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Branching Random Walk

Branching Random Walk

An initial particle is at the origin of R, which forms the 0th generation.

It gives birth to offspring particles that form the first generation. Their
displacement from their parent are described by a point process Θ.

Résvése(1994), Shi Zhan(2016).
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Résvése(1994), Shi Zhan(2016).

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 3 / 33



Branching Random Walk in random environment

Branching Random Walk

Classical branching random walk: the number of any particle’s children
has a fixed distribution and the children’s displacement also has a fixed
distribution.

Asmussen,S., Kaplan,N.(1976), Biggins,J.D.(1990).

Branching random walk in random environment

Branching random walk with random environment in time
the distributions of offspring and the distribution of the displacement of
the children may vary from generation to generation according to a ran-
dom environment

Biggins and Kyprianou (2004);
Gao,Z., Liu,Q., Wang,H.(2012): Central limit theorems for a counting
measure;
Liu,Q.(2007): Limit properties for the rightmost particle.
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Branching Random Walk in random environment

Branching random walk with random environment in location

� the offspring distribution of a particle situated at z depends on a random envi-
ronment indexed by its situation z, while the moving mechanism is controlled
by a fixed deterministic law, e.g. Greven,A., den Hollander, F.(1992);

� the reproduction law depends on the location, and each particle has almost
surely at least one offspring.

Comets,F., Menshikov,M.V.,Popov, S.Y.(1998):

If m > mc, there is infinitely often at least one particle with positive
location;
If m ≤ mc, there is no particle in N at time n for n large enough.

Comets,F., Menshikov,M.V.,Popov, S.Y.(2007)—multidimensional random
walks in random environment.
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Branching Random Walk in random environment

� the step transition probability at the situation z depends on a random environ-
ment indexed by the situation z, while the offspring distribution is controlled
by a fixed reproduction law.

Devulder,A.(2007): the speed of the rightmost particle for a branching
system of (1,1) random walks in random environment.

If m < mc, the rightmost particle goes to −∞ with a negative speed;

If m > mc, the rightmost particle goes to +∞ with a positive speed.

Zhang(2013): Central limit theorem for the counting measure Zn(·) in the
annealed case.
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Branching Random Walk in random environment

Branching random walk with random environment in time and in location

Li,Y., Li,X., Liu,Q.(2007)—the particles reproduce with a random envi-
ronment in time and move with another random environment in location:
Limit properties of the rightmost particle;

Hu,Y., Yoshidab,N.(2009)—branching random walk with time-space i.i.d.
offspring distributions: Limit theorems for localization;

Yoshidab,N.(2008): Central limit theorem.

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 7 / 33



Branching Random Walk in random environment

Branching random walk with random environment in time and in location

Li,Y., Li,X., Liu,Q.(2007)—the particles reproduce with a random envi-
ronment in time and move with another random environment in location:
Limit properties of the rightmost particle;

Hu,Y., Yoshidab,N.(2009)—branching random walk with time-space i.i.d.
offspring distributions: Limit theorems for localization;

Yoshidab,N.(2008): Central limit theorem.

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 7 / 33



Branching Random Walk in random environment

Branching random walk with random environment in time and in location

Li,Y., Li,X., Liu,Q.(2007)—the particles reproduce with a random envi-
ronment in time and move with another random environment in location:
Limit properties of the rightmost particle;

Hu,Y., Yoshidab,N.(2009)—branching random walk with time-space i.i.d.
offspring distributions: Limit theorems for localization;

Yoshidab,N.(2008): Central limit theorem.

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 7 / 33



Branching Random Walk in random environment

Branching random walk with random environment in time and in location

Li,Y., Li,X., Liu,Q.(2007)—the particles reproduce with a random envi-
ronment in time and move with another random environment in location:
Limit properties of the rightmost particle;

Hu,Y., Yoshidab,N.(2009)—branching random walk with time-space i.i.d.
offspring distributions: Limit theorems for localization;

Yoshidab,N.(2008): Central limit theorem.

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 7 / 33



Branching Random Walk in random environment

? Consider a branching system of (L,1) random walks in random environ-
ment(BSRWRE)

branching random walk with random environment in location

particles reproduce with a fixed reproduction law;

move as (L,1) random walk in random environment Xn .

? If Xn → −∞, there is for our model a competition between the environment
and the branching process.

random walk in random environment: pushing the particle to −∞;

branching process: creates new particle and then increases the possibility
that some particles go very far on the right.

Objective
Study the asymptotic behavior of the rightmost particle, conditionally on the
survival of the branching process.
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Model: BSRWRE

? (L,1) random walks in random environment

Random environment: (Ω,F ,P, θ), where (ωi)i∈Z ∈ Ω i.i.d.

Random walk: {Xn, n ≥ 0} is a time homogeneous Markov chain with
transition probability

Pω(Xn+1 = x + l|Xn = x) = ωx(l), x ∈ Z, l ∈ {−L, . . . ,−1, 1}.

{ωx}x∈Z = {ωx(−L), · · · , ωx(−1), ωx(1)} ∼ P
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Model: BSRWRE

quenched law: Pω, which is defined on the path space (ZN,G ).

annealed law: P = P⊗Pω, which is defined on the space (Ω×ZN,F×G )

P(F × G) =

∫
F

Pω(G)P(dω) F ∈ F , G ∈ G .

? branching system: Galton-Watson process Γ.

pk ≥ 0 and
∑

k∈N pk = 1;

supercritical, m > 1, 0 < q ≤ 1.
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Model: BSRWRE

For each given environment, the particle system behaves like this

At time n = 0, there is only one particle, located at 0.

At time n = 1, the particle moves to 1 with probability ω0(1), or to −l
with probability ω0(−l), where −l ∈ {−L, · · · , 1}. Arriving at the new
location, it gives birth to k offspring with probability pk, and dies.

At time n = 2, each particle moves independently, according to the prob-
abilities for random walk in random environment. Then it produces new
offspring independently, with the same reproduction law as before, and
dies.

Iterating this procedure, we obtain a branching system of random walks
in random environment.
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Preliminary

Let Tn be the hitting time of (L,1) random walk in random environment, and

λcrit = sup{λ : lim
n→∞

1
n

log Eω(eλTn , Tn < +∞) < +∞,

lim
n→∞

1
n

log Eω(eλT−n , T−n < +∞) < +∞}.

Proposition 1
λcrit is deterministic.

The idea of the proof. By the decomposition for stopping time T1, we have

1 

0 

-1 

-2 

Eθω(eλT1) = ω1(1)eλ + ω1(−1)eλEθω(eλ(T1◦θ−1))Eθω(eλT1)

+ ω1(−2)eλEθω(eλ(T1◦θ−2))Eθω(eλ(T1◦θ−1))Eθω(eλT1).
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Preliminary

Let λc(ω) = sup{λ : Eω(eλT1) < +∞}. Then λc(θω) = λc(ω), for η-a.s. ω.
We can obtain that λc is deterministic.

Similarly, by decomposing the stopping time T ′1 for (1,R) random walk in ran-
dom environment,

1 

0 

-1 

2 

and the intrinsic branching structure for (1,R) random walk in random envi-
ronment, we can also obtain that λ′c(ω) = sup{λ : Eω(eλT−1) < +∞} is
deterministic.

Thus λcrit is deterministic.
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Preliminary

Define

Mi =


ai(1) · · · ai(L− 1) ai(L)

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 ,

where ai(l) = ωi(−l)+···+ωi(−L)
ωi(1) , i ∈ Z.

Let γL = lim
n→∞

1
n

log ‖M(n− 1, 0)‖, P− a.s. be the top Lyapunov exponent of
random matrix M.

Lemma (Brémont(2002))
For (L,1) random walk in random environment,
(i) If γL > 0, Xn → −∞, P-a.s.
(ii) Under the condition of (IM),

lim
n→∞

Xn

n
=

1
E(π(ω))

, P− a.s.
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Main result

Let m∗n denote the location of the rightmost particle at time n, and

mc = exp(λcrit).

Theorem
Suppose γL > 0, Γ be the Galton-Watson process governing the branching
system.
(i) If 1 < m < mc, then

P
(

lim sup
n→∞

m∗n
n
< 0| Γsurvives

)
= 1;

(ii) If m > mc, then
P
(

lim inf
n→∞

m∗n
n
> 0| Γsurvives

)
= 1;

(iii) If m = mc, then
P
(

lim sup
n→∞

m∗n
n
≤ 0| Γsurvives

)
= 1.
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Precise formulation of the model

λ(x, n) denotes the number of particles located at x at time n;
m∗n = max{x ∈ Z, λ(x, n) > 0};
{Z(x, n, µ)} i.i.d., independent of ω, s.t. P(Z(x, n, µ) = pk);
{X(x, n, µ)} ∼ U[0, 1] i.i.d.;
Fω(n) = σ(λ(x, k), 0 ≤ k ≤ n, x ∈ Z).

Then

λ(x, n+1) =

λ(x−1,n)∑
µ=1

1X(x−1,n,µ)≤ωx−1 Z(x−1, n, µ)+

λ(x+1,n)∑
µ=1

1X(x+1,n,µ)≤ωx+1 Z(x+1, n, µ).

Lemma (Révész(1994), Devulder,A.(2007))
For N ∈ N, ∀0 ≤ n ≤ N, ∀x ∈ Z,

Eω(λ(x,N)|Fω(n)) = mN−n
∑
y∈Z

λ(y, n)Pω(Xp+N−n = x|Xp = y);

Eω(λ(x,N)) = mNPω(XN = x).

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 16 / 33



Precise formulation of the model

λ(x, n) denotes the number of particles located at x at time n;
m∗n = max{x ∈ Z, λ(x, n) > 0};
{Z(x, n, µ)} i.i.d., independent of ω, s.t. P(Z(x, n, µ) = pk);
{X(x, n, µ)} ∼ U[0, 1] i.i.d.;
Fω(n) = σ(λ(x, k), 0 ≤ k ≤ n, x ∈ Z).

Then

λ(x, n+1) =

λ(x−1,n)∑
µ=1

1X(x−1,n,µ)≤ωx−1 Z(x−1, n, µ)+

λ(x+1,n)∑
µ=1

1X(x+1,n,µ)≤ωx+1 Z(x+1, n, µ).

Lemma (Révész(1994), Devulder,A.(2007))
For N ∈ N, ∀0 ≤ n ≤ N, ∀x ∈ Z,

Eω(λ(x,N)|Fω(n)) = mN−n
∑
y∈Z

λ(y, n)Pω(Xp+N−n = x|Xp = y);

Eω(λ(x,N)) = mNPω(XN = x).

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 16 / 33



Precise formulation of the model

λ(x, n) denotes the number of particles located at x at time n;
m∗n = max{x ∈ Z, λ(x, n) > 0};
{Z(x, n, µ)} i.i.d., independent of ω, s.t. P(Z(x, n, µ) = pk);
{X(x, n, µ)} ∼ U[0, 1] i.i.d.;
Fω(n) = σ(λ(x, k), 0 ≤ k ≤ n, x ∈ Z).

Then

λ(x, n+1) =

λ(x−1,n)∑
µ=1

1X(x−1,n,µ)≤ωx−1 Z(x−1, n, µ)+

λ(x+1,n)∑
µ=1

1X(x+1,n,µ)≤ωx+1 Z(x+1, n, µ).

Lemma (Révész(1994), Devulder,A.(2007))
For N ∈ N, ∀0 ≤ n ≤ N, ∀x ∈ Z,

Eω(λ(x,N)|Fω(n)) = mN−n
∑
y∈Z

λ(y, n)Pω(Xp+N−n = x|Xp = y);

Eω(λ(x,N)) = mNPω(XN = x).

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 16 / 33



Precise formulation of the model

λ(x, n) denotes the number of particles located at x at time n;
m∗n = max{x ∈ Z, λ(x, n) > 0};
{Z(x, n, µ)} i.i.d., independent of ω, s.t. P(Z(x, n, µ) = pk);
{X(x, n, µ)} ∼ U[0, 1] i.i.d.;
Fω(n) = σ(λ(x, k), 0 ≤ k ≤ n, x ∈ Z).

Then

λ(x, n+1) =

λ(x−1,n)∑
µ=1

1X(x−1,n,µ)≤ωx−1 Z(x−1, n, µ)+

λ(x+1,n)∑
µ=1

1X(x+1,n,µ)≤ωx+1 Z(x+1, n, µ).

Lemma (Révész(1994), Devulder,A.(2007))
For N ∈ N, ∀0 ≤ n ≤ N, ∀x ∈ Z,

Eω(λ(x,N)|Fω(n)) = mN−n
∑
y∈Z

λ(y, n)Pω(Xp+N−n = x|Xp = y);

Eω(λ(x,N)) = mNPω(XN = x).

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 16 / 33



Large deviations for RWRE

Lemma (Yilmaz 2009)
Suppose
(A1) there exists a r > 0, such that

∫
| logω0(j)|1+rdP > ∞ for each j ∈

{−L, . . . ,−1, 1};
(A2) there exists a δ > 0, such that P(ω0(±1) ≥ δ) = 1.
Then (L,1) random walk in random environment Xn satisfies a quenched large
deviation principle with deterministic, convex and continuous rate function Iq

η,

Iq
η(v) =


sup
λ∈R
{λ− v lim

n→∞

1
n

log Eω(eλTn , Tn < +∞) < +∞} v > 0,

λcrit v = 0,

sup
λ∈R
{λ− |v| lim

n→∞

1
n

log Eω(eλT̄−n , T̄−n < +∞) < +∞} v < 0
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Properties of the rate function

We need the properties of the rate function Iq
η(v) on (u, 1), where u < 0.

Iq
η(v) is convex and continuous at 0.

Note that
Xn

n
→ 1

E(π(ω))
, P− a.s.

Then Iq
η(

1
E(π(ω))) = 0, where 1

E(π(ω)) < 0.

The shape of the Iq
η

� �)(
1
ZSE

0 1 

cricO

v 

)(vI q
K
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In the case of 1 < m < mc

In the case of 1 < m < mc = exp(Iq
η(0)),

Note that Iq
η is increase on [−α, 1]. Then for n large enough,

Pω(Xn ≥ −nα) ≤ exp{−n[Iq
η(−α)− ε]}, P-a.s.

λcrit 6= 0 since mc > 1. Then Iq
η(v) is strictly increase on ( 1

E(π(ω)) , 1] and
is continuous at 0. Hence ∃α > 0, ε > 0, s.t. Iq

η(0) < Iq
η(−α) − ε.

Therefore
log m < Iq

η(−α)− ε

Thus

Pω{λ[(−αn,+∞), n] ≥ 1} ≤ Eω[

+∞∑
x=−αn

λ(x, n)]

= mnPω(Xn ≥ −nα) ≤ exp{n[log m− Iq
η(−α) + ε]}, P-a.s.
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In the case of 1 < m < mc

Then
+∞∑
n=1

Pω{λ[(−αn,+∞), n] ≥ 1} < +∞, P-a.s.

By Borel-Cantelli Lemma, we have

Pω{λ[(−αn,+∞), n] ≥ 1, i.o.} = 0, P-a.s.

That is,

Pω-a.s. for n large enough, there is no particle in (−αn,+∞).

P-a.s. for n large enough, m∗n < −αn.

P
(

lim sup
n→∞

m∗n
n
< 0| Γsurvives

)
= 1;
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In the case of m > mc

In the case of m > mc = exp(Iq
η(0)),

Step 1. Aim: Construct a supercritical Galton-Watson tree T , whose vertices
of the nth generation are particles which are at a positive location at time nkω.

Basic idea: Hammersley(1974), Biggins(1977), Devulder(2007).

We first fix constants kω and Λω:

Fix ε > 0, s.t. log m > Iq
η(0) + ε;

For k ≥ nω,

Eω[
∑
x∈N

λ(x, k)] ≥ exp{k[log m− Iq
η(0)− ε]}, P-a.s.

We can fix a integer kω > 0 s.t.

Eω[
∑
x∈N

λ(x, kω)] := Λω > 2.
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In the case of m > mc

Construct recursively a supercritical tree {Yn}, s.t. at each time nkω, there are
at least Yn particles located in N.

Y0 = 1, Y1 = λ(N, kω).
Suppose that at time nkω there are at least Yn particles in N.
(We only consider there Yn particles and ignore all the other particles
which are possibly surviving at time nkω.)
The number of particles located in N at time (n + 1)kω and generated
by these Yn particles is greater than or equal to the number of particles
located in N at time (n + 1)kω, and is greater than or equal to the number
of particles generated by Yn particles all of which are located at 0 at time
nkω.
Thus, at time (n + 1)kω, there are at least Yn+1 particles in N,

Yn+1 :=

Yn∑
i=1

Xn,i, where Xn,i =d Y1

and are independent (given ω).
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In the case of m > mc

Note that
Eω(Y1) = Eω(λ(N, kω)) = Λω > 2.

The constructed G-W tree is supercritical, and

Lemma

lim
n→∞

Pω(∩l≥n{Yl ≥ 2l}) > 0, P-a.s.

Remark:

When T survives, Yn ≥ 2n as n large enough.

With a positive probability, there is an exponential number of particles in
N at time nkω, n ∈ N..
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In the case of m > mc

Proof. Let B(kω) denote the total number of particles at time kω, satisfies
Eω(B(kω)2) <∞. As a consequence, we have Eω((Y1)2) <∞.

Since Eω(Y1) = Λω > 2, which is greater than 1, there exists a random
variable Wω, satisfying Pω(Wω > 0) > 0, P-a.s., and

lim
n→∞

Yn

(Λω)n = Wω, P-a.s.

Note that Λω > 2. We have Yn ∼ (Λω)nWω ≥ 2n for n large enough if Wω > 0.
Accordingly,

lim
n→∞

Pω(∩l≥n{Yl ≥ 2l}) = Pω(Wω > 0) > 0, P-a.s.
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lim
n→∞

Pω(∩l≥n{Yl ≥ 2l}) = Pω(Wω > 0) > 0, P-a.s.
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In the case of m > mc

Step 2. Aim: Some of the particles originated from T will go far enough.
For n ∈ N, A ∈ N, and any integer N,

Pω{λ([A,+∞), nkω + N) = 0|Fω(nkω)}

=
∏
x∈Z

λ(x,nkω)∏
l=1

Pω{λ([A,+∞),N) = 0} =
∏
x∈Z

[Px
ω(λ([A,+∞),N) = 0)]λ(x,nkω).

By coupling, we have for x ≥ 0,

Px
ω(λ([A,+∞),N) = 0) ≤ P0

ω(λ([A,+∞),N) = 0).

Thus ∏
x∈Z

[Px
ω(λ([A,+∞),N) = 0)]λ(x,nkω)

≤
∏
x∈N

[P0
ω(λ([A,+∞),N) = 0)]λ(x,nkω) ≤ [P0

ω(λ([A,+∞),N) = 0)]Yn .
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In the case of m > mc

Let a ∈ (0, 1), ε′ > 0. Then there exist Mω ∈ N, s.t. ∀ N ≥ Mω,

Pω(XN ≥ Na) ≥ exp{[−(Iq
η(a) + ε′)N]}, P-a.s.

If qN denotes the probability that the Galton-Watson tree Γ extinct before time
N, we notice that for N ≥ Mω,

P0
ω(λ([aN,+∞),N) = 0) ≤ qN + (1− qN)Pω(XN ≥ Na)

≤ 1− (1− qN) exp[−(Iq
η(a) + ε′)N].

Therefore ∀N ≥ Mω,

Pω{λ([aN,+∞), nkω + N) = 0|Fω(nkω)}
≤ [P0

ω(λ([aN,+∞),N) = 0)]Yn ≤ [1− (1− qN) exp[−(Iq
η(a) + ε′)N]]Yn .
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In the case of m > mc

Let E1(ω, n) = {Yn ≥ 2n}, and notice that qN ≤ q∞ ∈ [0, 1).
As a consequence, on E1(ω, n), we obtain for N ≥ Mω,

log Pω{λ([aN,+∞), nkω + N) = 0|Fω(nkω)}
≤ 2n log[1− (1− qN) exp[−(Iq

η(a) + ε′)N]]

≤ −(1− q∞) exp[n log 2− (Iq
η(a) + ε′)N]].

Let Nn = 2b n log 2
4(Iq

η(a)+ε′)
c. For all large n, we obtain on E1(ω, n),

Pω{λ([aNn,+∞), nkω + Nn) = 0|Fω(nkω)}
≤ exp{−(1− q∞)C exp[n(log 2)/2]},

where C > 0 is a constant. Hence∑
n∈N

Pω({λ([aNn,+∞), nkω + Nn) = 0}
⋂

E1(ω, n)) < +∞.
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In the case of m > mc

Let E2(ω, n) =
⋂

l≥n E1(ω, l). Then for almost all environment ω, there
exists an integer nω, s.t. Pω(E2(ω, nω)) > 0.

By the Borel-Cantellic lemma, we obtain Pω-a.s. on E2(ω, nω), for n large
enough,

λ([aNn,+∞), nkω + Nn) ≥ 1.

Then Pω-a.s. on E2(ω, n), for all large n, there exists a particle pn in
[aNn,+∞) at time Kn = nkω + Nn.

At any time l ∈ (Kn−1,Kn]
⋂
Z, the ancestor of the particle pn is located

in [aNn − (Kn − Kn−1),+∞), which is contained in [Sω,+∞) for some
constant Sω > 0.
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In the case of m > mc

Thus, for all large l,
λ([Sωl,+∞), l) ≥ 1.

This means that Pω-a.s. on E2(ω, n), there are at any large time some
particles with average speed greater than Sω.

Since Pω(E2(ω, nω)) > 0, we can obtain

Lemma
Let m∗n denote the location of the rightmost particle at time n. For almost all
environment ω, there exists a real number Sω > 0, such that

Pω

(
lim inf
n→∞

m∗n
n
≥ Sω

)
> 0.
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In the case of m > mc

Step 3. Aim: Although T only has a positive survival probability, there are
always particles going very far, as long as the branching process Γ survives.

Define the event
A(S) = {lim inf

n→∞

m∗n
n
≥ S}.

{Pθiω(A(S))}i∈Z is a stationary sequence, and nondecreasing. Thus Pθiω(A(S)) =
Pω(A(S)), P-a.s.,∀i ∈ Z.
For a.a. ω, ∃ Sω > 0, s.t.

Pθiω(A(Sω)) = Pω(A(Sω)) > 0.

Define E3(N) = {B(N) ≥ rN}, where B(N) denote the total number of
particles at time N, 1 < r < m. Then

{Γsurvives} = lim inf
N→∞

E3(N),

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 30 / 33



In the case of m > mc

Step 3. Aim: Although T only has a positive survival probability, there are
always particles going very far, as long as the branching process Γ survives.

Define the event
A(S) = {lim inf

n→∞

m∗n
n
≥ S}.

{Pθiω(A(S))}i∈Z is a stationary sequence, and nondecreasing. Thus Pθiω(A(S)) =
Pω(A(S)), P-a.s.,∀i ∈ Z.
For a.a. ω, ∃ Sω > 0, s.t.

Pθiω(A(Sω)) = Pω(A(Sω)) > 0.

Define E3(N) = {B(N) ≥ rN}, where B(N) denote the total number of
particles at time N, 1 < r < m. Then

{Γsurvives} = lim inf
N→∞

E3(N),

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 30 / 33



In the case of m > mc

Step 3. Aim: Although T only has a positive survival probability, there are
always particles going very far, as long as the branching process Γ survives.

Define the event
A(S) = {lim inf

n→∞

m∗n
n
≥ S}.

{Pθiω(A(S))}i∈Z is a stationary sequence, and nondecreasing. Thus Pθiω(A(S)) =
Pω(A(S)), P-a.s.,∀i ∈ Z.
For a.a. ω, ∃ Sω > 0, s.t.

Pθiω(A(Sω)) = Pω(A(Sω)) > 0.

Define E3(N) = {B(N) ≥ rN}, where B(N) denote the total number of
particles at time N, 1 < r < m. Then

{Γsurvives} = lim inf
N→∞

E3(N),

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 30 / 33



In the case of m > mc

Step 3. Aim: Although T only has a positive survival probability, there are
always particles going very far, as long as the branching process Γ survives.

Define the event
A(S) = {lim inf

n→∞

m∗n
n
≥ S}.

{Pθiω(A(S))}i∈Z is a stationary sequence, and nondecreasing. Thus Pθiω(A(S)) =
Pω(A(S)), P-a.s.,∀i ∈ Z.
For a.a. ω, ∃ Sω > 0, s.t.

Pθiω(A(Sω)) = Pω(A(Sω)) > 0.

Define E3(N) = {B(N) ≥ rN}, where B(N) denote the total number of
particles at time N, 1 < r < m. Then

{Γsurvives} = lim inf
N→∞

E3(N),

Meijuan ZHANG (CUFE) The speed of a branching system of (L,1) random walks in random environment11 May 2017 30 / 33



In the case of m > mc

On E3(N),

Pω

(
lim inf
n→∞

m∗n
n
< S|Fω(N)

)
≤

∏
x∈Z

(1− Pθxω[A(S)])λ(x,N) ≤ [1− Pω[A(S)]]r
N
.

Since Pω(A(Sω)) > 0,

lim
N→∞

(
Pω{lim inf

n→∞

m∗n
n
< Sω|Fω(N)} ∩ E3(N)

)
≤ lim

N→∞
[1− Pω(A(Sω))]r

N
= 0.

This yields

P
(

lim inf
n→∞

m∗n
n
> 0| Γsurvives

)
= 1.
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