Spine decomposition and $L \log L$ criterion for superprocesses with non-local branching mechanisms

Ting Yang

University of Bath, Beijing Institute of Technology (joint work with Yan-Xia Ren and Renming Song)

2017-05-10, Beijing Normal University.

$L \log L$ criterion

- Z_n : Galton-Watson branching process.
- L: number of children given by one particle.
- $m := EL < +\infty$.

$L \log L$ criterion

- Z_n : Galton-Watson branching process.
- L: number of children given by one particle.
- $m := EL < +\infty$.
- Q: When does, for a supercritical G-W process, the mean $EZ_n = m^n$ give the right growth rate?

$L \log L$ criterion

- Z_n : Galton-Watson branching process.
- L: number of children given by one particle.
- $m := EL < +\infty$.
- Q: When does, for a supercritical G-W process, the mean EZ_n = mⁿ give the right growth rate?
- It is easy to see that $\{\frac{Z_n}{m^n}: n \ge 1\}$ is a non-negative martingale. Let W_{∞} be the martingale limit.

Theorem (Kesten-Stigum 1966)

Suppose m > 1. Then W_{∞} is nondegenerate if and only if

$$E\left(L\log^+ L\right) < +\infty. \tag{1}$$

Moreover, under condition (1),

$$\frac{Z_n}{m^n} \to W_\infty \quad \text{ a.s. and in } L^1.$$

• For **G-W processes**: Lyons-Pemantal-Peres(1995) used a method of martingale change of measure to give a concise and elegant proof of the $L \log L$ theorem.

- For **G-W processes**: Lyons-Pemantal-Peres(1995) used a method of martingale change of measure to give a concise and elegant proof of the $L \log L$ theorem.
- The main technique is a spine decomposition-under a martingale change of measure, the original branching process can be viewed as immigration along a spine.

- For **G-W processes**: Lyons-Pemantal-Peres(1995) used a method of martingale change of measure to give a concise and elegant proof of the $L \log L$ theorem.
- The main technique is a spine decomposition-under a martingale change of measure, the original branching process can be viewed as immigration along a spine.
- For multitype branching processes: Kurtz-Lyons-Pemantle-Peres(1997), Lyons(1997), Biggins-Kyprianou(2004).

- For **G-W processes**: Lyons-Pemantal-Peres(1995) used a method of martingale change of measure to give a concise and elegant proof of the $L \log L$ theorem.
- The main technique is a spine decomposition-under a martingale change of measure, the original branching process can be viewed as immigration along a spine.
- For multitype branching processes: Kurtz-Lyons-Pemantle-Peres(1997), Lyons(1997), Biggins-Kyprianou(2004).
- For branching Markov processes: Hardy-Harris(09), Engländer-Harris-Kyprianou(10), Liu-Ren-Song(09,11).

• For superprocesses: Evans(1993), Evans-O'Connell(1994), Liu-Ren-Song(09), Kyprianou et.al(12,13). Only for **local branching mechanism**.

- For superprocesses: Evans(1993), Evans-O'Connell(1994), Liu-Ren-Song(09), Kyprianou et.al(12,13). Only for local branching mechanism.
- Very recently, two papers discussed spine decomposition for multitype superprocess (special non-local branching mechanism):
 - Chen-Ren-Song (16+): multitype superdiffusions.
 - Syprianou-Palau (16+): super-Markov chains (multitype continuous-state branching process)

- For superprocesses: Evans(1993), Evans-O'Connell(1994), Liu-Ren-Song(09), Kyprianou et.al(12,13). Only for local branching mechanism.
- Very recently, two papers discussed spine decomposition for multitype superprocess (special non-local branching mechanism):
 - Chen-Ren-Song (16+): multitype superdiffusions.
 - Syprianou-Palau (16+): super-Markov chains (multitype continuous-state branching process)
- Q: What about a more general non-local branching mechanism?

 Spatial motion (ξ_t, Π_x) is a *m*-symmetric Hunt process on a locally compact metric space (E, m) with semigroup P_t.

- Spatial motion (ξ_t, Π_x) is a *m*-symmetric Hunt process on a locally compact metric space (E, m) with semigroup P_t.
- Branching mechanism:

 $\psi(x,f) = \phi^L(x,f(x)) + \phi^{NL}(x,f) \quad \text{ for } x \in E, \ f \in \mathcal{B}_b^+(E).$

- Spatial motion (ξ_t, Π_x) is a *m*-symmetric Hunt process on a locally compact metric space (E, m) with semigroup P_t.
- Branching mechanism:

 $\psi(x,f) = \phi^L(x,f(x)) + \phi^{NL}(x,f) \quad \text{ for } x \in E, \ f \in \mathcal{B}_b^+(E).$

 ϕ^L is called the ${\rm local}\ {\rm branching}\ {\rm mechanism}\ {\rm and}\ {\rm takes}\ {\rm the}\ {\rm form}$

$$\phi^{L}(x,\lambda) = a(x)\lambda + b(x)\lambda^{2} + \int_{(0,+\infty)} \left(e^{-\lambda\theta} - 1 + \lambda\theta\right) \Pi^{L}(x,d\theta),$$

where $a(x) \in \mathcal{B}_b(E)$, $b(x) \in \mathcal{B}_b^+(E)$ and $(\theta \wedge \theta^2) \Pi^L(x, d\theta)$ is a bounded kernel from E to $(0, +\infty)$.

- Spatial motion (ξ_t, Π_x) is a m-symmetric Hunt process on a locally compact metric space (E, m) with semigroup P_t.
- Branching mechanism:

$$\psi(x,f) = \phi^L(x,f(x)) + \phi^{NL}(x,f) \quad \text{ for } x \in E, \ f \in \mathcal{B}_b^+(E).$$

 ϕ^L is called the ${\rm local}\ {\rm branching}\ {\rm mechanism}$ and takes the form

$$\phi^{L}(x,\lambda) = a(x)\lambda + b(x)\lambda^{2} + \int_{(0,+\infty)} \left(e^{-\lambda\theta} - 1 + \lambda\theta\right) \Pi^{L}(x,d\theta),$$

where $a(x) \in \mathcal{B}_b(E)$, $b(x) \in \mathcal{B}_b^+(E)$ and $(\theta \wedge \theta^2) \Pi^L(x, d\theta)$ is a bounded kernel from E to $(0, +\infty)$.

 ϕ^{NL} is called the non-local branching mechanism and takes the form

$$\phi^{NL}(x,f) = -c(x)\pi(x,f) - \int_{(0,+\infty)} \left(1 - e^{-\theta\pi(x,f)}\right) \Pi^{NL}(x,d\theta),$$

where $c(x) \in \mathcal{B}_b^+(E)$, $\pi(x, dy)$ is a probability kernel on E with $\pi(x, \{x\}) \not\equiv 1$ and $\theta \Pi^{NL}(x, d\theta)$ is a bounded kernel from E to $(0, +\infty)$.

• Notation: $\langle f, \mu \rangle := \int_E f(x) \mu(dx).$

- Notation: $\langle f, \mu \rangle := \int_E f(x) \mu(dx).$
- X is an $\mathcal{M}(E)$ -valued Markov process such that for every $f \in \mathcal{B}_b^+(E)$ and every $\mu \in \mathcal{M}(E)$,

$$\mathbf{P}_{\mu}\left(e^{-\langle f, X_t\rangle}\right) = e^{-\langle u_f(\cdot, t), \mu\rangle} \quad \text{ for } t \ge 0,$$

where $u_f(x,t) := -\log P_{\delta_x}\left(e^{-\langle f, X_t \rangle}\right)$ is the unique non-negative locally bounded solution to the integral equation

$$u_f(x,t) = P_t f(x) - \prod_x \left[\int_0^t \phi^L(\xi_s, u_f(t-s,\xi_s)) ds \right]$$
$$-\prod_x \left[\int_0^t \phi^{NL}(\xi_s, u_f^{t-s}) ds \right].$$

Example: multitype CSBP

Suppose $E = \{1, 2, \dots, K\}$ $(K \ge 2)$, m is the counting measure on E and $P_t f(i) = f(i)$ for all $i \in E$, $t \ge 0$ and $f \in \mathcal{B}^+(E)$. Suppose

$$\phi^{L}(i,\lambda) := a(i)\lambda + b(i)\lambda^{2} + \int_{(0,+\infty)} \left(e^{-\lambda r} - 1 + \lambda r\right) \Pi^{L}(i,dr),$$

$$\phi^{NL}(i,f) := -c(i)\pi(i,f) - \int_{(0,+\infty)} \left(1 - e^{-r\pi(i,f)}\right) \Pi^{NL}(i,dr),$$

There exists a Markov process $\{(X_t^{(1)}, \cdots, X_t^{(K)})^{\mathrm{T}} : t \ge 0\}$ in $[0, +\infty)^K$, which is called a K-type CB process such that for $f \in \mathcal{B}_b^+(E)$

$$P_{\mu}\left[\exp\left(-\sum_{i\in E}f(i)X_{t}^{(i)}\right)\right] = \exp\left(-\sum_{i\in E}\mu_{i}V_{t}f(i)\right),$$

where $V_t f(i)$ is the unique non-negative locally bounded solution to the following integral equation:

$$V_t f(i) = f(i) - \int_0^t \left(\phi^L(i, V_s f(i)) + \phi^{NL}(i, V_s f) \right) ds \quad \text{ for } t \ge 0, \ i \in E.$$

Mean semigroup

Let

$$\gamma(x):=c(x)+\int_{(0,+\infty)}\theta\Pi^{NL}(x,d\theta)\quad \text{ and }\quad \gamma(x,dy):=\gamma(x)\pi(x,dy).$$

For every $\mu \in \mathcal{M}(E)$ and $f \in \mathcal{B}_b(E)$,

$\mathbf{P}_{\mu}\left(\langle f, X_t \rangle\right) = \langle \mathfrak{P}_t f, \mu \rangle,$

where $\mathfrak{P}_t f(x)$ is the unique locally bounded solution to the following integral equation:

$$\mathfrak{P}_t f(x) = P_t f(x) - \Pi_x \left[\int_0^t a(\xi_s) \mathfrak{P}_{t-s} f(\xi_s) ds \right] + \Pi_x \left[\int_0^t \gamma(\xi_s, \mathfrak{P}_{t-s} f) ds \right]$$

Mean semigroup

Let

$$\gamma(x):=c(x)+\int_{(0,+\infty)}\theta\Pi^{NL}(x,d\theta)\quad \text{ and }\quad \gamma(x,dy):=\gamma(x)\pi(x,dy).$$

For every $\mu \in \mathcal{M}(E)$ and $f \in \mathcal{B}_b(E)$,

$\mathbf{P}_{\mu}\left(\langle f, X_t \rangle\right) = \langle \mathfrak{P}_t f, \mu \rangle,$

where $\mathfrak{P}_t f(x)$ is the unique locally bounded solution to the following integral equation:

$$\mathfrak{P}_t f(x) = P_t f(x) - \Pi_x \left[\int_0^t a(\xi_s) \mathfrak{P}_{t-s} f(\xi_s) ds \right] + \Pi_x \left[\int_0^t \gamma(\xi_s, \mathfrak{P}_{t-s} f) ds \right].$$

• The corresponding bilinear form $(\mathcal{Q}, \mathcal{F})$ of \mathfrak{P}_t is given by

$$\mathcal{Q}(u,v) := \mathcal{E}(u,v) + \int_E a(x)u(x)v(x)m(dx) - \int_E \int_E u(y)v(x)\gamma(x,dy)m(dx),$$

where $(\mathcal{E}, \mathcal{F})$ is the Dirichlet form on $L^2(E, m)$ with respect to P_t .

• Assumption 1. For every x such that b(x) > 0, there exists \mathbb{N}_x such that

$$\mathbf{P}_{\delta_x}\left(e^{-\langle f, X_t\rangle}\right) = e^{-\mathbb{N}_x\left(1 - e^{-\langle f, X_t\rangle}\right)}.$$

• Assumption 1. For every x such that b(x) > 0, there exists \mathbb{N}_x such that

$$\mathbf{P}_{\delta_x}\left(e^{-\langle f, X_t\rangle}\right) = e^{-\mathbb{N}_x\left(1 - e^{-\langle f, X_t\rangle}\right)}.$$

• This measure \mathbb{N}_x is called the **Dynkin-Kuznetsov measure** for the superprocess.

• Assumption 1. For every x such that b(x) > 0, there exists \mathbb{N}_x such that

$$\mathbf{P}_{\delta_x}\left(e^{-\langle f, X_t\rangle}\right) = e^{-\mathbb{N}_x\left(1 - e^{-\langle f, X_t\rangle}\right)}.$$

- This measure \mathbb{N}_x is called the **Dynkin-Kuznetsov measure** for the superprocess.
- Assumption 1 is true for superdiffusions with a local branching mechanism but NOT for all superprocesses. (sufficient conditions can be found in Li (2011).)

• Assumption 2. The measure $\int_E \pi(x,\cdot) m(dx)$ belongs to the Kato class of $\xi.$

- Assumption 2. The measure $\int_E \pi(x,\cdot)m(dx)$ belongs to the Kato class of ξ .
- Kunita(1969) ensures that under Assumption 2, the bilinear form (Q, F) is closed on L²(E, m) and corresponds to a pair of strongly continuous dual semigroups {T_t : t ≥ 0} and {Î_t : t ≥ 0} on L²(E, m).

- Assumption 2. The measure $\int_E \pi(x,\cdot)m(dx)$ belongs to the Kato class of ξ .
- Kunita(1969) ensures that under Assumption 2, the bilinear form $(\mathcal{Q}, \mathcal{F})$ is closed on $L^2(E, m)$ and corresponds to a pair of strongly continuous dual semigroups $\{T_t : t \ge 0\}$ and $\{\widehat{T}_t : t \ge 0\}$ on $L^2(E, m)$.
- Further we can show that for all $f \in \mathcal{B}_b(E) \cap L^2(E,m)$,

$$\mathfrak{P}_t f = T_t f \ m$$
-a.e. for all $t > 0$.

 T_t can be regarded as the unique bounded linear operator on $L^2(E,m)$ extended by \mathfrak{P}_t .

$$\mathcal{Q}(h,v) = \lambda_1(h,v), \quad \mathcal{Q}(v,\widehat{h}) = \lambda_1(v,\widehat{h}) \quad \forall v \in \mathcal{F}.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

$$\mathcal{Q}(h,v) = \lambda_1(h,v), \quad \mathcal{Q}(v,\hat{h}) = \lambda_1(v,\hat{h}) \quad \forall v \in \mathcal{F}.$$

• This equation implies that $T_t h = e^{-\lambda_1 t} h$ and $\widehat{T}_t \widehat{h} = e^{-\lambda_1 t} \widehat{h}$ in $L^2(E, m)$.

$$\mathcal{Q}(h,v) = \lambda_1(h,v), \quad \mathcal{Q}(v,\widehat{h}) = \lambda_1(v,\widehat{h}) \quad \forall v \in \mathcal{F}.$$

- This equation implies that $T_t h = e^{-\lambda_1 t} h$ and $\widehat{T}_t \widehat{h} = e^{-\lambda_1 t} \widehat{h}$ in $L^2(E, m)$.
- $W_t^h(X) := e^{\lambda_1 t} \langle h, X_t \rangle$ is a non-negative P_{μ} -martingale

$$\mathcal{Q}(h,v) = \lambda_1(h,v), \quad \mathcal{Q}(v,\widehat{h}) = \lambda_1(v,\widehat{h}) \quad \forall v \in \mathcal{F}.$$

• This equation implies that $T_t h = e^{-\lambda_1 t} h$ and $\hat{T}_t \hat{h} = e^{-\lambda_1 t} \hat{h}$ in $L^2(E,m)$.

• $W_t^h(X) := e^{\lambda_1 t} \langle h, X_t \rangle$ is a non-negative P_{μ} -martingale

• We can define a new probability measure Q_{μ} by the following formula:

$$d\mathbf{Q}_{\mu}|_{\mathcal{F}_{t}} := \frac{1}{\langle h, \mu \rangle} W_{t}^{h}(X) d\mathbf{P}_{\mu}\Big|_{\mathcal{F}_{t}} \quad \text{ for all } t \ge 0.$$

$$\mathcal{Q}(h,v) = \lambda_1(h,v), \quad \mathcal{Q}(v,\hat{h}) = \lambda_1(v,\hat{h}) \quad \forall v \in \mathcal{F}.$$

• This equation implies that $T_t h = e^{-\lambda_1 t} h$ and $\hat{T}_t \hat{h} = e^{-\lambda_1 t} \hat{h}$ in $L^2(E,m)$.

• $W_t^h(X) := e^{\lambda_1 t} \langle h, X_t \rangle$ is a non-negative P_{μ} -martingale

We can define a new probability measure Q_μ by the following formula:

$$d\mathbf{Q}_{\mu}|_{\mathcal{F}_{t}} := \frac{1}{\langle h, \mu \rangle} W_{t}^{h}(X) d\mathbf{P}_{\mu}\Big|_{\mathcal{F}_{t}} \quad \text{ for all } t \geq 0.$$

• Q: How to construct X_t under Q_{μ} ?

For every $\mu \in \mathcal{M}(E)$, $g \in \mathcal{B}_b^+(E)$,

$$\mathbf{Q}_{\mu}\left(e^{-\langle g, X_{t}\rangle}\right) = \frac{e^{\lambda_{1}t}}{\langle h, \mu \rangle} e^{-\langle V_{t}g, \mu \rangle} \langle V_{t}^{h}g, \mu \rangle,$$

where $V_tg(x) := u_g(x,t)$ is the Log-Laplace exponent of original superprocess, and $V_t^hg(x)$ is the unique locally bounded solution to the following integral equation

$$V_t^h g(x) = P_t h(x) - \Pi_x \left[\int_0^t \Psi(\xi_s, V_{t-s}g, V_{t-s}^h g) ds \right],$$

where

$$\begin{split} \Psi(x,f,g) &:= g(x) \left(a(x) + 2b(x)f(x) + \int_{(0,+\infty)} \theta \left(1 - e^{-f(x)\theta} \right) \Pi^L(x,d\theta) \right) \\ &-\pi(x,g) \left(c(x) + \int_{(0,+\infty)} \theta e^{-\theta \pi(x,f)} \Pi^{NL}(x,d\theta) \right). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 三 ののの

• Method: Ikeda-Nagasawa-Watanabe(1966) "piecing out" procedure.

- Method: Ikeda-Nagasawa-Watanabe(1966) "piecing out" procedure.
- Doob *h*-transformed process (ξ^h, Π^h_x) :

$$H_{t} = \exp\left(\lambda_{1}t - \int_{0}^{t} a(\xi_{s})ds + \int_{0}^{t} q(\xi_{s})ds\right) \frac{h(\xi_{t})}{h(\xi_{0})}, \quad d\Pi_{x}^{h} = H_{t} \, d\Pi_{x}$$

where $q(x) := \frac{\gamma(x,h)}{h(x)}$.

- Method: Ikeda-Nagasawa-Watanabe(1966) "piecing out" procedure.
- Doob *h*-transformed process (ξ^h, Π^h_x) :

$$H_{t} = \exp\left(\lambda_{1}t - \int_{0}^{t} a(\xi_{s})ds + \int_{0}^{t} q(\xi_{s})ds\right) \frac{h(\xi_{t})}{h(\xi_{0})}, \quad d\Pi_{x}^{h} = H_{t} \, d\Pi_{x}$$

where $q(x) := \frac{\gamma(x,h)}{h(x)}$. • $\hat{\xi}$: killed process of ξ^h by rate $q(x) = \frac{\gamma(x,h)}{h(x)}$; Let $\hat{\zeta}$ denote its lifetime.

- Method: Ikeda-Nagasawa-Watanabe(1966) "piecing out" procedure.
- Doob *h*-transformed process (ξ^h, Π^h_x) :

$$H_{t} = \exp\left(\lambda_{1}t - \int_{0}^{t} a(\xi_{s})ds + \int_{0}^{t} q(\xi_{s})ds\right) \frac{h(\xi_{t})}{h(\xi_{0})}, \quad d\Pi_{x}^{h} = H_{t} \, d\Pi_{x}$$

where $q(x) := \frac{\gamma(x,h)}{h(x)}$.

- $\hat{\xi}$: killed process of ξ^h by rate $q(x) = \frac{\gamma(x,h)}{h(x)}$; Let $\hat{\zeta}$ denote its lifetime.
- Transfer kernel $\kappa(\omega,dy):=\pi^h(\widehat{\xi}_{\widehat{\zeta}(\omega)-}(\omega),dy)$ where

$$\pi^{h}(x, dy) := \frac{h(y)\pi(x, dy)}{\pi(x, h)} \quad \text{ for } x \in E$$

- Method: Ikeda-Nagasawa-Watanabe(1966) "piecing out" procedure.
- Doob *h*-transformed process (ξ^h, Π^h_x) :

$$H_{t} = \exp\left(\lambda_{1}t - \int_{0}^{t} a(\xi_{s})ds + \int_{0}^{t} q(\xi_{s})ds\right) \frac{h(\xi_{t})}{h(\xi_{0})}, \quad d\Pi_{x}^{h} = H_{t} \, d\Pi_{x}$$

where $q(x) := \frac{\gamma(x,h)}{h(x)}$.

- $\hat{\xi}$: killed process of ξ^h by rate $q(x) = \frac{\gamma(x,h)}{h(x)}$; Let $\hat{\zeta}$ denote its lifetime.
- Transfer kernel $\kappa(\omega, dy) := \pi^h(\widehat{\xi}_{\widehat{\zeta}(\omega)-}(\omega), dy)$ where

$$\pi^{h}(x,dy) := \frac{h(y)\pi(x,dy)}{\pi(x,h)} \quad \text{ for } x \in E.$$

• The spine $\tilde{\xi}$ evolves as the process ξ^h until the killing time $\hat{\zeta}$, it is then revived by means of the kernel $\kappa(\omega, dy)$ and evolves again as ξ^h and so on.

 $\bullet~$ For every $f(s,x,y)\in \mathcal{B}([0,+\infty)\times E\times E),~t>0~\text{and}~x\in E,$ we have

$$\mathbf{E}_{x}\left[\sum_{\tau_{i}\leq t}f(\tau_{i},\widetilde{\xi}_{\tau_{i}-},\widetilde{\xi}_{\tau_{i}})\right] = \mathbf{E}_{x}\left[\int_{0}^{t}q(\widetilde{\xi}_{s})ds\int_{E}f(s,\widetilde{\xi}_{s},y)\pi^{h}(\widetilde{\xi}_{s},dy)\right].$$

э

白 ト イヨト イヨト

• For every $f(s,x,y) \in \mathcal{B}([0,+\infty) \times E \times E), \ t > 0$ and $x \in E$, we have

$$\mathbf{E}_{x}\left[\sum_{\tau_{i}\leq t}f(\tau_{i},\widetilde{\xi}_{\tau_{i}-},\widetilde{\xi}_{\tau_{i}})\right] = \mathbf{E}_{x}\left[\int_{0}^{t}q(\widetilde{\xi}_{s})ds\int_{E}f(s,\widetilde{\xi}_{s},y)\pi^{h}(\widetilde{\xi}_{s},dy)\right].$$

• "Many-to-One formula": for $f \in \mathcal{B}_b^+(E)$ and $t \ge 0$,

$$\frac{\mathrm{P}_{\delta_x}\left[\langle fh, X_t \rangle\right]}{\mathrm{P}_{\delta_x}\left[\langle h, X_t \rangle\right]} = \mathrm{E}_{\delta_x}\left[f(\widetilde{\xi}_t)\right].$$

< ∃ > <

For every $\mu \in \mathcal{M}(E)$, (X, Q_{μ}) is equal in law to the following (all independent):

For every $\mu \in \mathcal{M}(E)$, (X, Q_{μ}) is equal in law to the following (all independent):

• Run an independent copy of $((X_t)_{t\geq 0}; P_{\mu})$ and an independent copy of $\tilde{\xi}$;

For every $\mu \in \mathcal{M}(E)$, (X, Q_{μ}) is equal in law to the following (all independent):

- Run an independent copy of $((X_t)_{t\geq 0}; P_{\mu})$ and an independent copy of $\tilde{\xi}$;
- (continuous immigration) "immigrate" independent copies of M(E)-valued processes along the spine in a Poissonian way with rate

$$d\mathbb{N}_{\widetilde{\xi}_t} \times 2b(\widetilde{\xi}_t)dt.$$

For every $\mu \in \mathcal{M}(E)$, (X, Q_{μ}) is equal in law to the following (all independent):

- Run an independent copy of $((X_t)_{t\geq 0}; P_{\mu})$ and an independent copy of ξ ;
- (continuous immigration) "immigrate" independent copies of M(E)-valued processes along the spine in a Poissonian way with rate

$$d\mathbb{N}_{\widetilde{\xi}_t} \times 2b(\widetilde{\xi}_t)dt.$$

 (discontinuous immigration) "immigrate" independent *M*(*E*)-valued processes at space-time points (ξ̃_t, t) with initial mass θ at rate

$$\theta \Pi^L(\widetilde{\xi}_t, d\theta) \times d\mathbf{P}_{\theta \delta_{\widetilde{\xi}_t}} \times dt.$$

For every $\mu \in \mathcal{M}(E)$, (X, Q_{μ}) is equal in law to the following (all independent):

- Run an independent copy of ((X_t)_{t≥0}; P_μ) and an independent copy of ξ̃;
- (continuous immigration) "immigrate" independent copies of M(E)-valued processes along the spine in a Poissonian way with rate

$$d\mathbb{N}_{\widetilde{\xi}_t} \times 2b(\widetilde{\xi}_t)dt$$

 (discontinuous immigration) "immigrate" independent *M*(*E*)-valued processes at space-time points (ξ̃_t, t) with initial mass θ at rate

$$\theta \Pi^L(\widetilde{\xi}_t, d\theta) \times d\mathbf{P}_{\theta \delta_{\widetilde{\xi}_t}} \times dt.$$

• (revival-caused immigration)At each revival time τ_i of $\tilde{\xi}$, "immigrate" an independent copy of (X, P_{π_i}) with initial distribution $\pi_i(\cdot) := \Theta_i \pi(\tilde{\xi}_{\tau_i-}, \cdot)$ and Θ_i is a $[0, +\infty)$ -valued random variable with distribution $\eta(\tilde{\xi}_{\tau_i-}, d\theta)$ given by $\eta(x, d\theta) := \left(\frac{c(x)}{\gamma(x)} \mathbbm{1}_A(x) + \mathbbm{1}_{E \setminus A}(x)\right) \delta_0(d\theta) + \frac{1}{\gamma(x)} \mathbbm{1}_A(x) \mathbbm{1}_{(0, +\infty)}(\theta) \theta \mathbbm{1}^{NL}(x, d\theta).$

 Remark: If branching mechanism is local, the revival-caused immigration does NOT occur. The piecing-out procedure and the revival-cased immigration are consequences of non-local branching.

- Remark: If branching mechanism is local, the revival-caused immigration does NOT occur. The piecing-out procedure and the revival-cased immigration are consequences of non-local branching.
- Similar phenomenon has also been observed in Kyprianou-Paulau(16+) for super-Markov chain and in Chen-Ren-Song (16+) for multitype superdiffusions.

• Q: Will the superprocess extinct when $\lambda_1 \leq 0$?

$L \log L$ criterion for superprocesses

- Q: Will the superprocess extinct when $\lambda_1 \leq 0$?
- [Ren-Song-Y.(16+)] (Under some technical conditions) for every non-trivial $\mu \in \mathcal{M}(E)$, if $\lambda_1 \leq 0$, then $P_{\mu} \left(W^h_{\infty}(X) = 0 \right) = 1.$

$L \log L$ criterion for superprocesses

- Q: Will the superprocess extinct when $\lambda_1 \leq 0$?
- [Ren-Song-Y.(16+)] (Under some technical conditions) for every non-trivial $\mu \in \mathcal{M}(E)$, if $\lambda_1 \leq 0$, then $P_{\mu}\left(W^h_{\infty}(X) = 0\right) = 1.$
- In this case, X exhibits weak local extinction, that is, for every nonempty relatively compact open subset B of E,

$$\mathcal{P}_{\mu}\left(\lim_{t \to +\infty} X_t(B) = 0\right) = 1.$$

• Q: When does, for $\lambda_1 > 0$, $e^{\lambda_1 t}$ give the right growth rate of the superprocess?

- Q: When does, for $\lambda_1 > 0$, $e^{\lambda_1 t}$ give the right growth rate of the superprocess?
- [Ren-Song-Y.(16+)]If $\lambda_1>0,$ then $W^h_\infty(X)$ is non-degenerate if and only if

$$\left(\int_{(0,+\infty)} rh(\cdot) \log^+(rh(\cdot)) \Pi^L(\cdot,dr), \widehat{h}\right) < +\infty$$

and

$$\left(1_A(\cdot) \int_{(0,+\infty)} r \pi(\cdot,h) \log^+(r \pi(\cdot,h)) \Pi^{NL}(\cdot,dr), \widehat{h} \right) < +\infty.$$

Application: multitype CSBP

- Suppose $(X_t^{(1)}, \cdots, X_t^{(K)})$ is a K-type CB process.
- Define the mean matrix $M(t) = (M(t)_{ij})_{ij}$ by $M(t)_{ij} := P_{\delta_i} \left(X_t^{(j)} \right)$ for $i, j \in E$.
- Markov property implies that M(t) has a formal matrix generator $A:=(A_{ij})_{ij}$ given by

$$M(t) = e^{At}$$
, and $A_{ij} = \gamma(i)p_{ij} - a(i)\delta_i(j)$ for $i, j \in E$.

- Assume A is an irreducible matrix. Let $\Lambda := \sup_{\lambda \in \sigma(A)} \operatorname{Re}(\lambda)$ where $\sigma(A)$ denotes the set of eigenvalues of A.
- By Perron-Frobenius theory, for every t > 0, e^{At} is a simple eigenvalue of M(t), and there exist a unique positive right eigenvector **u** = (u₁, ..., u_K)^T and a unique positive left eigenvector
 v = (v₁, ..., v_K)^T such that

$$\sum_{i=1}^{K} u_i = \sum_{i=1}^{K} u_i v_i = 1, \quad M(t)\mathbf{u} = e^{\Lambda t}\mathbf{u}, \quad \mathbf{v}^T M(t) = e^{\Lambda t}\mathbf{v}.$$

- $W_t(X) := e^{-\Lambda t} \sum_{i=1}^{K} u_i X_t^{(i)}$ is a non-negative martingale.
- Under the martingale change of measure the spine process ξ̃ is a continuous-time Markov chain with Q-matrix Q = (q_{ij})_{ij} given by

$$q_{ii}:=-(\Lambda+a(i)), \quad q_{ij}:=\frac{\gamma(i)\pi(i,j)u_j}{u_i} \quad \text{ for } i\neq j.$$

 for every non-trivial µ ∈ M(E), the martingale limit W_∞(X) is non-degenerate if and only if Λ > 0 and

$$\int_{(0,+\infty)} r \log^+ r \Pi^L(i,dr) + \int_{(0,+\infty)} r \log^+ r \Pi^{NL}(i,dr) < +\infty \quad \text{ for every } i \in E.$$

 In particular, under the above condition, P_μ (lim_{t→+∞} X⁽ⁱ⁾_t = 0) = 1 for every i ∈ E and every non-trivial μ ∈ M(E) if and only if Λ ≤ 0.

References

- Chen, Z.-Q., Ren, Y.-X., and Song, R.: $L \log L$ criterion for a class of multitype superdiffusions with non-local branching mechanism. Preprint, 2016.
- Dawson, D.A., Gorostiza, L.G. and Li, Z.-H.: Non-local branching superprocesses and some related models. *Acta Appl. Math.*, **74** (1993), 93–112.
- Engländer, J. and Kyprianou, A. E.: Local extinction versus local exponential growth for spatial branching processes. Ann. Probab., 32 (2003), 78–99.
 - Evans, S. N.: Two representations of a conditioned superprocess. *Proc. R. Soc. Edinburgh A*, **123** (1993), 959–971.
- Evans, S.N. and O'Connell, N.: Weighted occupation time for branching particle systems and a representation for the supercritical superprocesses. *Canad. Math. Bull.*, **37** (1994), 187–196.
- Hardy, R. and Harris, S. C.: A spine approach to branching diffusions with applications to L^p -convergence of martingales. In *Lecture Notes in Mathematics*, **1979**, Springer, Berlin, pp. 281–330, 2009.

- Ikeda, N., Nagasawa, M. and Watanabe, S.: A construction of Markov processes by piecing out. *Proc. Japan Academy*, **42** (1966), 370–375.
- Kunita, H.: Sub-Markov semi-groups in Banach lattices. In *Proceedings of the International Conference on Functional Analysis and Related Topics*, University of Tokyo Press, 1969, 332–343.
- Kyprianou, A. E., Liu, R.-L., Murillo-Salas, A. and Ren, Y.-X.: Supercritical super-Brownian motion with a general branching mechanism and travelling waves. *Ann. Inst. Henri Poincaré Probab. Stat.*, **48**(2012), 661-687.
- Kyprianou, A. E. and Murillo-Salas, A.: Super-Brownian motion: L^p convergence of martingales through the pathwise spine decomposition. In *Adavances in Superprocesses and Nonlinear PDEs*, volume 38 of *Springer Proceedings in Mathematics and Statistics*, 2013. Kyprianou, A.E. and Palau, S.: Extinction properties of multi-type continuous-state branching processes. Preprint, 2016. https://arxiv.org/abs/1604.04129v2.

- Li, Z.-H.: Measure-valued Branching Markov Processes. Springer, Heidelberg, 2011.
- Liu, R.-L., Ren, Y.-X. and Song, R.: $L \log L$ criteria for a class of superdiffusons. J. Appl. *Probab.*, **46** (2009), 479–496.

Thank you!

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ