Branching Brownian Motion with Catalytic Branching at the Origin

Li WANG Joint work with Guowei Zong

Beijing University of Chemical Technology

10 May, 2017 BNU

Li Wang (Beijing University of Chemical TechnBranching Brownian Motion with Catalytic Bra

10 May, 2017 BNU 1 / 34

- Introduction of the model
- Main tool: spine decomposition
- Main results
- Sketch of the proof

We begin with one Brownian particle ϕ starting from the origin. This particle has a lifetime σ_{ϕ} exponentially distributed as

$$\mathbf{P}(\sigma_{\phi} > t \mid X_{s}^{\phi}, s \le t) = e^{-\beta L_{t}^{\phi}}.$$
(1)

where $L_t^{\phi} = \int_0^t \delta_0(X_s^{\phi}) ds$, the local time at the origin of the initial particle. When the particle dies, it is replaced in its position (the origin) by a random number *A* of offsprings,

$$p(A = k) = p_k, \ k = 0, 1, 2, \cdots$$
 (2)

Background

Bocharov and Harris (2014): consider the case of binary branching, i.e., $P_2 = 1$. They obtain results regarding the asymptotic behaviour of the number of particles above λt at time t, for $\lambda > 0$. They also prove a SLLN for this catalytic BBM.

Question: Inspired by their paper, we consider the general case $p_0 > 0$ and assume $m = \sum_{k=0}^{\infty} kp_k > 1$.

Notations

- *N_t*: the set of particles alive at time *t*, labelling particles according to the usual Ulam-Harris convention.
- X_t^u : the spacial position at time t.
- A_u : the number of the children of particle $u, A_u \stackrel{d}{=} A$.
- σ_u : lifetime of particle $u, \sigma_u \stackrel{d}{=} \sigma_{\phi}$. Then fission time $S_u = \sum_{\nu \leq u} \sigma_{\nu}$.

Then the BBM can be represented as $X_t := \{X_t^u : u \in N_t\}$. Let **P** be the distribution of $X = (X_t : t \ge 0)$ with a single initial particle at origin.

10 May, 2017 BNU 6 / 34

10 May, 2017 BNU 6 / 34

10 May, 2017 BNU 8 / 34

10 May, 2017 BNU 8 / 34

Spine setup

- **1** The spine starts with the initial particle ϕ .
- 2 The spine undergoes fission into particles with rate $\beta \delta_0(\cdot) dt$;
- Solution A spine particle u, once death, gives birth to A_u particles.
- If A_u > 0, one of the A_u children is chosen uniformly at the fission time of u to continue the spine.

If $A_u = 0$, the particle *u* will be sent to a "revive state" and continue the path as if it were still in the system, so that the spine can continue.

Seach of the remaining $A_u - 1(A_u > 0)$ particles gives rise to an independent copy of a **P**-branching Browmian motion started at its space-time point of creation.

Technically, All the particles, die with no offspring, will be sent to the "revive state".

Let $N_t(R)$ be the set of particles in the "revive state" and let $\bar{N}_t = N_t \cup N_t(R)$. For each $\nu \in \bar{N}_t$, define

$$\bar{A}_{\nu} := \begin{cases} A_{\nu}, & \text{if } \nu \text{ is alive,} \\ 1, & \text{if } \nu \text{ is in the revive state} \end{cases}$$

Thus for $u \in \overline{N}_t$,

$$\operatorname{Prob}(u \in \xi) = \prod_{\nu < u} \frac{1}{\overline{A}_{\nu}} = \prod_{\nu < u} \frac{1}{A_{\nu}} \mathbb{1}_{\{u \in N_t\}} + \prod_{\nu < u} \frac{1}{\overline{A}_{\nu}} \mathbb{1}_{\{u \in N_t(R)\}}.$$

Then it is easy to show that $\sum_{u \in \overline{N}_t} \operatorname{Prob}(u \in \xi) = 1$.

Let $N_t(R)$ be the set of particles in the "revive state" and let $\bar{N}_t = N_t \cup N_t(R)$. For each $\nu \in \bar{N}_t$, define

$$\bar{A}_{\nu} := \begin{cases} A_{\nu}, & \text{if } \nu \text{ is alive,} \\ 1, & \text{if } \nu \text{ is in the revive state.} \end{cases}$$

Thus for $u \in \overline{N}_t$,

$$\operatorname{Prob}(u \in \xi) = \prod_{\nu < u} \frac{1}{\overline{A}_{\nu}} = \prod_{\nu < u} \frac{1}{A_{\nu}} \mathbb{1}_{\{u \in N_t\}} + \prod_{\nu < u} \frac{1}{\overline{A}_{\nu}} \mathbb{1}_{\{u \in N_t(R)\}}$$

Then it is easy to show that $\sum_{u \in \overline{N}_t} \operatorname{Prob}(u \in \xi) = 1$.

Let $N_t(R)$ be the set of particles in the "revive state" and let $\bar{N}_t = N_t \cup N_t(R)$. For each $\nu \in \bar{N}_t$, define

$$\bar{A}_{\nu} := \begin{cases} A_{\nu}, & \text{if } \nu \text{ is alive,} \\ 1, & \text{if } \nu \text{ is in the revive state.} \end{cases}$$

Thus for $u \in \overline{N}_t$,

$$Prob(u \in \xi) = \prod_{\nu < u} \frac{1}{\bar{A}_{\nu}} = \prod_{\nu < u} \frac{1}{A_{\nu}} \mathbb{1}_{\{u \in N_l\}} + \prod_{\nu < u} \frac{1}{\bar{A}_{\nu}} \mathbb{1}_{\{u \in N_l(R)\}}.$$

Then it is easy to show that $\sum_{u \in \overline{N}} \operatorname{Prob}(u \in \xi) = 1$.

Let $N_t(R)$ be the set of particles in the "revive state" and let $\bar{N}_t = N_t \cup N_t(R)$. For each $\nu \in \bar{N}_t$, define

$$\bar{A}_{\nu} := \begin{cases} A_{\nu}, & \text{if } \nu \text{ is alive,} \\ 1, & \text{if } \nu \text{ is in the revive state.} \end{cases}$$

Thus for $u \in \overline{N}_t$,

$$Prob(u \in \xi) = \prod_{\nu < u} \frac{1}{\bar{A}_{\nu}} = \prod_{\nu < u} \frac{1}{A_{\nu}} \mathbb{1}_{\{u \in N_i\}} + \prod_{\nu < u} \frac{1}{\bar{A}_{\nu}} \mathbb{1}_{\{u \in N_t(R)\}}.$$

Then it is easy to show that $\sum_{u \in \overline{N}_t} \operatorname{Prob}(u \in \xi) = 1$.

Filtration

- $\xi = \{\phi, \xi_1, \xi_2, \ldots\}$: the selected line of decent in the spine
- $node_t(\xi)$: the node in the spine that is alive at time t
- $n = (n_t : t \ge 0)$: the number of fission times along the spine
- \mathcal{F}_t : the natural filtration of this branching process.

•
$$\tilde{\mathcal{F}}_t := \sigma(\mathcal{F}_t, (node_s(\xi), s < t)).$$

•
$$\mathcal{G}_t = \sigma(\xi_s; s \leq t).$$

•
$$\tilde{\mathcal{G}}_t := \sigma(\mathcal{G}_t, (node_s(\xi), s < t)).$$

•
$$\mathcal{F}_{\infty} := \bigcup_{t \ge 0} \mathcal{F}_t, \tilde{\mathcal{F}}_{\infty} := \bigcup_{t \ge 0} \tilde{\mathcal{F}}_t, \tilde{\mathcal{G}}_{\infty} := \bigcup_{t \ge 0} \tilde{\mathcal{G}}_t$$

We extend **P** to $\tilde{\mathbf{P}}$ so that the spine is a single genealogical line chosen from the underlying process.

In detail, the measure $\widetilde{\mathbf{P}}$ on $\widetilde{\mathcal{F}}_t$ is defined by

$$d\widetilde{\mathbf{P}}(\tau, M, \xi)|_{\widetilde{\mathcal{F}}_{t}} = dP(\xi) dL^{\beta(\xi)}(\mathbf{n}) \prod_{\nu < \xi_{n_{t}}} p_{A_{\nu}} \prod_{\nu < \xi_{n_{t}}} \frac{1}{\overline{A}_{\nu}} \prod_{j:\nu j \in O_{\nu}} d\mathbf{P}_{t-S_{\nu}}^{\xi_{S_{\nu}}}((\tau, M)_{j}^{\nu})$$

where $L^{\beta(\xi)}(\mathbf{n})$ is the law of the Poisson random measure $\mathbf{n} = \{\{\sigma_i : i = 1, 2, \dots, n_t\} : t \ge 0\}$ with intensity βdL_t along the path of ξ , $P(\xi)$ is the law of ξ starting from the origin, and $p_{A_{\nu}} = \sum_{k \ge 0} p_k I_{(A_{\nu}=k)}$ is the probability that individual ν has A_{ν} offsprings.

Let

$$Z_t = e^{-\beta_2 |\xi_t| + \beta_2 L_t - \frac{1}{2} \beta_2^2 t}.$$

Then $\{Z_t\}$ is a *P*-martingale so we can define a martingale change of measure by

$$\left.\frac{dQ}{dP}\right|_{\mathcal{G}_t} = Z_t.$$

Then $\{\xi, Q\}$ is a Brownian Motion with drift β_2 .

Suppose that the Possion process $(n, L^{\beta(\xi)})$ where $n = \{\{\sigma_i : i = 1, 2, ..., n_t\} : t \ge 0\}$ has instantaneous rate $\beta \delta_0(\xi_t)$. Further, assume that *n* is adapted to $\{\mathcal{L}_t : t \ge 0\}$. Then under the change of measure

$$\frac{L^{m\beta(\xi)}}{L^{\beta(\xi)}}\Big|_{\mathcal{L}_t} = m^{n_t} \cdot e^{-\beta(m-1)L_t}$$

the process $(n, L^{m\beta(\xi)})$ is also a Possion process with instantaneous jump rate $m\beta\delta_0(\xi_t)$.

Assume that $\sum_{k=1}^{\infty} (k \ln k) p_k < \infty$. Then it can be shown that

$$M_t = \sum_{u \in N_t} e^{-\beta_2 |X_t^u| - \frac{1}{2}\beta_2^2 t}$$

is a **P**-martingale and converges almost surely to an non-degenerate limit M_{∞} , i.e., $\mathbf{P}(M_{\infty} = 0) < 1$.

It can also be shown that

$$\widetilde{M}_t = e^{-\beta_2 |\xi_t| - \frac{1}{2}\beta_2^2 t} \prod_{\nu < \xi_{n_t}} A_{\nu} \mathbb{1}_{\{\xi_{n_t} \in N_t\}}$$

defines a $\tilde{\mathcal{F}}_t$ -measurable $\tilde{\mathbf{P}}$ -martingale.

Assume that $\sum_{k=1}^{\infty} (k \ln k) p_k < \infty$. Then it can be shown that

$$M_t = \sum_{u \in N_t} e^{-\beta_2 |X_t^u| - \frac{1}{2}\beta_2^2 t}$$

is a **P**-martingale and converges almost surely to an non-degenerate limit M_{∞} , i.e., $\mathbf{P}(M_{\infty} = 0) < 1$.

It can also be shown that

$$\widetilde{M}_t = e^{-eta_2 |\xi_t| - rac{1}{2}eta_2^2 t} \prod_{
u < \xi_{n_t}} A_
u \mathbbm{1}_{\{\xi_{n_t} \in N_t\}}$$

defines a $\tilde{\mathcal{F}}_t$ -measurable $\tilde{\mathbf{P}}$ -martingale.

Note that, Z, M and \tilde{M} are all unit mean martingales and have the key relationships as follows:

$$M_t = \tilde{\mathbf{P}}(\tilde{M}_t \mid \mathcal{F}_t) \text{ and } Z_t = \tilde{\mathbf{P}}(\tilde{M}_t \mid \mathcal{G}_t).$$
 (3)

Then we can define the Girsanov change of mesaures by

$$\frac{d\tilde{\mathbf{Q}}}{d\tilde{\mathbf{P}}}\Big|_{\tilde{\mathcal{F}}_t} = \tilde{M}_t \text{ and } \frac{d\mathbf{Q}}{d\mathbf{P}}\Big|_{\mathcal{F}_t} = M_t.$$

In fact, it follows from (3) that \mathbf{Q} is simply the projection of the measure \mathbf{Q} onto \mathcal{F}_{∞} .

Note that, Z, M and \tilde{M} are all unit mean martingales and have the key relationships as follows:

$$M_t = \tilde{\mathbf{P}}(\tilde{M}_t \mid \mathcal{F}_t) \text{ and } Z_t = \tilde{\mathbf{P}}(\tilde{M}_t \mid \mathcal{G}_t).$$
 (3)

Then we can define the Girsanov change of mesaures by

$$\frac{d\tilde{\mathbf{Q}}}{d\tilde{\mathbf{P}}}\Big|_{\tilde{\mathcal{F}}_t} = \tilde{M}_t \text{ and } \frac{d\mathbf{Q}}{d\mathbf{P}}\Big|_{\mathcal{F}_t} = M_t.$$

In fact, it follows from (3) that **Q** is simply the projection of the measure **Q** onto \mathcal{F}_{∞} .

$$\begin{split} d\widetilde{\mathbf{Q}} &= \widetilde{M}_{t} d\widetilde{\mathbf{P}} \\ &= e^{-\beta_{2}|\xi_{t}| - \frac{1}{2}\beta_{2}^{2}t} \prod_{\nu < \xi_{n_{t}}} A_{\nu} \mathbf{1}_{\{\xi_{n_{t}} \in N_{t}\}} dP dL^{\beta(\xi)}(\mathbf{n}) \prod_{\nu < \xi_{n_{t}}} p_{A_{\nu}} \prod_{\nu < \xi_{n_{t}}} \frac{1}{\overline{A}_{\nu}} \prod_{j:\nu j \in O_{\nu}} dP_{t-S}^{\xi_{S_{\nu}}} \\ &= e^{-\beta_{2}|\xi_{t}| - \frac{1}{2}\beta_{2}^{2}t + \beta_{2}L_{t}} dP m^{n_{t}} e^{-\beta_{2}L_{t}} dL^{\beta(\xi)}(\mathbf{n}) \prod_{\nu < \xi_{n_{t}}} \mathbf{1}_{\{\xi_{n_{t}} \in N_{t}\}} \frac{P_{A_{\nu}}}{m} \prod_{j:\nu j \in O_{\nu}} dP_{t-S_{\nu}}^{\xi_{S_{\nu}}} (\Phi_{t-S_{\nu}}) \\ &= dQ dL^{m\beta(\xi)} \prod_{\nu < \xi_{n_{t}}} \hat{p}_{A_{\nu}} \prod_{\nu < \xi_{n_{t}}} \frac{1}{A_{\nu}} \mathbf{1}_{\{\xi_{n_{t}} \in N_{t}\}} \prod_{j:\nu j \in O_{\nu}} dP_{t-S_{\nu}}^{\xi_{S_{\nu}}} ((\tau, M)_{j}^{\nu}) \end{split}$$

Li Wang (Beijing University of Chemical TechnBranching Brownian Motion with Catalytic Bra

æ

イロト イポト イヨト イヨト

Then under \mathbf{Q} , the branching process *X* can be constructed as follows:

- The spine initially starting at the origin moves according to the measure Q;
- **2** The spine undergoes fission into particles at an accelerated intensity $\beta m \delta_0(\cdot) d \phi_0(\cdot)$
- So A spine particle *u*, once death, gives birth to A_u particles with size-biased offspring distribution $\hat{P}(A_u = k) = \frac{kp_k}{m}, k = 0, 1, 2, \cdots$
- One of the A_u children is chosen uniformly at the fission time of u to continue the spine.
- Each of the remaining A_u 1 particles gives rise to an independent copy of a **P**-branching BM started at its space-time point of creation.
 Note that, P(A_u = 0) = 0.

Theorem

(Many-to-one theorem) Let $f(t) \in m\mathcal{G}_t$. In other words, f(t) is \mathcal{G}_t -measurable. Suppose it has the representation

$$f(t) = \sum_{u \in N_t} f_u(t) \mathbf{1}_{\{u \in \xi\}},$$

where $f_u(t) \in m\mathcal{F}_t$, then

$$\mathbf{E}\left(\sum_{u\in N_t}f_u(t)\right) = \mathbf{Q}\left(\frac{1}{M_t}\sum_{u\in N_t}f_u(t)\right) = \widetilde{\mathbf{Q}}(e^{\beta_2|\xi_t| + \frac{1}{2}\beta_2^2 t}f(t)) = \widetilde{E}[e^{\beta_2 L_t}f(t)].$$

Theorem

Spine decomposition:

$$\widetilde{\mathbf{Q}}[M_t | \widetilde{\mathcal{G}}_{\infty}] = \exp\{-\beta_2 |\xi_t| - \frac{1}{2}\beta_2^2 t\} + \sum_{u < \xi_{n_t}} (A_u - 1) \exp\{-\beta_2 |\xi_{S_u}| - \frac{1}{2}\beta_2^2 S_u\}$$

where $\{S_u : u \in \xi\}$ is the set of fission times along the spine.

• Expected total population growth: $\beta_2 = \beta(m-1)$,

$$\mathbf{E}(|N_t|) = 2\Phi(\beta_2 \sqrt{t}) e^{\frac{\beta_2^2}{2}t} \sim 2e^{\frac{\beta_2^2}{2}t}, \ t \to \infty.$$

• Expected population growth rates: Let $N_t^{\lambda t} := \{ u \in N_t : X_t^u > \lambda t \}, \lambda > 0$. Then

$$\mathbf{E}(|N_t^{\lambda t}|) = \Phi((\beta_2 - \lambda)\sqrt{t})e^{(\frac{\beta_2^2}{2} - \beta_2\lambda)t}.$$

• Almost sure total population growth rate:

$$\lim_{t\to\infty}\frac{\log|N_t|}{t} = \frac{1}{2}\beta_2^2 \qquad \mathbf{P}\{\cdot|M_\infty>0\} - a.s.$$

• Expected total population growth: $\beta_2 = \beta(m-1)$,

$$\mathbf{E}(|N_t|) = 2\Phi(\beta_2 \sqrt{t}) e^{\frac{\beta_2^2}{2}t} \sim 2e^{\frac{\beta_2^2}{2}t}, \ t \to \infty.$$

• Expected population growth rates: Let $N_t^{\lambda t} := \{u \in N_t : X_t^u > \lambda t\}, \lambda > 0$. Then

$$\mathbf{E}(|N_t^{\lambda t}|) = \Phi((\beta_2 - \lambda)\sqrt{t})e^{(\frac{\beta_2^2}{2} - \beta_2\lambda)t}.$$

• Almost sure total population growth rate:

$$\lim_{t\to\infty}\frac{\log|N_t|}{t} = \frac{1}{2}\beta_2^2 \qquad \mathbf{P}\{\cdot|M_\infty>0\} - a.s.$$

• Expected total population growth: $\beta_2 = \beta(m-1)$,

$$\mathbf{E}(|N_t|) = 2\Phi(\beta_2 \sqrt{t}) e^{\frac{\beta_2^2}{2}t} \sim 2e^{\frac{\beta_2^2}{2}t}, \ t \to \infty.$$

• Expected population growth rates: Let $N_t^{\lambda t} := \{u \in N_t : X_t^u > \lambda t\}, \lambda > 0$. Then

$$\mathbf{E}(|N_t^{\lambda t}|) = \Phi((\beta_2 - \lambda)\sqrt{t})e^{(\frac{\beta_2^2}{2} - \beta_2\lambda)t}.$$

• Almost sure total population growth rate:

$$\lim_{t\to\infty}\frac{\log|N_t|}{t}=\frac{1}{2}\beta_2^2 \quad \mathbf{P}\{\cdot|M_\infty>0\}-a.s.$$

Almost sure population growth rates: Let λ > 0.
1. If λ > β₂/2, then

$$\lim_{t\to\infty}|N_t^{\lambda t}|=0, \quad \mathbf{P}\text{-a.s.}$$

2. If $\lambda < \beta_2/2$, then $\mathbf{P}\{\cdot | M_{\infty} > 0\}$ -a.s.

$$\lim_{t \to \infty} \frac{\log |N_t^{\lambda t}|}{t} = \Delta_{\lambda} = \begin{cases} \frac{1}{2}\beta_2^2 - \beta_2 \lambda & \text{if } \lambda < \beta_2, \\ -\frac{1}{2}\lambda^2 & \text{if } \lambda \ge \beta_2. \end{cases}$$

• (Rightmost particle speed) Let $R_t := \sup_{u \in N_t} X_t^u$, $t \ge 0$. Then

$$\lim_{t\to\infty}\frac{R_t}{t}=\frac{\beta_2}{2}, \ \mathbf{P}\{\cdot|M_\infty>0\}\text{-a.s.}$$

Almost sure population growth rates: Let λ > 0.
1. If λ > β₂/2, then

$$\lim_{t\to\infty}|N_t^{\lambda t}|=0, \quad \mathbf{P}\text{-a.s.}$$

2. If $\lambda < \beta_2/2$, then $\mathbf{P}\{\cdot | M_{\infty} > 0\}$ -a.s.

$$\lim_{t \to \infty} \frac{\log |N_t^{\lambda t}|}{t} = \Delta_{\lambda} = \begin{cases} \frac{1}{2}\beta_2^2 - \beta_2 \lambda & \text{if } \lambda < \beta_2, \\ -\frac{1}{2}\lambda^2 & \text{if } \lambda \ge \beta_2. \end{cases}$$

• (Rightmost particle speed) Let $R_t := \sup_{u \in N_t} X_t^u$, $t \ge 0$. Then

$$\lim_{t\to\infty}\frac{R_t}{t}=\frac{\beta_2}{2}, \ \mathbf{P}\{\cdot|M_\infty>0\}\text{-a.s.}$$

Upper bound for the asymptotic behaviour of $|N_t^{\lambda t}|$

Proof. Note that $N_t^{\lambda t} := \{u \in N_t : X_t^u > \lambda t\}$. Thus for $t \in [n, n+1)$,

$$|N_t^{\lambda t}| \leq \sum_{u \in N_n} \sum_{v \in D_n(u)} \mathbb{1}_{\{\sup_{s \in [n, n+1)} X_s^v \geq \lambda n\}}$$

where $D_n(u)$ is the set of descendants of *u* that have ever exist in [n, n + 1). Take $\epsilon > 0$ and consider events

$$A_n = \left\{ \sum_{u \in N_n} \sum_{v \in D_n(u)} \mathbb{1}_{\{\sup_{s \in [n, n+1)} X_s^{\nu} \ge \lambda n\}} > e^{(\Delta_{\lambda} + \epsilon)n} \right\}$$

If we can show that $\mathbf{P}(A_n)$ decays to 0 exponentially fast then by the Borel-Cantelli Lemma we would have $\mathbf{P}(A_n \text{ i.o.}) = 0$ and that would be sufficient to get the result.

Upper bound for the asymptotic behaviour of $|N_t^{\lambda t}|$

Proof. Note that $N_t^{\lambda t} := \{u \in N_t : X_t^u > \lambda t\}$. Thus for $t \in [n, n+1)$,

$$|N_t^{\lambda t}| \leq \sum_{u \in N_n} \sum_{v \in D_n(u)} \mathbb{1}_{\{\sup_{s \in [n, n+1)} X_s^v \geq \lambda n\}}$$

where $D_n(u)$ is the set of descendants of *u* that have ever exist in [n, n + 1). Take $\epsilon > 0$ and consider events

$$A_n = \left\{ \sum_{u \in N_n} \sum_{v \in D_n(u)} \mathbb{1}_{\{\sup_{s \in [n,n+1)} X_s^{\nu} \ge \lambda n\}} > e^{(\Delta_{\lambda} + \epsilon)n} \right\}$$

If we can show that $\mathbf{P}(A_n)$ decays to 0 exponentially fast then by the Borel-Cantelli Lemma we would have $\mathbf{P}(A_n \text{ i.o.}) = 0$ and that would be sufficient to get the result. We can also say something about the rare events of $|N_t^{\lambda t}|$ being positive when we typically do not find particles with speeds $\lambda > \frac{\beta_2}{2}$.

Proposition

(Unusually fast particles) Assume that $\sum_{k=1}^{\infty} (k \ln k) p_k < \infty$. For $\lambda > \frac{\beta_2}{2}$,

$$\lim_{t\to\infty}\frac{\log \mathbf{P}(|N_t^{\lambda t}|\geq 1|M_{\infty}>0)}{t}=\triangle_{\lambda}.$$

Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be some continuous compactly-supported function. If $\sum_{k=1}^{\infty} (k \ln k) p_k < \infty$, then

$$\lim_{t \to \infty} e^{-\frac{1}{2}\beta_2^2} \sum_{u \in N_t} f(X_t^u) = M_\infty \int_{\mathbb{R}} f(x)\beta_2 e^{-\beta_2|x|} dx, \quad \mathbf{P}\text{-}a.s.$$

where M_{∞} is the almost sure limit of the **P**-uniformly integrable additive martingale

$$M_t = \sum_{u \in N_t} \exp\{-\beta_2 |X_t^u| - \frac{1}{2}\beta_2^2 t\}.$$

It is sufficient to prove for functions $f(x) = e^{-\beta |x|} 1_{\{x \in B\}}$. Let

$$U_t = e^{-\frac{1}{2}\beta_2^2 t} \sum_{u \in N_t} e^{-\beta_2 |X_t^u|} 1_{\{X_t^u \in B\}}.$$

Proposition

If $\sum_{k=1}^{\infty} (k \ln k) p_k < \infty$, then for any $m \in \mathbb{N}, \sigma > 0$,

$$\lim_{n\to\infty} |U_{(m+n)\sigma} - \mathbf{E}(U_{(m+n)\sigma}|\mathcal{F}_{n\sigma})| = 0, \ \mathbf{P}\text{-}a.s.$$

Li Wang (Beijing University of Chemical TechnBranching Brownian Motion with Catalytic Bra

Idea of proof of the proposition

Let

$$\widetilde{U}_{t} = e^{-\frac{1}{2}\beta_{2}^{2}t} e^{-\beta_{2}|\xi_{t}|} \mathbf{1}_{\{\xi_{t}\in B\}} + e^{-\frac{1}{2}\beta_{2}^{2}t} \sum_{\nu<\xi_{n_{t}}} \sum_{j=1}^{A_{\nu}-1} \langle e^{-\beta_{2}|\cdot|} \mathbf{1}_{\{\cdot\in B\}}, Y_{t-S_{\nu}}^{j} \rangle \mathbf{1}_{\{A_{\nu}\leq e^{\frac{1}{2}\beta_{2}^{2}(S_{\nu}+n\sigma/2)}\}}$$

Lemma

For each $f \in \mathcal{B}_b^+(\mathbb{R})$ and $x \in \mathbb{R}$, $\tilde{\mathbf{E}}[\widetilde{U}_t]^2 < \infty.$

Li Wang (Beijing University of Chemical TechnBranching Brownian Motion with Catalytic Bra

10 May, 2017 BNU 27 / 34

Idea of proof of the proposition

Note that we may always write

$$U_{(m+n)\sigma} = \sum_{i=1}^{N_{n\sigma}} e^{-\lambda_1 n\sigma} U_{m\sigma}^{(i)}$$

where given $\mathcal{F}_{n\sigma}$, the collection $\{U_{m\sigma}^{(i)}: i = 1, ..., N_{n\sigma}\}$ are mutually independent and equal in distribution to $U_{m\sigma}$ under $\mathbf{P}_{\delta_{Y_i}}$. Then we can write

$$U_{(m+n)\sigma} = \sum_{i=1}^{N_{n\sigma}} e^{-\lambda_1 n\sigma} \widetilde{U}_{m\sigma}^{(i)} + \sum_{i=1}^{N_{n\sigma}} e^{-\lambda_1 n\sigma} \left(U_{m\sigma}^{(i)} - \widetilde{U}_{m\sigma}^{(i)} \right)$$

:= $U_{(m+n)\sigma}^{[1]} + U_{(m+n)\sigma}^{[2]},$ (4)

where, under $\widetilde{\mathbf{P}}_{\delta_{Y_i}}$, { $\widetilde{U}_{m\sigma}^{(i)}: i = 1, ..., N_{n\sigma}$ } are equal in distribution to $\widetilde{U}_{m\sigma}$.

Idea of proof: From the decomposition (4), we have

$$U_{(m+n)\sigma} - \mathbf{E}(U_{(m+n)\sigma}|\mathcal{F}_{n\sigma})$$

$$= U_{(m+n)\sigma} - U_{(m+n)\sigma}^{[1]} + U_{(m+n)\sigma}^{[1]} - \tilde{\mathbf{E}}\left(U_{(m+n)\sigma}^{[1]}\middle|\mathcal{F}_{n\sigma}\right)$$

$$- \tilde{\mathbf{E}}\left[\left(U_{(m+n)\sigma} - U_{(m+n)\sigma}^{[1]}\right)\middle|\mathcal{F}_{n\sigma}\right]$$

Now the conclusion of this proposition follows immediately form the following three lemmas.

Lemma

If $\sum_{k=1}^{\infty} (k \ln k) p_k < \infty$, then

$$\lim_{n \to \infty} |U_{(n+m)\sigma} - U_{(n+m)\sigma}^{[1]}| = 0, \quad \tilde{\mathbf{P}} - a.s.$$
$$\sum_{n=1}^{\infty} \tilde{\mathbf{E}} \left[U_{(m+n)\sigma}^{[1]} - \tilde{\mathbf{E}} (U_{(m+n)\sigma}^{[1]} | \mathcal{F}_{n\sigma}) \right]^2 < \infty$$

where $U_{(m+n)\sigma}^{[1]}$ was defined in (4). In particular $\lim_{n \to \infty} \left| U_{(m+n)\sigma}^{[1]} - \tilde{\mathbf{E}}(U_{(m+n)\sigma}^{[1]} | \mathcal{F}_{n\sigma}) \right| = 0, \ \mathbf{P}_{\delta_x}\text{-a.s.}$

Li Wang (Beijing University of Chemical TechnBranching Brownian M<u>otion with Catalytic Br</u>a

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Lemma

If
$$\sum_{k=1}^{\infty} (k \ln k) p_k < \infty$$
, then for any $m \in \mathbb{N}, \sigma > 0$,

$$\sum_{n=0}^{\infty} \mathbf{E} \left[\left(U_{(m+n)\sigma} - U_{(m+n)\sigma}^{[1]} \right) \middle| \mathcal{F}_{n\sigma} \right] \text{ converges } \mathbf{P}\text{-a.s.}$$

Li Wang (Beijing University of Chemical TechnBranching Brownian Motion with Catalytic Bra

æ

(日)

The proof will be finished in three parts.

Part I: This is finished by the above Key Proposition. Part II:

$$\lim_{n\to\infty} \left| \mathbf{E}(U_{(m+n)\sigma}|\mathcal{F}_{n\sigma}) - \pi(B)M_{\infty} \right| = 0, \ \mathbf{P} - a.s.$$

Part III: From lattice times to continuous-time limit.

- S. Bocharov and S.C. Harris: Branching Brownian motion with catalytic branching at the origin.
- Liu, R.-L. Ren, Y.-X. and Song, R.: Llog L condition for super branching Hunt processes. J Theor Probab, 24, 170-193 (2011).

Thanks for all your attention!

wangli@mail.buct.edu.cn

Li Wang (Beijing University of Chemical TechnBranching Brownian Motion with Catalytic Bra