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Branching random walk

• It starts with an initial particle located at the origin.

• At time 1, the particle dies, producing some new particles, po-

sitioned according to Θ.

• At time 2, these particles die, each giving birth to new particles

positioned (with respect to the birth place) according to Θ.

• The process goes on with the same mechanism. We assume

each particle produces new particles independently.

For each vertex x on the branching tree, we denote the position

by V (x). The family of random variables (V (x)) is referred as a

branching random walk (Biggins (’10)).



We assume

E(
∑
|x|=1

1) > 1, (supercritical)

E(
∑
|x|=1

e−V (x)) = 1, E(
∑
|x|=1

V (x)e−V (x)) = 0, (boundary case)

(1)

where |x| denotes the generation of x. (V (x)) can be reduced to

this case by some renormalization, if Θ is not bounded from below

(see Jaffuel (’12)).



Additive martingale

Wn :=
∑
|x|=n

e−V (x), (additive martingale)

• V (x) ≡ 0: (Wn) degenerates to a supercritical GW process.

• V (x) 6= 0: (Wn) converges almost surely to 0 under (1) (su-

percritical + boundary case, Biggins (’77), Lyon (’97)).

It is natural to ask

At which rate Wn goes to 0?



Related work:

• Galton-Watson processes: Seneta (’68), Heyde (’70).

• Branching random walk:

• General case: Biggins and Kyprianou (’96, ’97).

• Boundary case: Hu and Shi (’09), Aidekon and Shi (’14).



Derivative martingale

Dn :=
∑
|x|=n

V (x)e−V (x), (derivative martingale)

Related work:

• Non-boundary case: Barral (’00), Biggins (’91,’92);

• Boundary case: Biggins and Kyprianou (’04), Chen (’15), etc.



Related results on derivative martingale

Suppose that

E(
∑
|x|=1

V 2(x)e−V (x)) <∞. (2)

Theorem A (Biggins and Kyprianou (’04))

Assume (1) and (2) hold. Then there exists a nonnegative

random variable D∞ such that

Dn → D∞, P−a.s.



Theorem B (Chen (’15))

Assume (1) and (2) hold. Then P(D∞ > 0) > 0 if and only if

the following condition holds:

E[X(log+X)2 + X̃ log+ X̃] <∞, (3)

where log+ y := 0 ∨ log y and

X :=
∑
|x|=1

e−V (x), X̃ :=
∑
|x|=1

V (x)+e
−V (x), (4)

with V (x)+ := V (x) ∨ 0.



When D∞ is nontrivial, P(D∞ > 0) equals to the non-

extinction probability of the branching tree. Define

P∗(·) := P(· |non extinction)

Obviously Wn → 0, P∗−a.s.
Theorem C (Aidekon and Shi (2014))

Assume (1), (2) and (3) hold. Under P∗, we have

n1/2Wn
P∗
−→

( 2

πσ2

)1/2
D∞, (5)

where D∞ > 0 is the random variable in Theorem A, and

σ2 := E
( ∑
|x|=1

V (x)2e−V (x)
)
<∞.



Stable branching random walk

In this paper, instead of (2) and (3), we shall study (V (x))

under (1) and (α ∈ (1, 2)):

(i) E (
∑
|x|=1

I{V (x)≤−y}e
−V (x)) = o(y−α), y → +∞, (6)

(ii) E (
∑
|x|=1

I{V (x)≥y}e
−V (x)) ∼ Cy−α, y → +∞, (7)

(iii) E(X(log+X)α + X̃(log+ X̃)α−1) <∞. (8)

Under (6) and (7), the step of the one-dimensional random walk

(Sn) associated with (V (x)) belongs to the domain of attraction of

a stable law.



(The many-to-one formula)

E
[ ∑
|x|=n

g(V (x1), . . . , V (xn))
]

= E
[
eSng(S1, . . . , Sn)

]
,

where (Sn) is a random walk, E(S1) = 0 (by (1)) and S1 belongs

to the domain of attraction of a stable law with characteristic func-

tion (spectrally positive). see Biggins and Kyprianou (1997), Lyons

(1997), Lyons et al (1995).

G(t) := exp
{
− c|t|α

(
1− i t

|t|
tan

πα

2

)}
, c > 0.

(2)⇔ E(S2
1) <∞

(6) + (7)⇔

{
P (S1 > y) ∼ Cy−α,

P (S1 < −y) = o(y−α),
E(S2

1) =∞



Main results – derivative martingale

Theorem 1 (HLZ (’17)) Assume (1), (6), (7). Then there

exists a nonnegative random variable D∞ such that

Dn → D∞, P−a.s.

Moreover, if condition (8) holds, then P∗(D∞ > 0) = 1.



Main results – additive martingale

Theorem 2 (HLZ (’17)) Assume (1), (6)–(8). We have

n
1
αWn

P∗
−→ θ

Γ(1−1/α)
D∞.

where D∞ > 0 is given in Theorem 1, and θ is a positive constant

related to the renewal function of (Sn).

Theorem 3 (LZ (’17)) Assume (1), (6)–(8). For any function

f ↑ ∞, we have P∗–a.s.

lim sup
n→∞

n
1
αWn

f(n)
=

{
0

∞
⇔

∫ ∞
0

1

t f(t)
d t

{
<∞

=∞.

limn→∞ n
1
αWn =∞ P∗ − a.s. (9)



Minimal position

Denote Mn = min|x|=n V (x).

The asymptotic behaviors of Mn: Biggins (’77), Lyons (’97),

Addario-Berry and Reed (’09), Aidékon (’13), Bramson and Zeitouni

(’06), Hu and Shi (’09), etc.

lim inf
n→∞

(
Mn −

1

2
log n

)
= −∞, a.s. (Aidékon and Shi (’14))

lim inf
n→∞

Mn − 1
2 log n

log log n
= −1, a.s. (Hu (’15))

When E(
∑
|x|=1(V (x)+)3e−V (x)) <∞:

lim sup
n→∞

Mn − 3
2 log n

log log log n
= 1. a.s. (Hu (’13))



The second order limits of Mn

Theorem 4 (LZ (’17)) Assume (1), (6)–(8). For any function

f satisfying f ↑ ∞, we have

P∗(Mn −
1

α
log n < −f(n), i.o.) =

{
0

1
⇔
∫ ∞

0

dt

tef(t)

{
<∞

=∞.

Choose f1 = log log n and f2 = (1 + ε) log log n. Then

lim inf
n→∞

Mn − 1
α log n

log logn
= −1, P∗–a.s.

Theorem 5 (LZ (’17)) Assume (1), (6)–(8).

lim sup
n→∞

Mn − (1 + 1
α) log n

log log log n
≥ 1, P∗–a.s.



Sketch of proofs – estimates for (Sn)

In the proofs, we depend heavily on the probability estima-

tions for (Sn), and some properties for (Sn) conditioned to stay in

[−x,∞). We refer to Vatutin and Wachtel (’09) and prove more

inequalities. For example,∑
l≥0

Pz(Sl ≤ x, Sl ≥ 0) ≤ c (1+x)α−1(1+min(x, z));

E
(
f
(Sn + x

n1/α

)
1{Sn≥−x}

)
=

R(x)

Γ(1− 1
α)n1/α

(∫ ∞
0

f(t)pα(t)dt+ on(1)
)
.

uniformly in x ∈ [0, dn] with dn = o(n1/α). And E (Mα) =
Γ(1−1

α
)

θ (Mα ↔ pα).



Sketch of proofs – truncating argument

It originated from Harris (’99), was formalized for BBM by

Kyprianou (’04), and later be used for BRW by Biggins and Kypri-

anou (’04) and then Aidekon and Shi (’14).

Define V (x) := miny∈〈∅,x〉 V (y). We use the renewal function

R(u) of (Sn) to introduce the truncated processes (β > 0):

W β
n :=

∑
|x|=n

e−V (x)1{V (x)≥−β}, (∼Wn)

Dβ
n :=

∑
|x|=n

R(V (x) + β)e−V (x)1{V (x)≥−β}. (∼ θDn)

Note that limu→∞
R(u)
u = θ ∈ (0,∞) for S1 ∈ D(α,−1).



Sketch of proofs – Spine decomposition (1)

dPβ

dP

∣∣∣∣∣
Fn

:=
Dβ
n

R(β)
, (change of probabilities)

Θ̂ is the point process (V (x), |x| = 1) under Pβ. The branching

random walk (V (x)) under Pβ can be described as follows:

At time 0, V (ωβ0 ) = 0. At each step n, all particles

produce according to Θ, except ωβn according to Θ̂. ωβn+1

is chosen to be y among the children of ωβn proportional to

Rβ(V (y))e−V (y)1{V (y)≥−β}. Hence there is a “spine” in the branch-

ing tree.

The spine process (V (ωβn), n ≥ 0) under Pβ is distributed as

(Sn)n≥0 conditioned to stay above −β under P (Biggins and Kypri-

anou (’04)).



Sketch of proofs – Spine decomposition (2)

Denote the natural filtration of (V (x)) by (Fn). With Wn,

define Q such that

Q
∣∣
Fn := Wn ·P

∣∣
Fn , n ≥ 1.

We give a description of (V (x)) under Q.

V (ω0) = 0. each particle υ in the nth generation dies and

produces independently as (V (x), |x| = 1) under PV (υ), except ωn

producing as (V (x), |x| = 1) under QV (ωn). ωn+1 is chosen to be

x among the children of ωn, proportionally to e−V (x).

(V (ωn))n≥0 under Q has the distribution of (Sn)n≥0 under P

(Lyons (’97)).



Proof of Theorem 1:

• prove Dβ
n → Dβ

∞ (truncated martingale convergence)

• prove Dn → D∞.

• prove P(Dβ
∞ > 0) > 0. ((Dβ

n) is uniformly integrable)

• prove P∗(D∞ > 0) = 1. (Dβ
∞ ≤ cD∞, a.s.)



Proof of Theorem 2: We first have

Eβ
(
W β
n

Dβ
n

)
∼ 1

Γ(1−1/α)n
1
α

,

Eβ
((W β

n

Dβ
n

)2
)
∼ 1(

Γ(1−1/α)
)2
n

2
α

.

Therefore limn→∞ n
1
α

(
Wβ
n

Dβn

)
= Γ(1− 1

α), in probability (Pβ)

Finally, we manage to change the setting from Pβ to P.



Proof of Theorems 3 and 4:

We only need to prove the the convergence part in Theorem 4,

i.e., ∫ ∞
0

dt

tf(t)
<∞⇒ lim sup

n→∞

n
1
αWn

f(n)
= 0, P∗–a.s.,

and the divergence part in Theorem 3, i.e.,∫ ∞
0

dt

tef(t)
=∞⇒ P∗(Mn −

1

α
log n < −f(n), i.o.) = 1.

We use estimations of (Sn), (Sn) conditioned to stay above −x,

and spine decompositions.



Proof of Theorem 5: We mainly use the following estimation

and Borel-Cantelli lemma.

For any λ > 0, there is c9 > 0 such that for each n ≥ 1,

P
(
Mn <

(
1 +

1

α

)
log n− λ

)
≤ c9(1 + λ)e−λ.
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