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Branching random walks

A branching random walk: an initial particle, which forms
the zeroth generation, is at the origin of R. It gives birth to
offspring particles that form the first generation. Their dis-
placements from their parent are described by a point process
Θ.



Branching random walks

Mn : the maximal position of the particles in the n-th generation.

Supercritical case:

Hammarsley (1974), Kingman (1975), Biggins (1976)
Mn
n → γ, a.s. on the non-extinction set.

Addario and Reed (2009), Hu and Shi (2009), Hu (2012,2016)
established the second or the third order of Mn.

Biggins (1977) or Rouault (2000)
give the large deviation principle of Mn.

Critical case: Suppose the displacements of particles from their
parents are independently and identically distributed.

Durrett (1991), Kesten (1995), Lalley and Shao (2015)
(a) study the scaled limit distribution of Mn conditioned on
that the system can survive to the n-th generation.
(b) give the tail distribution of M =: supn≥0Mn.



Branching random walks

Zheng (2010)
studies the maximal positions of a sequence of critical branch-
ing random walks with small drifts.

Subcritical case:

Neuman and Zheng (2017)
(a) study the scaled limit distribution of Mn =: supk≤nMk.
(b) give the tail distribution of M =: supn≥0Mn.

Our problem

The large deviation principle of the maximal positions in the
critical branching random walks with small drifts.



Critical BRWs with small drifts

For fixed n ≥ 1, we assume V (n) is the branching random walk
on Z+, which starts with one particle at the origin.
(A) At each time, particles produce offsprings as in a standard
Galton-Waston process with mean 1 and finite variance.
(B) Each particle moves one time from its parent according to
the transition probability P(α,β,n) below, where α > 0, β > 0.

P(x, x+ 1) = 1
2 −

β
nα for x ≥ 1;

P(x, x− 1) = 1
2 + β

nα for x ≥ 1;
P(0, 1) = 1.

(1)

V (n)(x): the position of the particle x, |x|: x’s generation.

M
(n)
k =: max|x|=k V

(n)(x).

Z
(n)
k : the number of particles at the k-th generation in V (n).



Critical BRWs with small drifts

Zheng (2010)

When α = 1
2 . For κ > 1, and every ε > 0,

lim
n→∞

P
(∣∣∣ M

(n)
[nκ]√

n log n
− κ− 1

4β

∣∣∣ > ε| > |Z(n)
[nκ] > 0

)
= 0.

For any α bigger than zero, the conditioned law of large number

of M
(n)
[nκ] also holds with rate κ−2α

4β , for κ > 2α.

How about the large deviation principle of M
(n)
[nκ]?



Main result

Assume {Zm} is a critical branching process with finite variance and
offspring distribution {pj}j≥0.

Theorem 1

Assume κ > 2α. If
∑
j≥0 j

2(log j)pj <∞, then

(a) for any λ > κ−2α
4β , we have

lim sup
n→∞

logP (M
(n)
[nκ] > λnα log n|Z(n)

[nκ] > 0)

log n

≤ max{κ− 2α− 4λβ, 2α− κ},

(b) for any κ−2α
4β < λ < κ−2α

2β , we have

lim inf
n→∞

logP (M
(n)
[nκ] > λnα log n|Z(n)

[nκ] > 0)

log n

≥ κ− 2α− 4λβ.



Main result

Theorem 2

Under the assumption in Theorem 1, we have for any 0 < λ <
κ−2α
4β ,

lim sup
n→∞

logP (M
(n)
[nκ] ≤ λn

α log n|Z(n)
[nκ] > 0)

log n
≤ −(κ− 2α− 4βλ).

Corollary 3

Under the assumptions in Theorem 1, we have that for all ε > 0,

M
(n)
[nκ] satisfies

lim
n→∞

P
(∣∣∣ M (n)

[nκ]

nα log n
− κ− 2α

4β

∣∣∣ ≥ ε∣∣∣Z(n)
[nκ] > 0

)
= 0.



Idea of the proofs

Use the strategy of changing the conditional event, which is
used in Zheng (2010).

Divide the branching part and the walking part.



Preparations for the proofs

Lemma 4

Assume
∑

j≥0 j
2(log j)pj <∞ holds. Let mn ≤ n be integers and

εn > 0 be real values such that mn/n → 1, n − mn → ∞ and
εn → 0 as n→∞. Let Gn = {Zn > 0}, Hn = {Zmn ≥ nεn} and
Kn = {Zmn > 0}. Then
(1) for all n large enough,

P (Gn∆Kn)

P (Kn)
≤ δ2,

(2) for all n large enough,

P (Gn∆Hn)

P (Gn)
≤ 4(δ1 + δ2),

where δ1 = Cσ2nεn
mn

, δ2 = 2

1− 2
σ2
mn log

(
1− σ2

n−mn

) .



Preparations for the proofs

Let {S(n)
k } denote a random walk with transition probability

P(α,β,n) given by (1).

Proposition 5

For any fixed b > 0, and any nonnegative sequences {ln}, {kn}
with lim supn→∞ ln/n

α <∞ and lim infn→∞ kn/(n
2α log2 n) > 0,

the random walks {S(n)
k } satisfy

lim
n→∞

P (S
(n)
kn
≥ bnα|S(n)

0 = ln) = exp(−4βb),

and

lim
n→∞

P (S
(n)
kn
≥ bnα log n|S(n)

0 = ln)

n−4βb
= 1.



Proof of Theorem 1 (a)

For all n large enough

|P (M
(n)
[nκ] ≥ λn

α log n|Z(n)
[nκ] > 0)− P (M

(n)
[nκ] ≥ λn

α log n|Z(n)
[nκ]−[n2α] > 0)|

≤ 4n2α−κ (by Lemma 4). (2)

We divide the probability space into two event. And can get that

P (M
(n)
[nκ] ≥ λn

α log n,M
(n)
[nκ]−[n2α] ≥ (λ− ε)nα log n|Z(n)

[nκ]−[n2α] > 0)

≤ E(Z
(n)
[nκ]−[n2α]|Z

(n)
[nκ]−[n2α] > 0)× P (S

(α,β,n)
[nκ]−[n2α] > (λ− ε)nα log n)× ρ[n2α]

≤ σ2(nκ − n2α)× 2n−4β(λ−ε) × 4

σ2(n2α)
≤ 8nκ−4βλ−2α+4βε.



Proof of Theorem 1 (a)

Let M
′(n)
nκ denote the rightmost position of the particles in [nκ]-th gen-

eration whose ancestors in ([nκ]− [n2α])-th generation is in the left of
(λ− ε)nα log n.

Since the branching random walk is critical, we get for all n large
enough

P (M
′(n)
[nκ] ≥ λn

α log n|Z(n)
[nκ]−[n2α] > 0)

≤ E(Z
(n)
[nκ]−[n2α]|Z

(n)
[nκ]−[n2α] > 0)

·P (S[nκ] > λnα log n|S[nκ]−[n2α] < (λ− ε)nα log n)

≤ σ2(nκ − n2α) · C1n
−bε2 logn ≤ C1σ

2n−(bε
2(logn)2−κ),

where C1 and b are constants irrelevant to n.

Combining these two situations, we have

P (M
(n)
nκ ≥ λnα log n|Z(n)

nκ−n2α > 0) ≤ 8nκ−4βλ−2α+4βε+Cσ2n−(bε
2(logn)2−κ).



Proof of Theorem 1 (a)

Then by (2), we get that for all n large enough

P (M
(n)
nκ ≥ λnα log n|Z(n)

nκ > 0) ≤ 8nκ−4βλ−2α+4βε + Cσ2n−(bε
2(logn)2−κ)

+2n2α−κ.

Therefore, we have that for any ε > 0,

lim sup
n→∞

logP (Mnκ ≥ λnα log n|Z(n)
[nκ] > 0)

log n
≤ max{κ−2α−4βλ+4βε, 2α−κ}.
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