t = X_0 - \int_0^t b X_s \mathrm{d}s + \int_0^t \int_0^{\gamma X_s} W(\mathrm{d}s, \mathrm{d}u), \qquad (1)$$

where W(ds, du) is a time-space white noise.

• Solution of (1) has the same distribution as the solution to

$$X_t = X_0 - \int_0^t b X_s \mathrm{d}s + \int_0^t \sqrt{\gamma X_s} \mathrm{d}B_s,$$

where B is a Brownian motion. Here γ is the branching rate.

Galton-Watson branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

Continuous state branching process (CB processes)

- Feller diffusion is an example of continuous state branching processes.
- A continuous state branching process arises as a scaling limit of Galton-Watson processes.
- It is a nonnegative Markov process X (with possible positive jumps) satisfying the branching property, i.e. for any $\lambda, x, y > 0$

$$\mathbb{E}_{x+y}e^{-\theta X_t} = \mathbb{E}_x e^{-\theta X_t} \mathbb{E}_y e^{-\theta X_t}.$$

• The branching property plays a key role in analyzing CB processes.

Introduction The extinction and explosion behaviors of nonlinear branching pro Galton-Watson branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

• Its Laplace transform is determined by

$$\mathbb{E}_{x}e^{-\theta X_{t}}=e^{-xu_{t}(\theta)}$$

where function $u_t(\theta)$ satisfies the differential equation

$$\frac{\partial u_t(\theta)}{\partial t} + \psi(u_t(\theta)) = 0$$

with $u_0(\theta) = \theta$ and

$$\psi(\lambda) = a\lambda + \frac{1}{2}\sigma^2\lambda^2 + \int_0^\infty (e^{-\lambda x} - 1 + \lambda x)\pi(\mathrm{d}x)$$

for $q, \sigma \ge 0, a \in \mathbb{R}$ and for σ -finite measure π on $(0, \infty)$ satisfying $\int_0^\infty (1 \wedge z^2) \pi(dz) < \infty$. X is critical if a = 0.

• CB process is associated with a spectrally positive Lévy process via the Lamperti time change.

Introduction The extinction and explosion behaviors of nonlinear branching pro Galton-Watson branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

イロト イポト イヨト イヨト

The extinction of a continuous state branching process X

Let

$$\tau_0^- := \inf\{t > 0 : X_t = 0\}.$$

be the extinction time of X and

$$p(x) := \mathbb{P}_x\{\tau_0^- < \infty\}$$

be the extinction probability.

• (Grey condition) If $\psi(\infty) = \infty$, then p(x) > 0 for some (and then for all) x > 0 if and only if $\int_{-\infty}^{\infty} 1/\psi(\xi) d\xi < \infty$.

Introduction The extinction and explosion behaviors of nonlinear branching proGalton-Watson branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

CB process as solution of SDE

• By Bertoin and Le Gall (2003, 2005, 2006), Dawson and Li (2006, 2012), a continuous state branching process solves the following SDE.

$$X_t = X_0 + \int_0^t X_s \mathrm{d}s + \sigma \int_0^t \sqrt{X_{s-}} \mathrm{d}B_s + \int_0^t \int_0^\infty \int_0^{X_{s-}} x \tilde{N}(\mathrm{d}s, \mathrm{d}x, \mathrm{d}u)$$

where $\tilde{N}(\mathrm{d}s, \mathrm{d}x, \mathrm{d}u)$ is a compensated Poisson random measure on $[0, \infty) \times (0, \infty) \times [0, \infty)$ with compensator $\mathrm{d}s\pi(\mathrm{d}x)\mathrm{d}u$, where the jump measure π satisfies $\int_0^\infty x \wedge x^2 \pi(\mathrm{d}x) < \infty$.

CB process with population dependent branching rate

• An continuous state branching process with population dependent branching rate can be identified as the solution (up to the first time of reaching 0) to the following SDE.

$$X_{t} = X_{0} + \int_{0}^{t} \gamma_{0}(X_{s}) \mathrm{d}s + \sigma \int_{0}^{t} \sqrt{\gamma_{1}(X_{s-})} \mathrm{d}B_{s} + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{\gamma_{2}(X_{s-})} x \tilde{N}(\mathrm{d}s, \mathrm{d}x, \mathrm{d}u),$$
(2)

where $\gamma_0, \gamma_1, \gamma_2$ are nonnegative functions.

- Such a process is also called a nonlinear branching process.
- Informally it can be treated as a scaling limit of controlled Galton-Watson branching process.
- It does not have the branching property.

Introduction The extinction and explosion behaviors of nonlinear branching pro Galton-Watson branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

イロト イポト イラト イラト 一日

Previous work on continuous state nonlinear branching process

- For nonlinear CSBP with γ₀(·) = γ₁(·) = γ₂(·), using Lamperti transform Li (2016) obtained necessary and sufficient conditions of extinction and explosion for the nonlinear continuous state branching process.
- The approach of Li (2016) can not be applied to handle the case with non-identical rate functions $\gamma_i(\cdot)$, i = 1, 2, 3.

・ロト ・回ト ・ヨト ・ヨト

A critical CB process that dies out

- To see how nonlinear branching rate affects the extinction behavior, we first consider the critical Feller branching process determined by SDE $dX_t = \sqrt{\gamma X_t} dB_t$.
- It is well known that Feller branching process dies out within a finite time; i.e. with probability one, $X_t = 0$ for t large enough.
- The random fluctuation due to branching causes the population to die out.
- The Feller branching process has a constant branching rate. For a nonlinear branching process whose branching rate goes to 0 as the population size goes to 0, a natural question is whether the process still dies out within a finite time.

A nonlinear CB process that survives forever

- We consider a nonlinear Feller branching process that solves SDE $dX_t = \sqrt{X_t^r} dB_t$ for r > 0.
- It is not hard to believe that X_t converge as $t \rightarrow \infty$.
- For r = 1, X is the Feller branching process and $X_t = 0$ for t large enough.
- On the other hand, this SDE is solvable if r = 2.

$$X_t = X_0 e^{B_t - \frac{1}{2}t}.$$

Clearly, $X_t \to 0$ as $t \to \infty$, but $X_t > 0$ for all t.

• What happens for 1 < r < 2?

Recall that the continuous state nonlinear branching process \boldsymbol{X} solves the SDE

$$X_{t} = X_{0} + \int_{0}^{t} \gamma_{0}(X_{s}) \mathrm{d}s + \sigma \int_{0}^{t} \sqrt{\gamma_{1}(X_{s-})} \mathrm{d}B_{s} + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{\gamma_{2}(X_{s-})} x \tilde{N}(\mathrm{d}s, \mathrm{d}x, \mathrm{d}u),$$
(3)

where $\gamma_1(x)/x$ and $\gamma_2(x)/x$ can be treated as the branching rates. We assume that the above SDE allows a unique weak solution up to the first time of hitting 0 or explosion.

イロト イポト イラト イラト 一日

Discussions

- We want to know whether the nonlinear CB process dies out with a positive probability.
- Since the process has no negative jumps, the extinction behavior depends on the values of $\gamma_i(x)$ for x close to 0. $\gamma_0(\cdot)$ tells us the direction and size of the drift, and $\gamma_1(\cdot), \gamma_2(\cdot)$ tell us the magnitude of fluctuation of the process near 0.
- Suppose that for $i = 0, 1, 2, \gamma_i(x) \rightarrow 0$ as $x \rightarrow 0+$.
- Extinction can be caused either by a relatively large negative drift related to γ_0 or by relatively large fluctuations related to γ_1 and γ_2 . Otherwise, the process survives.

Introduction The extinction and explosion behaviors of nonlinear branching pro The extinction Possible explosion About the proofs

Extinction behaviors

$$\begin{aligned} G_{a}(u) = & \frac{a-1}{u} \gamma_{0}(u) - \frac{a(a-1)}{2u^{2}} \sigma^{2} \gamma_{1}(u) \\ & -\gamma_{2}(u) u^{a-1} \int_{0}^{\infty} [(u+z)^{1-a} - u^{1-a} - (1-a)zu^{-a}] \pi(\mathrm{d}z). \end{aligned}$$

Theorem

(Survive with probability one) If there exist a > 1 and r < 1 such that $G_a(u) \ge -(\ln u^{-1})^r$ for all small u > 0, then $\mathbb{P}_x\{\tau_0^- = \infty\} = 1$ for all small x > 0.

Theorem

(Extinction with a positive probability) If there exist 0 < a < 1 and r > 1 such that $G_a(u) \ge (\ln u^{-1})^r$ for all small u > 0, then $\mathbb{P}_{\times}\{\tau_0^- < \infty\} \ge 0$ for all small x > 0.

Xiaowen Zhou, Concordia University

Survival-extinction behaviors for nonlinear continuous state brai

For simplicity we only present the results for a CB process with rate functions of the forms

$$\gamma_i(x) = b_i x^{r_i}, i = 0, 1, 2, \ \pi(\mathrm{d} x) = x^{-1-lpha} \mathrm{d} x$$
 for $x \approx 0$

and $1 < \alpha < 2$, $b_0 \in \mathbb{R}$, b_1 , b_2 , r_0 , r_1 , $r_2 \ge 0$. If r_i is bigger, $\gamma_i(x)$ is smaller. Let

$$\tau_0^- = \inf\{t : X_t = 0\}$$

be the extinction time.

イロト イポト イヨト イヨト

Corollary

 $\mathbb{P}_{x}\{\tau_{0}^{-}=\infty\}=1$ for all x > 0 if one of the following two sets of conditions holds.

- (i) $b_0 < 0$, $r_0 \ge 1$ and
 - (ia) if $\sigma > 0$, then $r_1 \ge 2$;
 - (ib) if $\pi \neq 0$, then $r_2 \geq \alpha$;
- (ii) $b_0 > 0$ and
 - (iia) if $\sigma > 0$, then either $r_1 \ge 2$ or $r_1 > r_0 + 1$ or $r_1 = r_0 + 1$ and b_0 is much bigger than b_1 ;
 - (iib) if $\pi \neq 0$, then either $r_2 \ge \alpha$ or $r_2 > r_0 1 + \alpha$ or $r_2 = r_0 + \alpha 1$ and b_0 is much bigger than b_2 .

イロト イポト イヨト イヨト 二日

Corollary

 $\mathbb{P}_x\{\tau_0^- < \infty\} > 0$ for all x > 0 if one of the following two sets of conditions holds.

- (i) $b_0 \leq 0$ and one of the following holds.
 - (ia) $0 < r_0 < 1$ if $b_0 < 0$.
 - (ib) $0 < r_1 < 2$ if $\sigma \neq 0$.
 - (ic) $0 < r_2 < \alpha$ if $\pi \neq 0$.

• (ii) $b_0 > 0$ and one of the following holds.

- (iia) If $\sigma > 0$, then either $r_1 < (r_0 + 1) \land 2$ or $r_1 = r_0 + 1 < 2$ and b_1 is big enough.
- (iib) If $\pi \neq 0$, then either $r_2 < (r_0 + \alpha 1) \land \alpha$ or $r_2 = r_0 + \alpha 1 < \alpha$ and b_2 is big enough.

Remark

For $b_0 = 0$, $\pi = 0$ and $\gamma_1(x) = x^{r_1}$, then combining the above Theorems, for any x > 0 we have $\mathbb{P}_x\{\tau_0^- < \infty\} = 1$ for $0 \le r_1 < 2$ and $\mathbb{P}_x\{\tau_0^- < \infty\} = 0$ but $X_t \rightarrow 0$ \mathbb{P}_x -a.s. for $r_1 \ge 2$. This answers the question early in the talk.

Remark

If $b_0 = 0$, $\sigma = 0$ and $\gamma_2(x) = x^{r_2}$, $\pi(dx) = x^{1+\alpha}dx$ with $1 < \alpha < 2$ in SDE (3), combining the Theorems we have for any x > 0, $\mathbb{P}_x\{\tau_0^- < \infty\} = 1$ for $0 \le r_2 < \alpha$ and $\mathbb{P}_x\{\tau_0^- < \infty\} = 0$ but $X_t \rightarrow 0$ \mathbb{P}_x -a.s. for $r_2 \ge \alpha$.

The explosion of nonlinear CB process

Let
$$\tau_{\infty}^+ = \lim_{n \to \infty} \tau_n^+$$
 be the explosion time for process X.

Theorem

(No explosion) If there exist 0 < a < 1 and r < 1 such that $G_a(u) \ge -(\ln u^{-1})^r$ for all large u, then $\mathbb{P}_x\{\tau_\infty^+ < \infty\} = 0$ for all large x.

Theorem

(Explosion with positive probability) If there exist a > 1 and r > 1such that $G_a(u) \ge (\ln u^{-1})^r$ for all large u, then $\mathbb{P}_x\{\tau_\infty^+ < \infty\} = 0$ for all large x.

イロト イポト イヨト イヨト

Suppose that $\gamma_i(x) = b_i x^{r_i}$, i = 0, 1, 2 for $b_1, b_2 > 0$ and for large x.

Corollary

(No explosion)

$$\mathbb{P}_{x}\{\tau_{\infty}^{+}<\infty\}=0$$

for x large enough if $b_0 \leq 0$ or one of the followings is true.

(i)
$$b_0 > 0$$
 and $r_0 \le 1$.

(ii) $b_0 > 0$, $r_0 > 1$ and one of the followings holds.

- (iia) If $\sigma > 0$, then either $r_1 > r_0 + 1$ or $r_1 = r_0 + 1$ and b_1 is much bigger than b_0 .
- (iib) If $\pi \neq 0$, then either $r_2 > r_0 + \alpha 1$ or $r_2 = r_0 + \alpha 1$ and b_2 is much bigger than b_0 .

Corollary

(Explosion within finite time)

$$\mathbb{P}_{x}\{\tau_{\infty}^{+}<\infty\}>0$$

for x large enough if $r_0 > 1$ and both of the followings hold.

- (i) If $\sigma > 0$, then either $r_1 < r_0 + 1$ or $r_1 = r_0 + 1$ and b_0 is much bigger than b_1 .
- (ii) If $\pi \neq 0$, then either $r_2 < r_0 + \alpha 1$ or $r_2 = r_0 + \alpha 1$ and b_0 is much bigger than b_2 .

イロト イポト イヨト イヨト 二日

Discussions

From the previous results on explosion we see that

- explosion is caused by large enough positive drift;
- fluctuations can not cause explosion, but large enough fluctuations can prevent explosion.

イロト イポト イヨト イヨト

A short proof for a special case

Proposition

Suppose there are constants $C, \delta > 0$ and $\alpha \in (1, 2)$ so that $\pi(dz)$ is absolutely continuous with respect to Lebesgue measure when restricted to interval $(0, \delta)$ and

$$\pi(\mathrm{d} z) \leq C z^{-1-lpha} \mathrm{d} z, \ z \in (0, \delta).$$

Further, $\sup_{x\in(0,\delta)}(-\gamma_0(x))x^{-1}<\infty$,

$$\sup_{\mathsf{x}\in(\mathsf{0},\delta)}\gamma_1(x)x^{-2}<\infty,\quad \sup_{\mathsf{x}\in(\mathsf{0},\delta)}\gamma_2(x)x^{-\alpha}<\infty.$$

Then $\mathbb{P}\{\tau_0^- = \infty\} = 1$.

イロト イポト イヨト イヨト

A short proof on a special case of non-extinction

For $0 < x < \delta$, let $\tau_{\delta}^+ := \inf\{t : X_t > \delta\}$. Applying Ito's formula,

$$\begin{split} e^{-\lambda X_{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}}} &= e^{-\lambda x} - \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} \lambda \gamma_{0}(X_{s-}) e^{-\lambda X_{s-}} \mathrm{d}s \\ &+ \frac{\sigma^{2}}{2} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} \lambda^{2} e^{-\lambda X_{s}} \gamma_{1}(X_{s}) \mathrm{d}s \\ &+ \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} e^{-\lambda X_{s-}} \gamma_{2}(X_{s-}) \mathrm{d}s \int_{0}^{\infty} \left[e^{-\lambda z} - 1 + \lambda z \right] \pi(\mathrm{d}z) \\ &+ \text{martingale.} \end{split}$$

Introduction The extinction and explosion behaviors of nonlinear branching pro The extinction Possible explosion About the proofs

Since

$$\begin{split} &\int_0^\infty \left[e^{-\lambda z} - 1 + \lambda z \right] \pi(\mathrm{d}z) \leq C \int_0^\infty \left[(\lambda z) \wedge (\lambda z)^2 \right] z^{-1-\alpha} \mathrm{d}z \\ &= C \lambda^\alpha \int_0^\infty \left[z \wedge z^2 \right] z^{-1-\alpha} \mathrm{d}z = C(\alpha) \lambda^\alpha, \end{split}$$

then

$$\begin{split} \sup_{\lambda \ge 1, s \in [0, \tau_u^+)} \left[-\lambda \gamma_0(X_{s-}) e^{-\lambda X_{s-}} + \frac{\sigma^2}{2} \lambda^2 e^{-\lambda X_{s-}} \gamma_1(X_{s-}) \right. \\ \left. + e^{-\lambda X_{s-}} \gamma_2(X_{s-}) \mathrm{d}s \int_0^\infty \left[e^{-\lambda z} - 1 + \lambda z \right] \pi(\mathrm{d}z) \right] \\ \le C \sup_{\lambda \ge 1, s \in [0, \tau_u^+)} \left(\lambda X_{s-} e^{-\lambda X_{s-}} + (\lambda X_{s-})^2 e^{-\lambda X_{s-}} + (\lambda X_{s-})^\alpha e^{-\lambda X_{s-}} \right) \\ \le C \sup_{\lambda \ge 0} \left(\lambda e^{-\lambda} + \lambda^2 e^{-\lambda} + \lambda^\alpha e^{-\lambda} \right) \\ < C. \end{split}$$

Survival-extinction behaviors for nonlinear continuous state bra

$$\begin{split} \mathbb{E}_{\mathbf{x}} e^{-\lambda X_{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}}} &= e^{-\lambda x} - \mathbb{E}_{\mathbf{x}} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} \lambda \gamma_{0}(X_{s-}) e^{-\lambda X_{s-}} \mathrm{d}s \\ &+ \mathbb{E}_{\mathbf{x}} \frac{\sigma^{2}}{2} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} \lambda^{2} e^{-\lambda X_{s}} \gamma_{1}(X_{s}) \mathrm{d}s \\ &+ \mathbb{E}_{\mathbf{x}} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} e^{-\lambda X_{s-}} \gamma_{2}(X_{s-}) \mathrm{d}s \int_{0}^{\infty} \left[e^{-\lambda z} - 1 + \lambda z \right] \pi(\mathrm{d}z) \\ &\leq e^{-\lambda x} + C \mathbb{E}_{\mathbf{x}} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} \left[\lambda X_{s-} + (\lambda X_{s-})^{2} + (\lambda X_{s-})^{\alpha} \right] e^{-\lambda X_{s}} \mathrm{d}s. \\ &\rightarrow 0 \quad \text{as } \lambda \!\rightarrow \! \infty. \end{split}$$

Then $\mathbb{P}_{x}\{X_{t\wedge\tau_{\delta}^{+}\wedge\tau_{0}^{-}}\neq 0\}=1$ for all t>0. Letting $t\to\infty$, we have $\mathbb{P}_{x}\{\tau_{\delta}^{+}<\tau_{0}^{-}$ or $\tau_{\delta}^{+}=\tau_{0}^{-}=\infty\}=1$. Then by Markov property and lack of negative jumps, $\mathbb{P}_{x}\{\tau_{0}^{-}=\infty\}=1$.

The proofs for the general cases are more involved and we can work with the following martingale. Recall that

$$G_{a}(u) = \frac{a-1}{u} \gamma_{0}(u) - \frac{a(a-1)}{2u^{2}} \sigma^{2} \gamma_{1}(u) - \gamma_{2}(u) u^{a-1} \int_{0}^{\infty} [(u+z)^{1-a} - u^{1-a} - (1-a)zu^{-a}] \pi(\mathrm{d}z).$$

Then

$$X_t^{1-a} \exp\left\{\int_0^t G_a(X_s) \mathrm{d}s\right\}$$

is a martingale.

We choose a > 1 to prove the non-extinction result and explosion result, and a < 1 to show the extinction result and the non-explosion result.

イロト イポト イヨト イヨト

Proof of non-extinction

let $T_n := \tau^-(\epsilon^n) \wedge \tau_b^+$ for small enough $0 < \epsilon < b$. For a > 1 consider martingale $X_{t \wedge T_n}^{1-a} \exp \left\{ \int_0^{t \wedge T_n} G_a(X_s) \mathrm{d}s \right\}$. By optional stopping and letting $t \to \infty$, we have

$$\begin{split} \epsilon^{1-a} &= \mathbb{E}_{\epsilon} \Big[X_{\tau^{-}(\epsilon^{n})\wedge\tau^{+}(b)}^{1-a} \exp\Big\{ \int_{0}^{\tau^{-}(\epsilon^{n})\wedge\tau^{+}_{b}} G_{a}(X_{s}) \mathrm{d}s \Big\} \\ &\geq \mathbb{E}_{\epsilon} \Big[X_{\tau^{-}(\epsilon^{n})\wedge\tau^{+}(b)}^{1-a} \exp\big\{ - (\ln\epsilon^{-n})^{r}(\tau^{-}(\epsilon^{n})\wedge\tau^{+}(b)\big\} \Big] \\ &\geq \mathbb{E}_{\epsilon} \Big[X_{\tau^{-}(\epsilon^{n})}^{1-a} \exp\big\{ - (\ln\epsilon^{-n})^{r}d_{n}\big\} \mathbf{1}_{\{\tau^{-}_{\epsilon^{n}}<\tau^{+}_{b}\wedge d_{n}\big\}} \Big] \\ &= \epsilon^{(1-a)n} \exp\{\ln\epsilon^{n(a-1)/2}\} \mathbb{P}_{\epsilon} \big\{ \tau^{-}_{\epsilon^{n}}<\tau^{+}_{b}\wedge d_{n} \big\} \\ &= \epsilon^{(1-a)n/2} \mathbb{P}_{\epsilon} \big\{ \tau^{-}_{\epsilon^{n}}<\tau^{+}_{b}\wedge d_{n} \big\}, \end{split}$$

where
$$d_n := \frac{\ln e^{n(a-1)/2}}{-(\ln e^{-n})^r} \rightarrow \infty$$
 as $n \rightarrow \infty$.

(ロ) (同) (E) (E) (E)

Then

$$\mathbb{P}_{\epsilon}\left\{\tau_{\epsilon^{n}}^{-} < \tau_{b}^{+} \wedge d_{n}\right\} \leq \epsilon^{(a-1)(n-2)/2}.$$

Since $\sum_{i=1}^{\infty} \mathbb{P}_{\epsilon} \left\{ \tau_{\epsilon^n}^- < \tau_b^+ \land d_n \right\} < \infty$, by Borel-Cantelli Lemma we have

$$\mathbb{P}_{\epsilon}\Big\{ au^{-}(\epsilon^{n}) < au_{b}^{+} \wedge d_{n} \hspace{0.2cm} ext{infinitely often} \hspace{0.2cm}\Big\} = 0.$$

Then $\tau^-(\epsilon^n) \ge \tau_b^+ \wedge d_n$ for all *n* large enough, and we can show that $\mathbb{P}_{\epsilon}\{\tau_0^- = \infty\} = 1$.

Thank you for your attention!

・ロン ・回 と ・ ヨ と ・ ヨ と

э