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A model of inhomogeneous random graphs

I For n ≥ 1, let w=(w1,w2, · · · ,wn) ∈ (0,∞)n: wi = weight of vertex i .

For r ≥ 0, denote σr (w) =
∑n

i=1 w
r
i .

I Let Gw be the graph with n vertices (labelled 1, 2, · · · , n) and where

(1edge {i,j}∈Gw)1≤i<j≤n are independent and have probabilities f
( wiwj

σ1(w)

)
,

where f : R+ → [0, 1] and f (x) = x +O(x2), x → 0.

e.g. f (x) = 1− e−x : Poisson random graph Aldous ’97, Norros & Reittu ’05

f (x) = x ∧ 1: Chung & Lu ’02

f (x) = x/(1 + x): Britton & Deijfen & Martin-Löf ’06

Special case (homogenous case): (wi ) all equal, then Gw = G(n, p).

In general, deg(i) ≈ Poisson(wi ).
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Scaling limits of Gw

I Gkw ≡ k-th largest connected components of Gw.

I Each Gkw is a metric space equipped with dgr = graph distance of Gw.

Aim: Under suitable conditions on (wn), find εn → 0 such that(
Gkw, εn · dgr

)
k≥1

(d)−−−→
n→∞

(Gk)k≥1

in certain topology, where Gk , k ≥ 1, are some compact (non trivial) metric
spaces.

[Janson ’09] Asymptotic equivalence of random graphs: The choice of f is irrelevant.

From now on, take f (x) = 1− e−x .
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Outline

I A LIFO queue representation of Gw
 Encoding Gw with stochastic processes

I Embed Gw into Galton–Watson trees
 Convergence of the coding processes

I Construction of the continuum inhomogeneous random graph
 Identifying the limit graphs.
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A LIFO queue representation of Gw

A Last-In-First-Out queueing system:

I a single server

I n clients (labelled 1, . . . , n): Client i arrives at time Ei and requests
service time wi .

I clients in the queue are served in Last-In-First-Out order:
whenever a new customer arrives, the server interrupts the current service (if

any) and serves the new-comer. When the latter quits the queue, the server then

resumes the previous service.



LIFO queue & coding functions

Define Y w
t ≡ −t +

∑
1≤i≤n wi1[0,t](Ei ). Then

Y w
t − inf

s≤t
Y w

s = load of the server at t.

E1 E3 E2

w1
w3

w2

w1

O

Y w

· · ·



LIFO queue & coding functions

Hw
t ≡ length of the queue at time t. By the LIFO rule, we have

∀ t ≥ 0 : Hw
t = #

{
s ≤ t : inf

u∈[s,t]
Y w

u > Y w
s−

}
.

E1 E3 E2O

Hw

Y w



LIFO queue & trees
LIFO queue  a sequence of family trees Tw:

I Vertices of Tw = { labels of the n clients }.
I Children of i = labels of the clients interrupting the service of Client i .

We have
Hw

t = height of Vt , where Vt ≡ label of the client served at time t.

In particular, each excursion of Hw above 0 encodes a tree component in Tw.

E1 E3 E2O

Hw

Y w

1

3

2
Tw



LIFO queue & graph Gw

To sample some additional edges, let

Pw =
∑
p≥1

δ(tp ,yp)

be a Poisson point measure on R2
+ of intensity 1

σ1(w)
1{0≤x≤Yw

t −inf[0,t] Y
w}dtdx . Set

Aw =
{
{Vsp ,Vtp} : 1 ≤ p ≤ |Pw|

}
where sp ≡ inf{s : inf

s≤u≤tp
Y w
u − inf

s≤t
Y w
s > yp}

(tp, yp)



LIFO queue & graph Gw

Denote by G̃ = Tw ∪ Aw.

Theorem. Suppose wi
σ1(w)

Ei , 1 ≤ i ≤ n, are i.i.d. Exp(1). Then G̃ (d)
= Gw.

In consequence, Gw is encoded by Y w, Hw and Pw. Therefore, to find the scaling
limit of Gw, we look at

I the convergence of Y w: X

I the convergence of Pw: X

I the convergence of Hw: not a continuous funct. of Y w...



LIFO queue & graph Gw

Denote by G̃ = Tw ∪ Aw.

Theorem. Suppose wi
σ1(w)

Ei , 1 ≤ i ≤ n, are i.i.d. Exp(1). Then G̃ (d)
= Gw.

In consequence, Gw is encoded by Y w, Hw and Pw. Therefore, to find the scaling
limit of Gw, we look at

I the convergence of Y w: X

I the convergence of Pw: X

I the convergence of Hw: not a continuous funct. of Y w...



Preview of the embedding

To embed Gw into Galton–Watson trees,

I introduce a Markovian LIFO queue  Galton–Watson trees

I embed the previous n-client queue into the Markovian one.



Markovian LIFO queue & GW trees

From now on, suppose σ2(w) ≤ σ1(w).

A Markovian LIFO queueing system:

I A single server treats the clients in Last-In-First-Out order

I An ∞-sequence of clients arrive at rate 1:

I the k-th client arrives at time τk ,
I chooses his type Jk ∈ {1, . . . , n} with probabilities P(Jk = i) = wi

σ1(w)
I requests service time wi if Jk = i .

� Load of the server: Xw
t ≡ −t +

∑
k≥1 wJk 1[0,t](τk ).

Xw is a Lévy process of Lévy measure νw ≡ 1
σ1(w)

∑
i wiδwi and ≤ 0 drift.

� As before, we can associate with the queue a sequence of family trees Tw.

It turns out Tw = i.i.d. Galton–Watson trees with offspring distribution
Poisson(Wn), where Wn ∼ νw.

� Hw ≡ length of the queue = height process of Tw.



Embedding of the n-client queue

Color the clients in blue or red according to the following rule:

I If the type of the k-th client ∈ {types of previous blue clients}, the client
is in red;

I otherwise, the client inherits his color from his parent, with the convention
that if there is no parent, the client is in blue.

w1

w2 w1

w3

τ1 τ2 τ3 τ4 · · ·



Embedding of the n-client queue

B ≡ {t ≥ 0 : either a blue client is served at t or the server is idle at t}
Let

Xw ◦ θw = process obtained by restricting Xw to B,
namely, Λw

t ≡
∫ t

0 1B(s)ds and then θwt ≡ inf{s : Λw
s > t}.

Lemma. We have

Xw ◦ θw (d)
= Y w, Hw ◦ θw (d)

= Hw.

Problem: difficult to prove directly the convergence of θw.

w1

w2 w1

w3

τ1 τ2 τ3 τ4 · · ·τ1 τ2
B



Another description of θw

Recall the kth client arrives at τk and is of type Jk . Let

X b,w
t ≡ Xw

θwt
+

Aw
t︷ ︸︸ ︷∑

k≥1

wJk 1{τk∈ ∂B}1{Λ
b,w
τk
≤t} and X r,w ≡ Xw − X b,w.

Lemma. X b,w ,X r,w are two independent copies of Xw. Moreover,

θwt = t + γwAw
t
,

where γwx = inf{t : X r,w
s < −x} and

Aw
t =

∑
i

wi (Ni (t)− 1)+, where Ni (t) = #{jumps of X b,w of type i before t}

w1

w2 w1

w3

τ1 τ2 τ3 τ4 · · ·τ1 τ2
B

∈ ∂B



Construction of Gw from Lévy processes

I Sample X b,w,X r,w. Let X b,w,X r,w be two independent copies of a
(sub-)critical spectrally positive Lévy process such that

ψn(λ) ≡ log E[e−λX
b
1 ] =

(
1− σ2(w)

σ1(w)

)
λ+

∫
(e−λu − 1 + λu)νw(du),

where νw = 1
σ1(w)

∑
i≥1 wiδwi . Set Xw ≡ X b,w + X r,w.

I Define Y w. Let

Y w ≡ X b,w − Aw, where Aw
t ≡ Σiwi (Ni (t)− 1)+.

I Define θw. Set θwt = t + γwAw
t

, where γwx = inf{t : X r,w
t < −x}.

I Define Hw. Let

Hw = Hw ◦ θw where Hw
t = #{s ≤ t : Xw

s− < inf
[s,t]

Xw}.

I Sample additional edges according to Pw, which is a Poisson point measure on
R2

+ of intensity 1
σ1(w)

1{0≤x≤Yw
t −inf[0,t] Y

w}dtdx .



Construction of the limit graph: Part I

I Sample X b,X r . Let X b,X r be two independent copies of a (sub-)critical
spectrally positive Lévy process such that

ψ(λ) ≡ log E[e−λX
b
1 ] = αλ+ 1

2
βλ2 +

∫
κ(e−λu − 1 + λu)π(du),

where α, β ≥ 0, κ > 0 and π =
∑

j≥1 ciδci with c1 ≥ c2 ≥ · · · ≥ 0 satisfying∑
i c

3
i <∞. Namely,

X b
t = −αt +

√
βBt + Σi≥1ci (Ni (t)− ciκt),

where B = standard Brownian Motion and Ni = Poisson process of rate κci .

I Define Y . Let

Y ≡ X b − A, where At ≡ 1
2
βκt2 + ci (Ni (t)− 1)+.

I Define θ. Set θt = t + γAt , where γx = inf{t : X r
t < −x}.



Construction of the limit graph: Part II

I Height process of a Lévy process. For the Lévy process X , we can define an
analogue of the discrete height process Hw.

Le Gall & Le Jan ’98: Suppose
∫∞ dλ/ψ(λ) <∞. Then there exists a

continuous process H such that

Ht = lim
ε→0

1

ε

∫ t

0
1{Xs−inf[s,t] X<ε} exists in probability

H is in fact the height process of the Lévy tree with branching mechanism ψ.

I Define H. Let
H ≡ H ◦ θ,

I Sample additional edges according to P, which is a Poisson point measure on
R2

+ of intensity 1{x≤Yt−inf[0,t] Y}dtdx .



Convergence of the graphs Gwn

Theorem. Let wn = (wn1, . . . ,wnn), n ≥ 1. Denote ψn(λ) = log E[e−λX
wn
1 ]. Suppose

an →∞, bn/an →∞ and bn/a
2
n → β0 ∈ [0, β] satisfying that

(1) ∀λ ≥ 0 : bnψn(λ/an)→ ψ(λ) and lim
y→∞

lim sup
n→∞

an

bn

∫ 1

y/an

dλ

ψn(λ)
= 0.

Then we have

(2)
((

1
an
Y wn
bnt

)
t≥0

,
( an
bn
Hwn

bnt

)
t≥0

, P̃wn

)
d−→ (Y ,H,P) in D× C×M(R2

+),

where 〈f , P̃wn 〉 =
∑

p≥1 f (
tp
bn

,
yp
an

), ∀ f : R2
+ → R+ measurable.

Essential ingredient of the proof:

Duquesne & Le Gall ’02 Under Condition (1), we have the convergence of the
Poisson(Wn)-Galton–Watson trees to ψ-Lévy trees.

We can deduce from (2) the convergence of the graph Gwn :

(Gkwn
, an
bn
dgr)k≥1

d−→ (Gk )k≥1 in Gromov–Hausdorff topology,

where Gk , k ≥ 1, are the connected components of the limit graph constructed from

(Y ,H,P).
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Convergence of the graphs Gwn

From the previous theorem, we can recover

I Addario-Berry & Broutin & Goldschmidt ’12 G(n, p):
(wni ) all equal, then ψ(λ) = αλ+ λ2/2.

I Bhamidi & van der Hofstad & Sen ’17+ Power-law case:
wni ∼ (n/i)γ , γ ∈ ( 1

3
, 1

2
), then β = 0 and ci = i−γ , i ≥ 1.

Moreover, they show dimh(Gk ) ≤ 1−γ
1−2γ

, a.s.

[Duquesne & Le Gall ’05] fractal properties of Lévy trees + our construction of Gk

Proposition. Let

γ := inf{s ≥ 0 : lim
j→∞

j scj =∞} and γ ≡ sup{s ≥ 0 : lim
j→∞

j scj = 0}

Suppose β = 0 and γ < 1/2. Then P-a.s. for all k ≥ 1,

dimp(Gk ) =
1− γ

1− 2γ
and dimh(Gk ) =

1− γ
1− 2γ

.

In particular, if (cj ) varies regularly with index γ, then dimp(Gk ) = dimh(Gk ) = 1−γ
1−2γ

.



Convergence of the graphs Gwn

From the previous theorem, we can recover

I Addario-Berry & Broutin & Goldschmidt ’12 G(n, p):
(wni ) all equal, then ψ(λ) = αλ+ λ2/2.

I Bhamidi & van der Hofstad & Sen ’17+ Power-law case:
wni ∼ (n/i)γ , γ ∈ ( 1

3
, 1

2
), then β = 0 and ci = i−γ , i ≥ 1.

Moreover, they show dimh(Gk ) ≤ 1−γ
1−2γ

, a.s.

[Duquesne & Le Gall ’05] fractal properties of Lévy trees + our construction of Gk
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Simulation of large Gk
w

Homogeneous case Power law case

Thank you!


