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A model of inhomogeneous random graphs

> Forn>1, let w=(w1,ws,--+ ,w,) € (0,00)": w; = weight of vertex i.

For r > 0, denote o,(w) = > i_; w/.

> Let Gw be the graph with n vertices (labelled 1,2,---  n) and where

UV:I(VV‘CJ) ) ’

(Ledge {ij}egu)1<i<j<n are independent and have probabilities f(

where f : Ry — [0,1] and f(x) = x + O(x?), x — 0.
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A model of inhomogeneous random graphs

> Forn>1, let w=(w1,ws,--+ ,w,) € (0,00)": w; = weight of vertex i.
For r > 0, denote o,(w) = > i_; w/.
> Let Gw be the graph with n vertices (labelled 1,2,---  n) and where

UV:I(VV‘CJ) ) ’

(Ledge {ij}egu)1<i<j<n are independent and have probabilities f(

where f : Ry — [0,1] and f(x) = x + O(x?), x — 0.

e.g. f(x) =1— e *: Poisson random graph Aldous '97, Norros & Reittu '05
f(x) = x A1l: Chung & Lu '02
f(x) = x/(1 + x): Britton & Deijfen & Martin-L5f '06

Special case (homogenous case): (w;) all equal, then Gw = G(n, p).
In general, deg(i) = Poisson(w;).



Scaling limits of G,

> g‘f, = k-th largest connected components of Gy .

> Each G£ is a metric space equipped with dgr = graph distance of Gy.

Aim: Under suitable conditions on (w,), find €, — 0 such that

(g\f” €n dgr) 9, (Gk)k>1

k>1 n—oo

in certain topology, where Gy, k > 1, are some compact (non trivial) metric
spaces.
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Aim: Under suitable conditions on (w,), find €, — 0 such that
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in certain topology, where Gy, k > 1, are some compact (non trivial) metric
spaces.

[Janson '09] Asymptotic equivalence of random graphs: The choice of f is irrelevant.

From now on, take f(x) =1 — e *.
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A LIFO queue representation of G,

A Last-In-First-Out queueing system:

> a single server

> n clients (labelled 1,...,n): Client i arrives at time E; and requests
service time w;.

» clients in the queue are served in Last-In-First-Out order:
whenever a new customer arrives, the server interrupts the current service (if
any) and serves the new-comer. When the latter quits the queue, the server then

resumes the previous service.



LIFO queue & coding functions

Define th = —t+ Zlgign W;].[O’t](E,'). Then

Y — iQf Y = load of the server at t.
s<t

yw




LIFO queue & coding functions

HY = length of the queue at time t. By the LIFO rule, we have

Vt>0: H:':#{sgt: inf Y;’>Y5W_}.

u€ls,t]




LIFO queue & trees

LIFO queue ~~ a sequence of family trees Ty:
> Vertices of Tw = { labels of the n clients }.

» Children of i = labels of the clients interrupting the service of Client i.
We have

¥ = height of Vi, where

V: = label of the client served at time t.
In particular, each excursion of H" above 0 encodes a tree component in Ty.

Tw

v
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LIFO queue & graph G,

To sample some additional edges, let

P = Z 6(tp’yp)

p>1

be a Poisson point measure on Rﬁ_ of intensity ﬁl{ogxgygﬂ_inf[o,t] ywy dtdx. Set

AY = {{V,,, Vi,} 1 1< p < |P¥|} where s, =inf{s: sgiggtp Yy — slgft Y& >yt




LIFO queue & graph G,

Denote by G ="Tw UAY.

Theorem. Suppose —%~FE;;1 < i < n, are i.i.d. Exp(1). Then G @ Gw.
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LIFO queue & graph G,

Denote by G ="Tw UAY.

Theorem. Suppose ;%5 £;,1 < i < n, are i.id. Exp(1). Then ¢ 9 6.

In consequence, Gy is encoded by YW, HY and PY. Therefore, to find the scaling
limit of Gw, we look at

» the convergence of YV: v

» the convergence of P¥: v

» the convergence of HY: not a continuous funct. of YW...



Preview of the embedding

To embed Gy, into Galton—Watson trees,
» introduce a Markovian LIFO queue ~~ Galton—Watson trees

» embed the previous n-client queue into the Markovian one.



Markovian LIFO queue & GW trees

From now on, suppose oz(w) < o1(w).

A Markovian LIFO queueing system:
» A single server treats the clients in Last-In-First-Out order

» An oo-sequence of clients arrive at rate 1:

» the k-th client arrives at time 7%,
> chooses his type Jx € {1,...,n} with probabilities P(Jx = i) = 01"&)
> requests service time w; if Jy = I.

m Load of the server: X' = —t + 37, wy, Lo, (7).

X% is a Lévy process of Lévy measure vy = ﬁ > widw, and < 0 drift.
B As before, we can associate with the queue a sequence of family trees Ty.
It turns out Ty = i.i.d. Galton—Watson trees with offspring distribution

Poisson(W,), where W, ~ vy.

m HY = length of the queue = height process of Ty,.



Embedding of the n-client queue

Color the clients in blue or red according to the following rule:
» If the type of the k-th client € {types of previous blue clients}, the client
is in red;
» otherwise, the client inherits his color from his parent, with the convention
that if there is no parent, the client is in blue.




Embedding of the n-client queue

B = {t > 0: either a blue client is served at t or the server is idle at t}
Let
XY 00" = process obtained by restricting X" to B,

namely, AY = fot 15(s)ds and then 0¥ = inf{s : A¥ > t}.

Lemma. We have

Problem: difficult to prove directly the convergence of Y.




Another description of 8%
Recall the kth client arrives at 74 and is of type Ji. Let

AY

XM= X+ Wil om) Lipom ey and XV =XV - xbw,
k>1 -

Lemma. XbW X"W are two independent copies of X¥. Moreover,
9‘:, =t+ ’YX‘;'U
where 7 = inf{t : X;"¥ < —x} and

AY = Z wi(Nj(t) — 1)y, where N;(t) = #{jumps of X" of type i before t}




Construction of G, from Lévy processes

> Sample XbW, X"W Let Xb:W X"W be two independent copies of a
(sub-)critical spectrally positive Lévy process such that

Un() = logBle 4] = (1 25 ¢ /(e_’\” — 14 Au)v(du),

o1(w

where vy = ﬁ Z,Zl widy;. Set XV = Xbw 4 xrw,
» Define YW. Let
YW= X" — A, where  AY = X;wi(Nj(t) — 1)
» Define ™. Set 0Y =t + 'y:“’,;,, where 7 = inf{t : X"V < —x}.
> Define H". Let
HY =HY 00" where HY =#{s<t: XY < [isrjf] X"}

» Sample additional edges according to P¥, which is a Poisson point measure on

- . 1
Ri of intensity al(w)l{ogxgytw_inf[oﬂ yw) dtdx.




Construction of the limit graph: Part |

> Sample X? X" Let Xb X" be two independent copies of a (sub-)critical
spectrally positive Lévy process such that

$(A) = log E[e M] = aX + 1832 + / k(e — 1 4 Au)r(du),
where o, 3 >0, kK >0 and 7 = 2121 cidc; with ¢ > ¢ > -+ > 0 satisfying
> C? < 0o. Namely,
th = —at + \/BBt + Xis16i(Ni(t) — ciwt),
where B = standard Brownian Motion and N; = Poisson process of rate kc;.
» Define Y. Let

Y=X"—A, where Ar=1pkt?+ ci(Ni(t)—1)s.

> Define 6. Set 0; = t + ya,, Where v, = inf{t : X[ < —x}.



Construction of the limit graph: Part [l

» Height process of a Lévy process. For the Lévy process X, we can define an
analogue of the discrete height process HV.

Le Gall & Le Jan '98: Suppose [*° dA/1()\) < co. Then there exists a
continuous process H such that

1 t
H: = 6IiLn0 ;/o l{Xs_inf[S)tlx<€} exists in probability
H is in fact the height process of the Lévy tree with branching mechanism 1.

» Define H. Let
H=Hob,

» Sample additional edges according to P, which is a Poisson point measure on
Ri of intensity l{xgyr_inf[oﬁt] vy} dtdx.



Convergence of the graphs G,

Theorem. Let wp, = (Wp1,..., Wan), n > 1. Denote ¢p(A) = log E[e’AXl ]. Suppose

an — 00, bp/ap — oo and b,,/af, — Bo € [0,8] satisfying that

an 1 dx
1 YA>0: bpon(Man) = ¥(A) and I|m Ilmsup—/
(1) (Aan) = () i SR o )
Then we have

d .
) ( Ly sor (BHE) g0 P ) L (Y, H,P) in DxCx M(R2),

where (f, P¥n) = 2>t (2,2, VF: R? — Ry measurable.

bp? ap

Essential ingredient of the proof:

Duquesne & Le Gall '02 Under Condition (1), we have the convergence of the
Poisson(W,)-Galton-Watson trees to 1-Lévy trees.
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Theorem. Let wp, = (Wp1,..., Wan), n > 1. Denote ¢p(A) = log E[e’AXl ]. Suppose

an — 00, bp/ap — oo and b,,/af, — Bo € [0,8] satisfying that
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Then we have
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where (f, P¥n) = 2>t f(bn, an) Vf:R3 — Ry measurable.

Essential ingredient of the proof:

Duquesne & Le Gall '02 Under Condition (1), we have the convergence of the
Poisson(W,)-Galton-Watson trees to 1-Lévy trees.

We can deduce from (2) the convergence of the graph Guw,:
(gwn, 52 2 dor ) k>1 LR (Gk)k>1  in Gromov—Hausdorff topology,

where Gg, k > 1, are the connected components of the limit graph constructed from

(Y, H,P).



Convergence of the graphs G,

From the previous theorem, we can recover
» Addario-Berry & Broutin & Goldschmidt '12 G(n, p):
(wpi) all equal, then ¥(\) = aX + \?/2.
» Bhamidi & van der Hofstad & Sen '174 Power-law case:
Wi ~ (n/i)7, ¥ € (3,3), then B=0and ¢;=i"7,i>1.
Moreover, they show dim,(Gk) < 1_1, a.s.
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Convergence of the graphs G,

From the previous theorem, we can recover

» Addario-Berry & Broutin & Goldschmidt '12 G(n, p):
(wpi) all equal, then ¥(\) = aX + \?/2.

» Bhamidi & van der Hofstad & Sen '17+ Power-law case:

Wi ~ (n/i)7, ¥ € (3,3), then B=0and ¢;=i"7,i>1.
Moreover, they show dim,(Gk) < 11:21, a.s.

[Duquesne & Le Gall '05] fractal properties of Lévy trees + our construction of Gy
Proposition. Let

F:=inf{s>0: lim j°c; =00} and ~y=sup{s>0: lim j°¢; =0}
j—oo - j—oo

Suppose 8 =0 and 7 < 1/2. Then P-as. for all k > 1,

. 1-—v . 1-7%
dimp(Gy) = - 2*7 and  dimp(Gk) = . 2’;.

1—y

In particular, if (¢j) varies regularly with index ~, then dimy(Gx) = dim;(Gx) = =




Simulation of large Qv’f,

Homogeneous case Power law case

;} Hoats 4 F
s A A X IR 4%
X 7
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THANK YOU!



