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Introduction: BBM

We begin with one Brownian particle φ starting from the origin. This particle
has a lifetime σφ exponentially distributed as

P(σφ > t | Xφs , s ≤ t) = e−βLφt . (1)

where Lφt =
∫ t

0 δ0(Xφs )ds, the local time at the origin of the initial particle.

When the particle dies, it is replaced in its position (the origin) by a random
number A of offsprings,

p(A = k) = pk, k = 0, 1, 2, · · · . (2)
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Background

Bocharov and Harris (2014): consider the case of binary branching, i.e., P2 =
1. They obtain results regarding the asymptotic behaviour of the number of
particles above λt at time t, for λ > 0. They also prove a SLLN for this
catalytic BBM.

Question: Inspired by their paper, we consider the general case p0 > 0 and
assume m =

∑∞
k=0 kpk > 1.
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Notations

Nt: the set of particles alive at time t, labelling particles according to the
usual Ulam-Harris convention.

Xu
t : the spacial position at time t.

Au: the number of the children of particle u, Au
d
= A.

σu: lifetime of particle u, σu
d
= σφ. Then fission time Su =

∑
ν≤u σν .

Then the BBM can be represented as Xt := {Xu
t : u ∈ Nt}. Let P be the

distribution of X = (Xt : t ≥ 0) with a single initial particle at origin.
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Spine setup

Since p0 > 0, the spine we will choose is a little different from the history
literature, see Harris [2009].
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Spine setup

1 The spine starts with the initial particle φ.
2 The spine undergoes fission into particles with rate βδ0(·)dt;
3 A spine particle u, once death, gives birth to Au particles.
4 If Au > 0, one of the Au children is chosen uniformly at the fission time

of u to continue the spine.
If Au = 0, the particle u will be sent to a “revive state” and continue the
path as if it were still in the system, so that the spine can continue.

5 Each of the remaining Au − 1(Au > 0) particles gives rise to an inde-
pendent copy of a P-branching Browmian motion started at its space-time
point of creation.

Technically, All the particles, die with no offspring, will be sent to the “revive
state”.
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Spine

Let Nt(R) be the set of particles in the “revive state” and let N̄t = Nt ∪ Nt(R).
For each ν ∈ N̄t, define

Āν :=

{
Aν , if ν is alive,
1, if ν is in the revive state.

Thus for u ∈ N̄t,

Prob(u ∈ ξ) =
∏
ν<u

1
Āν

=
∏
ν<u

1
Aν

1{u∈Nt} +
∏
ν<u

1
Āν

1{u∈Nt(R)}.

Then it is easy to show that
∑

u∈N̄t
Prob(u ∈ ξ) = 1.
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Āν

=
∏
ν<u

1
Aν

1{u∈Nt} +
∏
ν<u

1
Āν
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Filtration

ξ = {φ, ξ1, ξ2, . . .}: the selected line of decent in the spine

nodet(ξ): the node in the spine that is alive at time t

n = (nt : t ≥ 0): the number of fission times along the spine

Ft: the natural filtration of this branching process.

F̃t := σ(Ft, (nodes(ξ), s < t)).

Gt = σ(ξs; s ≤ t).

G̃t := σ(Gt, (nodes(ξ), s < t)).

F∞ :=
⋃

t≥0Ft, F̃∞ :=
⋃

t≥0 F̃t, G̃∞ :=
⋃

t≥0 G̃t.

We extend P to P̃ so that the spine is a single genealogical line chosen from the
underlying process.
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Measure

In detail, the measure P̃ on F̃t is defined by

dP̃(τ,M, ξ)|F̃t
= dP(ξ)dLβ(ξ)(n)

∏
ν<ξnt

pAν

∏
ν<ξnt

1
Āν

∏
j:νj∈Oν

dPξSν
t−Sν ((τ,M)νj )

where Lβ(ξ)(n) is the law of the Poisson random measure n = {{σi : i =
1, 2, · · · , nt} : t ≥ 0} with intensity βdLt along the path of ξ, P(ξ) is the law
of ξ starting from the origin, and pAν =

∑
k≥0 pkI(Aν=k) is the probability that

individual ν has Aν offsprings.
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Girsanov change for spatial motion

Let

Zt = e−β2|ξt|+β2Lt− 1
2β

2
2 t.

Then {Zt} is a P-martingale so we can define a martingale change of measure
by

dQ
dP

∣∣∣∣
Gt

= Zt.

Then {ξ,Q} is a Brownian Motion with drift β2.
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Change of measure for Possion process

Suppose that the Possion process (n,Lβ(ξ)) where n = {{σi : i = 1, 2, . . . , nt} :
t ≥ 0} has instantaneous rate βδ0(ξt). Further, assume that n is adapted to
{Lt : t ≥ 0}. Then under the change of measure

Lmβ(ξ)

Lβ(ξ)

∣∣∣∣
Lt

= mnt · e−β(m−1)Lt

the process (n,Lmβ(ξ)) is also a Possion process with instantaneous jump rate
mβδ0(ξt).
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The spinal construction

Assume that
∑∞

k=1(k ln k)pk <∞. Then it can be shown that

Mt =
∑
u∈Nt

e−β2|Xu
t |− 1

2β
2
2 t

is a P-martingale and converges almost surely to an non-degenerate limit M∞,
i.e., P(M∞ = 0) < 1.

It can also be shown that

M̃t = e−β2|ξt|− 1
2β

2
2 t
∏
ν<ξnt

Aν1{ξnt∈Nt}

defines a F̃t-measurable P̃-martingale.
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The spinal construction

Note that, Z, M and M̃ are all unit mean martingales and have the key relation-
ships as follows:

Mt = P̃(M̃t | Ft) and Zt = P̃(M̃t | Gt). (3)

Then we can define the Girsanov change of mesaures by

dQ̃
dP̃

∣∣∣
F̃t

= M̃t and
dQ
dP

∣∣∣
Ft

= Mt.

In fact, it follows from (3) that Q is simply the projection of the measure Q̃
onto F∞.
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Measure Q

dQ̃ = M̃tdP̃

= e−β2|ξt|− 1
2β

2
2 t
∏
ν<ξnt

Aν1{ξnt∈Nt}dPdLβ(ξ)(n)
∏
ν<ξnt

pAν

∏
ν<ξnt

1
Āν

∏
j:νj∈Oν

dPξSν
t−Sν ((τ,M)νj )

= e−β2|ξt|− 1
2β

2
2 t+β2Lt dPmnt e−β2Lt dLβ(ξ)(n)

∏
ν<ξnt

1{ξnt∈Nt}
pAν

m

∏
j:νj∈Oν

dPξSν
t−Sν ((τ,M)νj )

= dQdLmβ(ξ)
∏
ν<ξnt

p̂Aν

∏
ν<ξnt

1
Aν

1{ξnt∈Nt}
∏

j:νj∈Oν

dPξSν
t−Sν ((τ,M)νj )
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The spinal construction

Then under Q̃, the branching process X can be constructed as follows:
1 The spine initially starting at the origin moves according to the measure

Q;
2 The spine undergoes fission into particles at an accelerated intensity βmδ0(·)dt;
3 A spine particle u, once death, gives birth to Au particles with size-biased

offspring distribution P̂(Au = k) = kpk
m , k = 0, 1, 2, · · ·

4 One of the Au children is chosen uniformly at the fission time of u to
continue the spine.

5 Each of the remaining Au − 1 particles gives rise to an independent copy
of a P-branching BM started at its space-time point of creation.

Note that, P̂(Au = 0) = 0.
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Many-to-one Theorem

Theorem
(Many-to-one theorem) Let f (t) ∈ mGt. In other words, f (t) is Gt-measurable.
Suppose it has the representation

f (t) =
∑
u∈Nt

fu(t)1{u∈ξ},

where fu(t) ∈ mFt, then

E

(∑
u∈Nt

fu(t)

)
= Q

(
1

Mt

∑
u∈Nt

fu(t)

)
= Q̃(eβ2|ξt|+ 1

2β
2
2 tf (t)) = Ẽ[eβ2Lt f (t)].
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Spine decomposition

Theorem
Spine decomposition:

Q̃[Mt|G̃∞] =

exp{−β2|ξt| −
1
2
β2

2 t}+
∑

u<ξnt

(Au − 1) exp{−β2|ξSu | −
1
2
β2

2Su}

where {Su : u ∈ ξ} is the set of fission times along the spine.
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Main results

Expected total population growth: β2 = β(m− 1),

E(|Nt|) = 2Φ(β2
√

t)e
β2

2
2 t ∼ 2e

β2
2

2 t, t→∞.

Expected population growth rates:
Let Nλt

t := {u ∈ Nt : Xu
t > λt}, λ > 0. Then

E(|Nλt
t |) = Φ((β2 − λ)

√
t)e(

β2
2

2 −β2λ)t.

Almost sure total population growth rate:

lim
t→∞

log |Nt|
t

=
1
2
β2

2 P{·|M∞ > 0} − a.s.
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Main results

Almost sure population growth rates: Let λ > 0.
1. If λ > β2/2, then

lim
t→∞
|Nλt

t | = 0, P-a.s.

2. If λ < β2/2, then P{·|M∞ > 0}-a.s.

lim
t→∞

log |Nλt
t |

t
= ∆λ =

{ 1
2β

2
2 − β2λ if λ < β2,

− 1
2λ

2 if λ ≥ β2.

(Rightmost particle speed) Let Rt := supu∈Nt
Xu

t , t ≥ 0. Then

lim
t→∞

Rt

t
=
β2

2
, P{·|M∞ > 0}-a.s.
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Upper bound for the asymptotic behaviour of |Nλt
t |

Proof. Note that Nλt
t := {u ∈ Nt : Xu

t > λt}. Thus for t ∈ [n, n + 1),

|Nλt
t | ≤

∑
u∈Nn

∑
v∈Dn(u)

1{sups∈[n,n+1) Xv
s≥λn}

where Dn(u) is the set of descendants of u that have ever exist in [n, n + 1).
Take ε > 0 and consider events

An =

∑
u∈Nn

∑
v∈Dn(u)

1{sups∈[n,n+1) Xνs ≥λn} > e(∆λ+ε)n

 .

If we can show that P(An) decays to 0 exponentially fast then by the Borel-
Cantelli Lemma we would have P(An i.o.) = 0 and that would be sufficient to
get the result.
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Another result about |Nλt
t |

We can also say something about the rare events of |Nλt
t | being positive when

we typically do not find particles with speeds λ > β2
2 .

Proposition

(Unusually fast particles) Assume that
∑∞

k=1(k ln k)pk <∞. For λ > β2
2 ,

lim
t→∞

log P(|Nλt
t | ≥ 1|M∞ > 0)

t
= 4λ.
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Strong law of large numbers

Theorem

Let f : R → R be some continuous compactly-supported function. If∑∞
k=1(k ln k)pk <∞, then

lim
t→∞

e−
1
2β

2
2
∑
u∈Nt

f (Xu
t ) = M∞

∫
R

f (x)β2e−β2|x|dx, P-a.s.

where M∞ is the almost sure limit of the P-uniformly integrable additive mar-
tingale

Mt =
∑
u∈Nt

exp{−β2|Xu
t | −

1
2
β2

2 t}.
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Key Proposition

It is sufficient to prove for functions f (x) = e−β|x|1{x∈B}. Let

Ut = e−
1
2β

2
2 t
∑
u∈Nt

e−β2|Xu
t |1{Xu

t ∈B}.

Proposition

If
∑∞

k=1(k ln k)pk <∞, then for any m ∈ N, σ > 0,

lim
n→∞

|U(m+n)σ − E(U(m+n)σ|Fnσ)| = 0, P-a.s.
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Idea of proof of the proposition

Let

Ũt = e−
1
2β

2
2 te−β2|ξt|1{ξt∈B} +

e−
1
2β

2
2 t
∑
ν<ξnt

Aν−1∑
j=1

〈e−β2|·|1{·∈B},Y
j
t−Sv
〉1
{Av≤e

1
2β

2
2(Sv+nσ/2)}

.

Lemma

For each f ∈ B+
b (R) and x ∈ R,

Ẽ[Ũt]
2 <∞.
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Idea of proof of the proposition

Note that we may always write

U(m+n)σ =

Nnσ∑
i=1

e−λ1nσU(i)
mσ

where given Fnσ, the collection {U(i)
mσ : i = 1, . . . ,Nnσ} are mutually indepen-

dent and equal in distribution to Umσ under PδYi
. Then we can write

U(m+n)σ =

Nnσ∑
i=1

e−λ1nσŨ(i)
mσ +

Nnσ∑
i=1

e−λ1nσ
(

U(i)
mσ − Ũ(i)

mσ

)
:= U[1]

(m+n)σ + U[2]
(m+n)σ, (4)

where, under P̃δYi
, {Ũ(i)

mσ : i = 1, . . . ,Nnσ} are equal in distribution to Ũmσ.
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Key Proposition

Idea of proof: From the decomposition (4), we have

U(m+n)σ − E(U(m+n)σ|Fnσ)

= U(m+n)σ − U[1]
(m+n)σ + U[1]

(m+n)σ − Ẽ
(

U[1]
(m+n)σ

∣∣∣∣Fnσ

)
− Ẽ

[(
U(m+n)σ − U[1]

(m+n)σ

) ∣∣∣∣Fnσ

]
Now the conclusion of this proposition follows immediately form the following
three lemmas.
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Key Lemma

Lemma

If
∑∞

k=1(k ln k)pk <∞, then

lim
n→∞

|U(n+m)σ − U[1]
(n+m)σ| = 0, P̃−a.s.

∞∑
n=1

Ẽ
[
U[1]

(m+n)σ − Ẽ(U[1]
(m+n)σ|Fnσ)

]2
<∞.

where U[1]
(m+n)σ was defined in (4). In particular

lim
n→∞

∣∣∣U[1]
(m+n)σ − Ẽ(U[1]

(m+n)σ|Fnσ)
∣∣∣ = 0, Pδx-a.s.
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Key Lemma

Lemma

If
∑∞

k=1(k ln k)pk <∞, then for any m ∈ N, σ > 0,

∞∑
n=0

E
[(

U(m+n)σ − U[1]
(m+n)σ

) ∣∣∣∣Fnσ

]
converges P-a.s.
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Proof of strong law of large numbers

The proof will be finished in three parts.

Part I: This is finished by the above Key Proposition.

Part II:

lim
n→∞

∣∣E(U(m+n)σ|Fnσ)− π(B)M∞
∣∣ = 0, P− a.s.

Part III: From lattice times to continuous-time limit.
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