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L logL criterion

Zn: Galton-Watson branching process.

L: number of children given by one particle.

m := EL < +∞.

Q: When does, for a supercritical G-W process, the mean EZn = mn

give the right growth rate?

It is easy to see that { Zn
mn

: n ≥ 1} is a non-negative martingale. Let W∞

be the martingale limit.

Theorem (Kesten-Stigum 1966)

Suppose m > 1. Then W∞ is nondegenerate if and only if

E
(
L log+ L

)
< +∞. (1)

Moreover, under condition (1),

Zn
mn
→W∞ a.s. and in L1.



L logL criterion

Zn: Galton-Watson branching process.

L: number of children given by one particle.

m := EL < +∞.

Q: When does, for a supercritical G-W process, the mean EZn = mn

give the right growth rate?

It is easy to see that { Zn
mn

: n ≥ 1} is a non-negative martingale. Let W∞

be the martingale limit.

Theorem (Kesten-Stigum 1966)

Suppose m > 1. Then W∞ is nondegenerate if and only if

E
(
L log+ L

)
< +∞. (1)

Moreover, under condition (1),

Zn
mn
→W∞ a.s. and in L1.



L logL criterion

Zn: Galton-Watson branching process.

L: number of children given by one particle.

m := EL < +∞.

Q: When does, for a supercritical G-W process, the mean EZn = mn

give the right growth rate?

It is easy to see that { Zn
mn

: n ≥ 1} is a non-negative martingale. Let W∞

be the martingale limit.

Theorem (Kesten-Stigum 1966)

Suppose m > 1. Then W∞ is nondegenerate if and only if

E
(
L log+ L

)
< +∞. (1)

Moreover, under condition (1),

Zn
mn
→W∞ a.s. and in L1.



Spine decomposition

For G-W processes: Lyons-Pemantal-Peres(1995) used a
method of martingale change of measure to give a concise
and elegant proof of the L logL theorem.

The main technique is a spine decomposition–under a
martingale change of measure, the original branching process
can be viewed as immigration along a spine.

For multitype branching processes:
Kurtz-Lyons-Pemantle-Peres(1997), Lyons(1997),
Biggins-Kyprianou(2004).

For branching Markov processes: Hardy-Harris(09),
Engländer-Harris-Kyprianou(10), Liu-Ren-Song(09,11).



Spine decomposition

For G-W processes: Lyons-Pemantal-Peres(1995) used a
method of martingale change of measure to give a concise
and elegant proof of the L logL theorem.

The main technique is a spine decomposition–under a
martingale change of measure, the original branching process
can be viewed as immigration along a spine.

For multitype branching processes:
Kurtz-Lyons-Pemantle-Peres(1997), Lyons(1997),
Biggins-Kyprianou(2004).

For branching Markov processes: Hardy-Harris(09),
Engländer-Harris-Kyprianou(10), Liu-Ren-Song(09,11).



Spine decomposition

For G-W processes: Lyons-Pemantal-Peres(1995) used a
method of martingale change of measure to give a concise
and elegant proof of the L logL theorem.

The main technique is a spine decomposition–under a
martingale change of measure, the original branching process
can be viewed as immigration along a spine.

For multitype branching processes:
Kurtz-Lyons-Pemantle-Peres(1997), Lyons(1997),
Biggins-Kyprianou(2004).

For branching Markov processes: Hardy-Harris(09),
Engländer-Harris-Kyprianou(10), Liu-Ren-Song(09,11).



Spine decomposition

For G-W processes: Lyons-Pemantal-Peres(1995) used a
method of martingale change of measure to give a concise
and elegant proof of the L logL theorem.

The main technique is a spine decomposition–under a
martingale change of measure, the original branching process
can be viewed as immigration along a spine.

For multitype branching processes:
Kurtz-Lyons-Pemantle-Peres(1997), Lyons(1997),
Biggins-Kyprianou(2004).

For branching Markov processes: Hardy-Harris(09),
Engländer-Harris-Kyprianou(10), Liu-Ren-Song(09,11).



For superprocesses: Evans(1993), Evans-O’Connell(1994),
Liu-Ren-Song(09), Kyprianou et.al(12,13). Only for local
branching mechanism.

Very recently, two papers discussed spine decomposition for
multitype superprocess (special non-local branching
mechanism):

1 Chen-Ren-Song (16+): multitype superdiffusions.
2 Kyprianou-Palau (16+): super-Markov chains (multitype

continuous-state branching process)

Q: What about a more general non-local branching
mechanism?
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Non-local branching superprocesses

Spatial motion (ξt,Πx) is a m-symmetric Hunt process on a locally

compact metric space (E,m) with semigroup Pt.

Branching mechanism:

ψ(x, f) = φL(x, f(x)) + φNL(x, f) for x ∈ E, f ∈ B+
b (E).

φL is called the local branching mechanism and takes the form

φL(x, λ) = a(x)λ+ b(x)λ2 +

∫
(0,+∞)

(
e−λθ − 1 + λθ

)
ΠL(x, dθ),

where a(x) ∈ Bb(E), b(x) ∈ B+
b (E) and (θ ∧ θ2)ΠL(x, dθ) is a bounded

kernel from E to (0,+∞).

φNL is called the non-local branching mechanism and takes the form

φNL(x, f) = −c(x)π(x, f)−
∫

(0,+∞)

(
1− e−θπ(x,f)

)
ΠNL(x, dθ),

where c(x) ∈ B+
b (E), π(x, dy) is a probability kernel on E with

π(x, {x}) 6≡ 1 and θΠNL(x, dθ) is a bounded kernel from E to (0,+∞).
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Notation: 〈f, µ〉 :=
∫
E
f(x)µ(dx).

X is an M(E)-valued Markov process such that for every f ∈ B+
b (E)

and every µ ∈M(E),

Pµ
(
e−〈f,Xt〉

)
= e−〈uf (·,t),µ〉 for t ≥ 0,

where uf (x, t) := − log Pδx

(
e−〈f,Xt〉

)
is the unique non-negative

locally bounded solution to the integral equation

uf (x, t) = Ptf(x)−Πx

[∫ t

0

φL(ξs, uf (t− s, ξs))ds
]

−Πx

[∫ t

0

φNL(ξs, u
t−s
f )ds

]
.
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Example: multitype CSBP

Suppose E = {1, 2, · · · ,K} (K ≥ 2), m is the counting measure on E and

Ptf(i) = f(i) for all i ∈ E, t ≥ 0 and f ∈ B+(E). Suppose

φL(i, λ) := a(i)λ+ b(i)λ2 +

∫
(0,+∞)

(
e−λr − 1 + λr

)
ΠL(i, dr),

φNL(i, f) := −c(i)π(i, f)−
∫

(0,+∞)

(
1− e−rπ(i,f)

)
ΠNL(i, dr),

There exists a Markov process {(X(1)
t , · · · , X(K)

t )T : t ≥ 0} in [0,+∞)K ,

which is called a K-type CB process such that for f ∈ B+
b (E)

Pµ

[
exp

(
−
∑
i∈E

f(i)X
(i)
t

)]
= exp

(
−
∑
i∈E

µiVtf(i)

)
,

where Vtf(i) is the unique non-negative locally bounded solution to the

following integral equation:

Vtf(i) = f(i)−
∫ t

0

(
φL(i, Vsf(i)) + φNL(i, Vsf)

)
ds for t ≥ 0, i ∈ E.



Mean semigroup

Let

γ(x) := c(x) +

∫
(0,+∞)

θΠNL(x, dθ) and γ(x, dy) := γ(x)π(x, dy).

For every µ ∈M(E) and f ∈ Bb(E),

Pµ (〈f,Xt〉) = 〈Ptf, µ〉,

where Ptf(x) is the unique locally bounded solution to the following

integral equation:

Ptf(x) = Ptf(x)−Πx

[∫ t

0

a(ξs)Pt−sf(ξs)ds

]
+Πx

[∫ t

0

γ(ξs,Pt−sf)ds

]
.

The corresponding bilinear form (Q,F) of Pt is given by

Q(u, v) := E(u, v)+

∫
E

a(x)u(x)v(x)m(dx)−
∫
E

∫
E

u(y)v(x)γ(x, dy)m(dx),

where (E ,F) is the Dirichlet form on L2(E,m) with respect to Pt.
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Basic assumptions

Assumption 1. For every x such that b(x) > 0, there exists Nx such that

Pδx

(
e−〈f,Xt〉

)
= e−Nx(1−e−〈f,Xt〉).

This measure Nx is called the Dynkin-Kuznetsov measure for the

superprocess.

Assumption 1 is true for superdiffusions with a local branching

mechanism but NOT for all superprocesses. (sufficient conditions can be

found in Li (2011).)
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Assumption 2. The measure
∫
E
π(x, ·)m(dx) belongs to the Kato class

of ξ.

Kunita(1969) ensures that under Assumption 2, the bilinear form (Q,F)

is closed on L2(E,m) and corresponds to a pair of strongly continuous

dual semigroups {Tt : t ≥ 0} and {T̂t : t ≥ 0} on L2(E,m).

Further we can show that for all f ∈ Bb(E) ∩ L2(E,m),

Ptf = Ttf m-a.e. for all t > 0.

Tt can be regarded as the unique bounded linear operator on L2(E,m)

extended by Pt.
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Assumption 3. There exist a constant λ1 ∈ (−∞,+∞) and positive

functions h, ĥ ∈ F with h bounded continuous, ‖h‖L2(E,m) = 1 and

(h, ĥ) = 1 such that

Q(h, v) = λ1(h, v), Q(v, ĥ) = λ1(v, ĥ) ∀v ∈ F .

This equation implies that Tth = e−λ1th and T̂tĥ = e−λ1tĥ in L2(E,m).

Wh
t (X) := eλ1t〈h,Xt〉 is a non-negative Pµ-martingale

We can define a new probability measure Qµ by the following formula:

dQµ|Ft :=
1

〈h, µ〉 W
h
t (X)dPµ

∣∣∣
Ft

for all t ≥ 0.

Q: How to construct Xt under Qµ?
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This equation implies that Tth = e−λ1th and T̂tĥ = e−λ1tĥ in L2(E,m).
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Wh
t (X) := eλ1t〈h,Xt〉 is a non-negative Pµ-martingale

We can define a new probability measure Qµ by the following formula:

dQµ|Ft :=
1

〈h, µ〉 W
h
t (X)dPµ

∣∣∣
Ft

for all t ≥ 0.

Q: How to construct Xt under Qµ?



For every µ ∈M(E), g ∈ B+
b (E),

Qµ

(
e−〈g,Xt〉

)
=

eλ1t

〈h, µ〉e
−〈Vtg,µ〉〈V ht g, µ〉,

where Vtg(x) := ug(x, t) is the Log-Laplace exponent of original superprocess,

and V ht g(x) is the unique locally bounded solution to the following integral

equation

V ht g(x) = Pth(x)−Πx

[∫ t

0

Ψ(ξs, Vt−sg, V
h
t−sg)ds

]
,

where

Ψ(x, f, g) := g(x)

(
a(x) + 2b(x)f(x) +

∫
(0,+∞)

θ
(

1− e−f(x)θ
)

ΠL(x, dθ)

)

−π(x, g)

(
c(x) +

∫
(0,+∞)

θe−θπ(x,f)ΠNL(x, dθ)

)
.



The spine: a concatenation process

Method: Ikeda-Nagasawa-Watanabe(1966) “piecing out” procedure.

Doob h-transformed process (ξh,Πh
x):

Ht = exp
(
λ1t−

∫ t

0

a(ξs)ds+

∫ t

0

q(ξs)ds
) h(ξt)

h(ξ0)
, dΠh

x = Ht dΠx

where q(x) := γ(x,h)
h(x)

.

ξ̂: killed process of ξh by rate q(x) = γ(x,h)
h(x)

; Let ζ̂ denote its lifetime.

Transfer kernel κ(ω, dy) := πh(ξ̂ζ̂(ω)−(ω), dy) where

πh(x, dy) :=
h(y)π(x, dy)

π(x, h)
for x ∈ E.

The spine ξ̃ evolves as the process ξh until the killing time ζ̂, it is then

revived by means of the kernel κ(ω, dy) and evolves again as ξh and so

on.
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Transfer kernel κ(ω, dy) := πh(ξ̂ζ̂(ω)−(ω), dy) where

πh(x, dy) :=
h(y)π(x, dy)

π(x, h)
for x ∈ E.

The spine ξ̃ evolves as the process ξh until the killing time ζ̂, it is then

revived by means of the kernel κ(ω, dy) and evolves again as ξh and so

on.
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For every f(s, x, y) ∈ B([0,+∞)× E × E), t > 0 and x ∈ E, we have

Ex

∑
τi≤t

f(τi, ξ̃τi−, ξ̃τi)

 = Ex

[∫ t

0

q(ξ̃s)ds

∫
E

f(s, ξ̃s, y)πh(ξ̃s, dy)

]
.

“Many-to-One formula”: for f ∈ B+
b (E) and t ≥ 0,

Pδx [〈fh,Xt〉]
Pδx [〈h,Xt〉]

= Eδx

[
f(ξ̃t)

]
.
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Spine decomposition for a superprocess

For every µ ∈M(E), (X,Qµ) is equal in law to the following (all independent):

Run an independent copy of ((Xt)t≥0; Pµ) and an independent copy of ξ̃;

(continuous immigration)“immigrate” independent copies of M(E)-valued

processes along the spine in a Poissonian way with rate

dN
ξ̃t
× 2b(ξ̃t)dt.

(discontinuous immigration)“immigrate” independent M(E)-valued processes

at space-time points (ξ̃t, t) with initial mass θ at rate

θΠL(ξ̃t, dθ)× dPθδ
ξ̃t
× dt.

(revival-caused immigration)At each revival time τi of ξ̃, “immigrate0an

independent copy of (X,Pπi ) with initial distribution πi(·) := Θiπ(ξ̃τi−, ·) and

Θi is a [0,+∞)-valued random variable with distribution η(ξ̃τi−, dθ) given by

η(x, dθ) :=

(
c(x)

γ(x)
1A(x) + 1E\A(x)

)
δ0(dθ)+

1

γ(x)
1A(x)1(0,+∞)(θ)θΠ

NL(x, dθ).



Spine decomposition for a superprocess

For every µ ∈M(E), (X,Qµ) is equal in law to the following (all independent):

Run an independent copy of ((Xt)t≥0; Pµ) and an independent copy of ξ̃;

(continuous immigration)“immigrate” independent copies of M(E)-valued

processes along the spine in a Poissonian way with rate

dN
ξ̃t
× 2b(ξ̃t)dt.

(discontinuous immigration)“immigrate” independent M(E)-valued processes

at space-time points (ξ̃t, t) with initial mass θ at rate

θΠL(ξ̃t, dθ)× dPθδ
ξ̃t
× dt.

(revival-caused immigration)At each revival time τi of ξ̃, “immigrate0an

independent copy of (X,Pπi ) with initial distribution πi(·) := Θiπ(ξ̃τi−, ·) and

Θi is a [0,+∞)-valued random variable with distribution η(ξ̃τi−, dθ) given by

η(x, dθ) :=

(
c(x)

γ(x)
1A(x) + 1E\A(x)

)
δ0(dθ)+

1

γ(x)
1A(x)1(0,+∞)(θ)θΠ

NL(x, dθ).



Spine decomposition for a superprocess

For every µ ∈M(E), (X,Qµ) is equal in law to the following (all independent):

Run an independent copy of ((Xt)t≥0; Pµ) and an independent copy of ξ̃;

(continuous immigration)“immigrate” independent copies of M(E)-valued

processes along the spine in a Poissonian way with rate

dN
ξ̃t
× 2b(ξ̃t)dt.

(discontinuous immigration)“immigrate” independent M(E)-valued processes

at space-time points (ξ̃t, t) with initial mass θ at rate

θΠL(ξ̃t, dθ)× dPθδ
ξ̃t
× dt.

(revival-caused immigration)At each revival time τi of ξ̃, “immigrate0an

independent copy of (X,Pπi ) with initial distribution πi(·) := Θiπ(ξ̃τi−, ·) and

Θi is a [0,+∞)-valued random variable with distribution η(ξ̃τi−, dθ) given by

η(x, dθ) :=

(
c(x)

γ(x)
1A(x) + 1E\A(x)

)
δ0(dθ)+

1

γ(x)
1A(x)1(0,+∞)(θ)θΠ

NL(x, dθ).



Spine decomposition for a superprocess

For every µ ∈M(E), (X,Qµ) is equal in law to the following (all independent):

Run an independent copy of ((Xt)t≥0; Pµ) and an independent copy of ξ̃;

(continuous immigration)“immigrate” independent copies of M(E)-valued

processes along the spine in a Poissonian way with rate

dN
ξ̃t
× 2b(ξ̃t)dt.

(discontinuous immigration)“immigrate” independent M(E)-valued processes

at space-time points (ξ̃t, t) with initial mass θ at rate

θΠL(ξ̃t, dθ)× dPθδ
ξ̃t
× dt.

(revival-caused immigration)At each revival time τi of ξ̃, “immigrate0an

independent copy of (X,Pπi ) with initial distribution πi(·) := Θiπ(ξ̃τi−, ·) and

Θi is a [0,+∞)-valued random variable with distribution η(ξ̃τi−, dθ) given by

η(x, dθ) :=

(
c(x)

γ(x)
1A(x) + 1E\A(x)

)
δ0(dθ)+

1

γ(x)
1A(x)1(0,+∞)(θ)θΠ

NL(x, dθ).



Spine decomposition for a superprocess

For every µ ∈M(E), (X,Qµ) is equal in law to the following (all independent):

Run an independent copy of ((Xt)t≥0; Pµ) and an independent copy of ξ̃;

(continuous immigration)“immigrate” independent copies of M(E)-valued

processes along the spine in a Poissonian way with rate

dN
ξ̃t
× 2b(ξ̃t)dt.

(discontinuous immigration)“immigrate” independent M(E)-valued processes

at space-time points (ξ̃t, t) with initial mass θ at rate

θΠL(ξ̃t, dθ)× dPθδ
ξ̃t
× dt.

(revival-caused immigration)At each revival time τi of ξ̃, “immigrate0an

independent copy of (X,Pπi ) with initial distribution πi(·) := Θiπ(ξ̃τi−, ·) and

Θi is a [0,+∞)-valued random variable with distribution η(ξ̃τi−, dθ) given by

η(x, dθ) :=

(
c(x)

γ(x)
1A(x) + 1E\A(x)

)
δ0(dθ)+

1

γ(x)
1A(x)1(0,+∞)(θ)θΠ

NL(x, dθ).





Remark: If branching mechanism is local, the revival-caused

immigration does NOT occur. The piecing-out procedure and the

revival-cased immigration are consequences of non-local branching.

Similar phenomenon has also been observed in Kyprianou-Paulau(16+)

for super-Markov chain and in Chen-Ren-Song (16+) for multitype

superdiffusions.
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L logL criterion for superprocesses

Q: Will the superprocess extinct when λ1 ≤ 0?

[Ren-Song-Y.(16+)] (Under some technical conditions) for
every non-trivial µ ∈M(E), if λ1 ≤ 0, then
Pµ

(
W h

∞(X) = 0
)

= 1.

In this case, X exhibits weak local extinction, that is, for
every nonempty relatively compact open subset B of E,

Pµ

(
lim
t→+∞

Xt(B) = 0

)
= 1.
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Q: When does, for λ1 > 0, eλ1t give the right growth rate of
the superprocess?

[Ren-Song-Y.(16+)]If λ1 > 0, then W h
∞(X) is non-degenerate

if and only if(∫
(0,+∞)

rh(·) log+(rh(·))ΠL(·, dr), ĥ
)
< +∞

and(
1A(·)

∫
(0,+∞)

rπ(·, h) log+(rπ(·, h))ΠNL(·, dr), ĥ
)
< +∞.
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Application: multitype CSBP

Suppose (X
(1)
t , · · · , X(K)

t ) is a K-type CB process.

Define the mean matrix M(t) = (M(t)ij)ij by M(t)ij := Pδi

(
X

(j)
t

)
for

i, j ∈ E.

Markov property implies that M(t) has a formal matrix generator

A := (Aij)ij given by

M(t) = eAt, and Aij = γ(i)pij − a(i)δi(j) for i, j ∈ E.

Assume A is an irreducible matrix. Let Λ := supλ∈σ(A) Re(λ) where

σ(A) denotes the set of eigenvalues of A.

By Perron-Frobenius theory, for every t > 0, eΛt is a simple eigenvalue

of M(t), and there exist a unique positive right eigenvector

u = (u1, · · · , uK)T and a unique positive left eigenvector

v = (v1, · · · , vK)T such that

K∑
i=1

ui =

K∑
i=1

uivi = 1, M(t)u = eΛtu, vTM(t) = eΛtv.



Wt(X) := e−Λt∑K
i=1 uiX

(i)
t is a non-negative martingale.

Under the martingale change of measure the spine process ξ̃ is a

continuous-time Markov chain with Q-matrix Q = (qij)ij given by

qii := −(Λ + a(i)), qij :=
γ(i)π(i, j)uj

ui
for i 6= j.

for every non-trivial µ ∈M(E), the martingale limit W∞(X) is

non-degenerate if and only if Λ > 0 and∫
(0,+∞)

r log+ rΠL(i, dr)+

∫
(0,+∞)

r log+ rΠNL(i, dr) < +∞ for every i ∈ E.

In particular, under the above condition, Pµ
(

limt→+∞X
(i)
t = 0

)
= 1 for

every i ∈ E and every non-trivial µ ∈M(E) if and only if Λ ≤ 0.
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