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This talk is based on two joint works. One is with H. He and
J. Liu, the other is with J. Liu.

Model and motivation

Results on derivative martingale

Results on additive martingale

Second order limits of minimal position

Sketch of proofs



Branching random walk

e |t starts with an initial particle located at the origin.

e At time 1, the particle dies, producing some new particles, po-
sitioned according to ©.

e At time 2, these particles die, each giving birth to new particles
positioned (with respect to the birth place) according to ©.

e The process goes on with the same mechanism. We assume

each particle produces new particles independently.

For each vertex x on the branching tree, we denote the position
by V(z). The family of random variables (V(x)) is referred as a
branching random walk (Biggins ('10)).



We assume

E(Z 1) > 1, (supercritical)
|z|=1

E( Z e V@) =1, E( Z V(z)e V@) =0, (boundary case)

lz|=1 lz|=1

(1)

where |x| denotes the generation of x. (V(z)) can be reduced to
this case by some renormalization, if © is not bounded from below
(see Jaffuel ('12)).



Additive martingale

Wy, = Z eV (additive martingale)
|z|=n

e V(x)=0: (W,) degenerates to a supercritical GW process.
o V(z) # 0: (W,) converges almost surely to 0 under (1) (su-
percritical + boundary case, Biggins ('77), Lyon ('97)).

It is natural to ask
At which rate W, goes to 07



Related work:
e Galton-Watson processes: Seneta ('68), Heyde ('70).
e Branching random walk:

o General case: Biggins and Kyprianou ('96, '97).
e Boundary case: Hu and Shi ('09), Aidekon and Shi ('14).



Derivative martingale

D, = Z V(z)e V@ (derivative martingale)

|z|=n
Related work:

e Non-boundary case: Barral ('00), Biggins ('91,'92);
e Boundary case: Biggins and Kyprianou ('04), Chen ('15), etc.



Related results on derivative martingale

Suppose that

E()  V()e ") < . (2)

|z[=1

Theorem A (Biggins and Kyprianou ('04))
Assume (1) and (2) hold. Then there exists a nonnegative

random variable D, such that

D, = Dy, P—a.s.



Theorem B (Chen ('15))
Assume (1) and (2) hold. Then P(Dy > 0) > 0 if and only if

the following condition holds:
E[X (log, X)? + X log, X] < o0, (3)
where log, y := 0V logy and

Xi=3 VW, Xi= 3 Via)e VO, (4)

|z|=1 |lz|=1

with V(z)4 =V (z) V0.



When Dy is nontrivial, P(Dy > 0) equals to the non-

extinction probability of the branching tree. Define
P*(-) := P(- |non extinction)

Obviously W,, — 0, P*—a.s.
Theorem C (Aidekon and Shi (2014))
Assume (1), (2) and (3) hold. Under P*, we have

1/2
1/2 P 2 D
n Wn — (71_0_2) 0
where Do, > 0 is the random variable in Theorem A, and
o? = E( Z V(a;)Qe*V(m)) < 0.

|z|=1



Stable branching random walk

In this paper, instead of (2) and (3), we shall study (V(x))
under (1) and (a € (1,2)):

) EOY Ivwy<—ppe ") =0(y™), y—+oo, (6)

|z[=1

(“) E ( Z I{V(I)Zy}ei‘/(z)) ~ Cyiaa Yy — +00, (7)
|z|=1

(iii) B(X(log, X)*+ X (log, X)*) < occ. (8)

Under (6) and (7), the step of the one-dimensional random walk
(Sy) associated with (V' (x)) belongs to the domain of attraction of

a stable law.



(The many-to-one formula)

E[ Y g(V(z1),...,V(zn))] = E[e®g(S1,...,Sn)],

|z|=n
where (S,,) is a random walk, E(S1) = 0 (by (1)) and S; belongs
to the domain of attraction of a stable law with characteristic func-
tion (spectrally positive). see Biggins and Kyprianou (1997), Lyons
(1997), Lyons et al (1995).

t
G(t) :=exp { — c[t|*(1 — i tan ?)}, c>0.

t]
(2) & E(S?) < 00

P(S1>y)~Cy )
o )(:){P(S1<—y)—0(ya), o



Main results — derivative martingale

Theorem 1 (HLZ ('17)) Assume (1), (6), (7). Then there

exists a nonnegative random variable D, such that
D, = Dy, P—a.s.

Moreover, if condition (8) holds, then P*(Dy, > 0) = 1.



Main results — additive martingale

Theorem 2 (HLZ ('17)) Assume (1), (6)—(8). We have

1 P 6
W 2 =D
P = S 1w

where Do, > 0 is given in Theorem 1, and 6 is a positive constant
related to the renewal function of (S,).

Theorem 3 (LZ ('17)) Assume (1), (6)—(8). For any function
f 1 00, we have P*-a.s.

I néWn 0 N /Oo 1 Y < 0
im sup = _—
n—00 f(n) 00 0 tf(t) = 00.

lim,,—s 00 niWn =00 P"—a.s. (9)




Minimal position

Denote M,, = min,|—, V (z).

The asymptotic behaviors of M,,: Biggins ('77), Lyons ('97),
Addario-Berry and Reed ('09), Aidékon ('13), Bramson and Zeitouni
('06), Hu and Shi ('09), etc.

1
liminf (M, — = logn) = —co, a.s. (Aidékon and Shi ('14))
n—o00 2
. M, - %logn ,

When E(Z|x|:1(V(x)+)3e*V(x)) < 00!

M, — 2logn
li = = 5. (Hu (1
TP Togloglog w0



The second order limits of M,

Theorem 4 (LZ ('17)) Assume (1), (6)—(8). For any function
f satisfying f 1 oo, we have

P (M, — 11 i O [Tt ] =
n— — < —f(n),io)={ & —

( o ogn f(n) IO) 1 /0 tel @) —
Choose f; =loglogn and fo = (1 +¢)loglogn. Then

.. M, —1logn
liminf ——&%—— =

—1, P*-a.s.
n—oo  loglogmn

Theorem 5 (LZ ('17)) Assume (1), (6)—(8).

) Mn—(l—i—é)logn
lim sup

>1, P*-as.
n—00 logloglogn



Sketch of proofs — estimates for (S),)

In the proofs, we depend heavily on the probability estima-
tions for (Sy,), and some properties for (S,,) conditioned to stay in
[—2,00). We refer to Vatutin and Wachtel ('09) and prove more
inequalities. For example,

> PAS <1, 8 >0) <c(l+2)* ! (1+min(z, 2));

1>0
E(H( D s,5-0) = e (] FOpa(t+ o).

uniformly in = € [0,d,] with d, = o(n'/®). And E(M,) =
ra-+
=) (M, pa).




Sketch of proofs — truncating argument

It originated from Harris ('99), was formalized for BBM by
Kyprianou ('04), and later be used for BRW by Biggins and Kypri-
anou ('04) and then Aidekon and Shi ('14).

Define V() := miny¢(z ) V(y). We use the renewal function
R(u) of (S,) to introduce the truncated processes (8 > 0):

W= e yeg, (~ Wa)
|z|=n

Dﬁ = Z R(V(IIZ) + ﬂ)efv(z)l{z(x)zfﬂ}. (N QDn)
|z|=n

Note that lim, oo # =6 € (0,00) for S; € D(a, —1).



Sketch of proofs — Spine decomposition (1)

Dy,
:= ———, (change of probabilities

dP?
dP
]_‘

n

© is the point process (V(z),|z| = 1) under P?. The branching
random walk (V(z)) under P? can be described as follows:

At time O, V(wg) = 0. At each step n, all particles
produce according to ©, except wﬁ according to 0. wgﬂ
is chosen to be y among the children of w,’f proportional to
Rg(V(y))e*V(y)1{Z(y)2_ﬁ}. Hence there is a “spine” in the branch-
ing tree.

The spine process (V(wg),n > 0) under P? is distributed as
(Sn)n>0 conditioned to stay above —/ under P (Biggins and Kypri-

anou ('04)).



Sketch of proofs — Spine decomposition (2)

Denote the natural filtration of (V(z)) by (F,). With W,
define Q such that

Ql =Wn P, n>1

We give a description of (V(z)) under Q.

V(wg) = 0. each particle v in the nth generation dies and
produces independently as (V(z), |z| = 1) under Py (), except wy,
producing as (V(z), |z| = 1) under Qy(,,). wn+1 is chosen to be
x among the children of w,,, proportionally to e~V (*),

(V(wn))n>0 under Q has the distribution of (.S),),,>0 under P
(Lyons ('97)).



Proof of Theorem 1:

prove Dﬁ — Dgo (truncated martingale convergence)
prove Dy, — Dxo.

prove P(DfO >0) > 0. ((Dg) is uniformly integrable)
prove P*(Do, > 0) = 1. (Dfo < ¢Ds, as.)



Proof of Theorem 2: We first have

e ()~ T
EB<(‘1}[D/Z> > - (F(1—1ja))2ni'

Therefore limy,_,oo ne (Vg—j) =T(1-2), in probability (PP)

Finally, we manage to change the setting from P? to P.




Proof of Theorems 3 and 4:

We only need to prove the the convergence part in Theorem 4,

1

o0 d n
—— < o0 = lim sup =0, P*-as,
/0 tf(t) n—oo  f(n)

and the divergence part in Theorem 3, i.e.,

< dt ) . |
/0 m:ooiP(Mn—alogn<—f(n), o) =1.

We use estimations of (S;), (Sy) conditioned to stay above —z,

and spine decompositions.



Proof of Theorem 5: We mainly use the following estimation
and Borel-Cantelli lemma.

For any A > 0, there is ¢g > 0 such that for each n > 1,

1
P(Mn <(1+ E) logn — )\) < co(1+ N)e ™.
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