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Branching random walks

A branching random walk: an initial particle, which forms
the zeroth generation, is at the origin of R. It gives birth to
offspring particles that form the first generation. Their dis-
placements from their parent are described by a point process
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Branching random walks

M, : the maximal position of the particles in the n-th generation.
Supercritical case:
e Hammarsley (1974), Kingman (1975), Biggins (1976)
% — 7, a.s. on the non-extinction set.
e Addario and Reed (2009), Hu and Shi (2009), Hu (2012,2016)
established the second or the third order of M,,.

e Biggins (1977) or Rouault (2000)
give the large deviation principle of M,,.

Critical case: Suppose the displacements of particles from their
parents are independently and identically distributed.

e Durrett (1991), Kesten (1995), Lalley and Shao (2015)
(a) study the scaled limit distribution of M,, conditioned on
that the system can survive to the n-th generation.
(b) give the tail distribution of M =: sup,,»q Mp.



Branching random walks

e Zheng (2010)
studies the maximal positions of a sequence of critical branch-
ing random walks with small drifts.

Subcritical case:

e Neuman and Zheng (2017)
(a) study the scaled limit distribution of M,, =: supy<,, M.
(b) give the tail distribution of M =: sup,,~o Mp.

The large deviation principle of the maximal positions in the
critical branching random walks with small drifts.




Critical BRWs with small drifts

For fixed n > 1, we assume V(" is the branching random walk
on Z, which starts with one particle at the origin.

(A) At each time, particles produce offsprings as in a standard
Galton-Waston process with mean 1 and finite variance.

(B) Each particle moves one time from its parent according to
the transition probability P(®#™) below, where a > 0,3 > 0.

P(z,z+1) =3 — n% for z > 1,
P(z m—l):% % for z > 1; (1)
P(0,1) = 1.

V(") (z): the position of the particle x, |z|: z’s generation.
]VI,E "= max|,—, V) ().
Z ,gn): the number of particles at the k-th generation in V(™).



Critical BRWs with small drifts

Zheng (2010)

When a = 5. For k > 1, and every € > 0,
(n)
M
: ] K 1‘ (n) _
1. P (| Ziiogn ~ a5 |7 4> 1 > 0) =0

v

For any « bigger than zero, the conditioned law of large number

of M, [(:,3] also holds with rate 450‘, for k > 2a.

(n)
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How about the large deviation principle of M




Main result

Assume {Z,,} is a critical branching process with finite variance and
offspring distribution {p;};>o.

Theorem 1

Assume k > 2«. If Ejzof(logj)pj < 00, then

(a) for any A > ”Zgo‘, we have

log P(M{"); > An®logn|Z{"), > 0)
lim sup
n—00 log n

< max{k — 2a — 4)\f, 2a — K},

(b) for any =3 2"‘ <A< ”‘2§a, we have

log P(M[(;Q] > An® logn|Z( (] > 0)
lim inf
n—co logn

> Kk — 20 —4)0.




Main result

Theorem 2

Under the assumption in Theorem 1, we have for any 0 < A <
K—2
48
log P(M™). < An®logn|Z™), > 0)
lim sup "] "] < —(k —2a —46A).
n—0o0 logn

| \

Corollary 3

Under the assumptions in Theorem 1, we have that for all € > 0,
M[(nr% satisfies
M [(n)] K — 2a (n)
9 e _ > n —0.
nhm P( o logn 13 ‘ 5‘Z[nﬁ} > 0) =0




Idea of the proofs

o Use the strategy of changing the conditional event, which is
used in Zheng (2010).

e Divide the branching part and the walking part.



Preparations for the proofs

Lemma 4

Assume Y i~ j2(log j)pj < oo holds. Let m,, < n be integers and
€n > 0 be real values such that m,/n — 1, n — m, — oo and
€n — 0 asn — oco. Let G, ={Z, >0}, H, ={Z,, > ne,} and
K, ={Zp, > 0}. Then

(1) for all n large enough,

P(G,AK,) < 5
P(Kn) — 7
(2) for all n large enough,
P(G,AH,)
—— <46
PGy S (61 + 02),
where 61 = —C‘i:e“ , 0g = 2

2 2 ’
1—?mn log (1— nfmn )




Preparations for the proofs

Let {Slin)} denote a random walk with transition probability
P(@8:m) given by (1).

Proposition 5

For any fized b > 0, and any nonnegative sequences {l,}, {kn}
with lim sup,,_, . In/n® < 00 and liminf,, o k,/(n?*log?n) > 0,
the random walks {S’,(cn)} satisfy

lim P(S™ > bn®|SS" = 1,,) = exp(—46b),

n—oo
and

lim
rmrco n—48b

P(S,i:) > bn® logn\S(()n) =ln) )




Proof of Theorem 1 (a)

For all n large enough

|P(M{) > xn®logn|Z{0 > 0) — P(M{) > Mn®logn|Z{2) sy > O)]

[n”] [n~]

< 4n**=* (by Lemma 4). (2)

We divide the probability space into two event. And can get that

P(M[(:K)} > An®logn, M[(:K)]_[nh] > (A —¢e)n®log n|Z[(52]_[n2a] > 0)
< B(Z0) o | 2 ey > 0) X P(S{200 0 > (A = e)n® logn) X Az

< 8nn—4ﬂ>\—2a+465

n2a) —

< 0'2(’115 _ n2a) « 2n—4,8()\—e) «




Proof of Theorem 1 (a)

Let M,/l(f ) denote the rightmost position of the particles in [n*]-th gen-
eration whose ancestors in ([n"] — [n2%])-th generation is in the left of
(A —€)n®logn.

Since the branching random walk is critical, we get for all n large
enough

P(M > An® logn|ZnN] imaa) > 0)

< E(Z™ n2a]|Z

[n”]—

> 0)
-P(Sps > An®1og n|Spps)—n2e] < (A — €)n®logn)

2 2 2
< 0,2(nn _ n2a) . Clnfbe logn < 010,2n7(b6 (logn) 7n)’

[n*]=[n?]

where C and b are constants irrelevant to n.

Combining these two situations, we have

(MY > n® logn|Z Y ea >0) < g 4BA=20+48¢ 152 = (be* (logn)* k)



Proof of Theorem 1 (a)

Then by (2), we get that for all n large enough

P( (n) > An® logn|Z > 0) < gpr—4BA—2a+48e 4 CUZn—(bez(logn)z—n)
_’_2n2a—n.

Therefore, we have that for any € > 0,

log P(M,~ > An“logn Z(”2 > 0)
lim sup (M | (") < max{k—2a—48\\+40¢, 2a—k}.

n— 00 log n




Reference

1]

2]

Addario-Berry, L., Reed, B. (2009). Minima in branching random
walks. Ann. Prob. 37 1044-1079.

Biggins, J. D. (1976). The first and last birth problems for a
multitype age-dependent branching process. Adv. Appl. Probab.
8 446-459.

Durrett, R., Kesten, H., Waymire,E. (1991). On weighted heights
of random trees. J.Theoret.Prob. 4 223-237.

Neuman, E. Zheng X.H. (2017). On the maximal displacement of
subcritical branching random walks, Probab. Related Fields. 167
1137-1164.

Hu, Y. (2012). The almost sure limits of the minimal position and
the additive martingale in a branching random walk. J. Theor. Probab.
28 467-487.

Hu, Y. Y. (2016). How big the minimum of a branching random
walk. Ann. Inst. H. Poincaré Probab. Statist. 52 233-260.

Hu, Y., Shi, Z. (2009). Minimal position and critical martingale
convergence in branching random walks, and directed polymers
on disordered trees. Ann.Probab. 37 742-789.



Reference

[8] Kesten, H. (1995). Branching random walk with a critical branch-
ing part. J. Theoret.Prob. 8 921-962.

[9] Lalley, S. P., Shao, Y. (2015). On the maximal displacement of
critical branching random walk. Probability Theory and Related
Fields 162 71-96.

[10] Zheng, X. H. (2010). Critical branching random walks with small
drift. Stoch.Proc.Appl. 120 1821-1836.



Acknowledgement

Thanks for your attention!



	Branching random walk
	Critical branching random walks with small drifts
	Sketch of the proofs

