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@ [t is easy to see that

:n > 1} is a non-negative martingale. Let Woo

be the martingale limit.

Theorem (Kesten-Stigum 1966)

Suppose m > 1. Then W is nondegenerate if and only if
E(Llog" L) < +oco0. (1)

Moreover, under condition (1),
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e For multitype branching processes:
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Englander-Harris-Kyprianou(10), Liu-Ren-Song(09,11).
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e For superprocesses: Evans(1993), Evans-O'Connell(1994),
Liu-Ren-Song(09), Kyprianou et.al(12,13). Only for local
branching mechanism.

@ Very recently, two papers discussed spine decomposition for
multitype superprocess (special non-local branching
mechanism):

© Chen-Ren-Song (16+): multitype superdiffusions.
@ Kyprianou-Palau (16+4): super-Markov chains (multitype
continuous-state branching process)
@ Q: What about a more general non-local branching
mechanism?
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¢NL

(e**‘) 14+ )\9) 1" (z, d9),

is called the non-local branching mechanism and takes the form

<Z>NL(:c,f) = —c(z)n(z, f) —/

(1 - e-e"“’f)) v (x, d6),
(0,+0)

where c(z) € B (E), n(x,dy) is a probability kernel on E with
7(x, {z}) Z 1 and OV * (z, d#) is a bounded kernel from E to (0, +00).
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@ Notation: (f, u) := [, f(

@ X isan ./\/l( )-valued Markov process such that for every f € B (E)
and every € M(E),

Py <ei<f’Xf'>) = (G for ¢ >0,

where uy(x,t) := —log Ps, ( 2 X”) is the unique non-negative

locally bounded solution to the integral equation
b L
wlet) = P -1 | [ 0Huslt - s)as)

-1, [/ SV (6s, ) }



Example: multitype CSBP

Suppose E ={1,2,--- , K} (K > 2), m is the counting measure on E and
P.f(i) = f(i) foralli € E, t >0 and f € BT(E). Suppose

Ly, L . Ny 2 —Ar Ly
A" (5, \) := a(i)A + b(i)A +/(O,+Oo)( 71+/\r)1'[ (i, dr),

GG, f) = — (i), f) — /

(0,400)
There exists a Markov process {(Xt(l)7 L XINT > 0) in [0, +00) ¥
which is called a K-type CB process such that for f € B;'(E)

o) o )

where V; f(7) is the unique non-negative locally bounded solution to the

(1 - e—”“’”) Ve (i, dr),

following integral equation:

Vef (i) = f() - /O t (6", Vaf () + 6V (0 Vi) ) ds fort >0, i€ B,
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@ Let
Vo) imcle)+ [ o1V de) and (o, dy) = (e)n(e, dy).
0,+00)
For every € M(FE) and f € By(E),

PM (<f7 Xt>) = <qgtf7 u>7

where P, f(z) is the unique locally bounded solution to the following

integral equation:

Vos0) = Ps-m. | [ t ole - sieas| 1. | t (6B i

@ The corresponding bilinear form (Q, F) of B is given by

Q) = E(uw o)+ [ a@ut@@m(dn)= [ [ wwpn (e dym(ds)

E

where (£, F) is the Dirichlet form on L?(E,m) with respect to P;.
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@ Assumption 1. For every x such that b(z) > 0, there exists N, such that

@ This measure N, is called the Dynkin-Kuznetsov measure for the

superprocess.
@ Assumption 1 is true for superdiffusions with a local branching

mechanism but NOT for all superprocesses. (sufficient conditions can be
found in Li (2011).)
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@ Kunita(1969) ensures that under Assumption 2, the bilinear form (Q, F)
is closed on L?(E,m) and corresponds to a pair of strongly continuous
dual semigroups {T; : t > 0} and {T} : t > 0} on L*(E,m).

@ Further we can show that for all f € B,(E) N L*(E,m),

P.f =T:f m-ae. forallt>0.

T} can be regarded as the unique bounded linear operator on L?(E,m)
extended by ;.
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@ We can define a new probability measure Q,, by the following formula:

1

dQul, = W (X)dP,, for all t > 0.

<h7 :U’> Fit

@ Q: How to construct X; under Q.7



For every u € M(E), g € B (E),

At

Qu (e*<97Xt>) — <€h’7ﬂ>

where Vig(z) := ug(z,t) is the Log-Laplace exponent of original superprocess,
and V{"g(z) is the unique locally bounded solution to the following integral

e Vo ylg Y,

equation
t
Vlig(z) = Pih(z) — I, [ [ e vie, vfismds} ,
0

where

Y(z, f,9) = g(z) (a(ac) + 2b(z) f(z) + /(0 0 (1 — e*f(w)ﬂ) HL(J:, d@))

,Foo)

—m(z,g) c(;t)+/ ge "= DTINE (2, d0) | .
(0,+00)
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@ Method: |keda-Nagasawa-Watanabe(1966) “piecing out” procedure.

@ Doob h-transformed process (£, T1%):

t t h f
H; = exp (Mt —/0 a(&s)ds +/0 q(&)ds) hgo;’ di = H, dIl,

where g(z) := W,Ef:’t};).

@ ¢ killed process of £" by rate g(z) = A’é?g’!;’); Let ¢ denote its lifetime.

@ Transfer kernel k(w, dy) := W’L(gaw)i(w),dy) where

h(y)m(z, dy)

f E.
(@, h) orx €

7" (z, dy) ==

@ The spine gevolves as the process &" until the killing time E it is then
revived by means of the kernel x(w,dy) and evolves again as &M and so

on.
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@ For every f(s,z,y) € B([0,400) Xx E X E), t >0 and z € E, we have

E. [Z f(n,é;,é‘m] 5[ [[a@as [ 16.EnnEa)].

T <t

@ “Many-to-One formula”: for f € B} (E) and t > 0,

Ps, [(fh, X4)]

P, (1 Xp)] 0 &)
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processes along the spine in a Poissonian way with rate

dNg, x 2b(&)dt.

@ (discontinuous immigration) “immigrate” independent M (E)-valued processes

at space-time points (gt,t) with initial mass 0 at rate

0TI (&;, d6) x dPos,, X dt.
t

@ (revival-caused immigration)At each revival time 7; of £, “immigrate” an
independent copy of (X, Pr,) with initial distribution 7;(-) := @ﬂr(gn,, -) and
O; is a [0, +00)-valued random variable with distribution n(gﬂ_,de) given by

c(x) 1

n(z,do) = (v(z) 1a(z) + 1E\A(x)) 5o(d9)+m1A(x)1(0,+oo)(9)enNL(m,do).
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@ Remark: If branching mechanism is local, the revival-caused

immigration does NOT occur. The piecing-out procedure and the

revival-cased immigration are consequences of non-local branching.

@ Similar phenomenon has also been observed in Kyprianou-Paulau(16+)
for super-Markov chain and in Chen-Ren-Song (16+) for multitype

superdiffusions.
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Llog L criterion for superprocesses

@ Q: WIill the superprocess extinct when A\; < 07

@ [Ren-Song-Y.(16+)] (Under some technical conditions) for
every non-trivial p € M(E), if A; <0, then
P, (WL(X)=0)=1.

@ In this case, X exhibits weak local extinction, that is, for
every nonempty relatively compact open subset B of F,

P, (tETth(B) = o) =1.
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@ Q: When does, for \; > 0, eM? give the right growth rate of
the superprocess?

e [Ren-Song-Y.(16+)]If A\; > 0, then W (X) is non-degenerate
if and only if

</(07+Oo) rh(')10g+(rh(~))HL(-,dr)7ﬁ> < 4o
and

<1A(’)/<o,+oo) rr(-, ) 1og+(m(.,h))nNL(.,dr),E> < +o0.



Application: multitype CSBP

@ Suppose (Xfl)7 e ,Xt(K)) is a K-type CB process.

@ Define the mean matrix M (t) = (M (t):;)i; by M(t)i; := Ps, (Xt(j)) for
i,j € E.

@ Markov property implies that M (t) has a formal matrix generator
A := (Aij)i; given by

M(t) = e, and Ai; = v(8)pi; — a(i)di(j) for i, 5 € E.

@ Assume A is an irreducible matrix. Let A := sup,¢,4) Re(\) where
o(A) denotes the set of eigenvalues of A.

@ By Perron-Frobenius theory, for every t > 0, e*? is a simple eigenvalue
of M(t), and there exist a unique positive right eigenvector

u=(u1,---,ux)” and a unique positive left eigenvector

v = (v1,--- ,vr)T such that
K K
Zui = Zuwi =1, M@#u= eAtu7 VTM(t) = My
i—1 i—1



0 Wi(X) :=e M Zszl u; X" is a non-negative martingale.

@ Under the martingale change of measure the spine process gis a
continuous-time Markov chain with @-matrix Q = (g;;)i; given by

qii i = —(A+a(3), qij:= M for i # j.

Uj

@ for every non-trivial u € M(E), the martingale limit Woo (X) is
non-degenerate if and only if A > 0 and

/ rlog* THL(i,dT)+/ rlogt ra™t (i,dr) < +o0o0 for every i € E.
(0,400) (0,400)

@ In particular, under the above condition, P, (limt_H,oo Xt(i) = 0) =1 for

every i € F and every non-trivial u € M(E) if and only if A <O0.
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