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CSBP with competition.

Prototype example : logistic Feller diffusion

Let Y = (Yt; t ≥ 0) be the the unique strong solution of the
following SDE,

Yt = Y0 + b

∫ t

0
Ysds+

∫ t

0

√
2γ2YsdB

(b)
s − c

∫ t

0
Y 2
s ds, t ≥ 0,

where B(b) = (B
(b)
t ; t ≥ 0) is a standard Brownian motion.

The logistic Feller diffusion can also be defined as scaling limits of
Bienaymé-Galton-Watson processes with competition, i.e. a
continuous time Markov chain with individuals behaving
independently from one another and each giving birth to a
(random) number of offspring (belonging to the next generation)
but also considering competition pressure.
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Lambert (AAP 2005) generalized the previous model by replacing
the Feller diffusion part by a general CB-process using a random
time change.

More precisely, Lambert considered the following generalized
Ornstein-Uhlenbeck process starting from x > 0,

dRt = dXt − cRtdt,

where X = (Xt, t ≥ 0) denotes a spectrally positive Lévy process
whose law started from x ∈ R is denoted by Px.

The law of X is completely characterized by its Laplace exponent ψ
which is defined as ψ(λ) = logE[e−λX1 ] for λ ≥ 0, and satisfies
the so-called Lévy-Khintchine representation

ψ(u) = −bu+ γ2u2 +

∫
(0,∞)

(e−ux − 1 + ux1{x<1})µ(dx).
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Lamperti-type transform

Let TR0 = inf{s : Rs = 0} and we consider the clock

ηt =

∫ t∧TR0

0

ds

Rs
, for t > 0.

Let θ denotes the right-continuous inverse of the clock η. According
to Lambert, the logistic branching process is defined as follows

Yt =

{
Rθt if 0 ≤ t < η∞
0 if η∞ <∞ and t ≥ η∞.

Actually, the logistic branching process satisfies the following SDE

Yt = Y0 + b

∫ t

0
Ysds+

∫ t

0

√
2γ2YsdB

(b)
s

+

∫ t

0

∫
(0,∞)

∫ Ys−

0
zÑ (b)(ds,dz,du)− c

∫ t

0
Y 2
s ds,
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where B(b) is a standard Brownian motion which is independent of
the Poisson random measure N (b) which is defined on R3

+ with
intensity measure dsµ(dz)du such that∫

(0,∞)
(z ∧ z2)µ(dz) <∞, (1.1)

and Ñ (b) denotes its compensated version.

It is important to note that Ma (as well as Berestycki et al.)
consider a more general competition mechanism g which is a
non-decreasing continuous function on [0,∞) with g(0) = 0.
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Some known results on the logistic case

Assume ∫ ∞
log rπ(dr) <∞.

• If X is a subordinator and assume that either it has a drift δ,
it is not a Compound Poisson or it is a Compound Poisson
with mean strictly bigger than c. Then Y is positive recurrent
in (δ/c,∞) and converge in distribution to a size biased
distribution of∫

(δ/c,∞)
ν(dr)e−λr = exp

{∫ λ

0

ψ(s)

cs
ds

}
• If X is a subordinator that doesn’t fulfil the above conditions,
then Y is null-recurrent in (0,∞) and converges to 0 in
probability.
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Some known results on the logistic case

If X is a not a subordinator then Y goes to 0, a.s. and it gets
extinct at finite time a.s. if and only if∫ ∞ dλ

ψ(λ)
<∞.

The Laplace exponent of the time to extinction can be computed
explicitly whenever the above integral condition is satisfied.

The process Y comes down from ∞ and its entrance law can be
computed explicitly.
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CSBP with competition in a Lévy random environment

Aim :

study the time to extinction of continuous state branching
processes (CB-processes) with competition in a Lévy random
environment.

Such family of processes have been introduced recently by Palau
and P. (see also He et al. )as the unique strong solution of the
following SDE

Zt = Z0 + b

∫ t

0

Zsds−
∫ t

0

g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s +

∫ t

0

Zs−dSs

+

∫ t

0

∫
[1,∞)

∫ Zs−

0

zN (b)(ds, dz,du) +

∫ t

0

∫
(0,1)

∫ Zs−

0

zÑ (b)(ds, dz,du),

where g is a non-decreasing continuous function on [0,∞) with
g(0) = 0, B(b) and N (b) are defined as before but with the
difference that the measure µ satisfies the following condition
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∫
(0,∞)

(1 ∧ z2)µ(dz) <∞,

and S is a Lévy process independent of B(b) and N (b) which can be
written as follows

S
(e)
t = γt+ σB

(e)
t +

∫ t

0

∫
(−1,1)c

(ez − 1)N (e)(ds,dz)

+

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz),

with γ ∈ R, σ ≥ 0, B(e) = (B
(e)
t , t ≥ 0) is a standard Brownian

motion and N (e) is a Poisson random measure taking values on
R+ × R independent of B(e) and with intensity dsπ(dz) satisfying∫

R
(1 ∧ z2)π(dz) <∞.
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Some motivation (I hope !)

We consider that the branching and competition mechanisms are as
follows

g(x) = kx2 and ψ(λ) = bλ for x, λ ≥ 0,

where k is a positive constant.

In other words,

Zt = Z0 +

∫ t

0
Zs(b− kZs)ds+

∫ t

0
Zs−dSs.

In particular, it can be rewritten as follows

Zt =
Z0e

Kt

1 + kZ0

∫ t

0
eKsds

, t ≥ 0,
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Proposition

The process Z has the following asymptotic behaviour :

i) If the process K drifts to −∞, then limt→∞ Zt = 0 a.s.
ii) If the process K oscillates, then lim inft→∞ Zt = 0 a.s.
iii) If the process K drifts to ∞, then Z has a stationary

distribution whose density can be written in terms of the
density of I∞(−K) =

∫∞
0 e−Ksds.

Moreover if K has finite mean, for every measurable function
f : R+ → R+ we have

lim
t→∞

1

t

∫ t

0
f(Zs)ds = Ex

[
f

(
1

kI∞(−K)

)]
, a.s.
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Time to extinction

We define the first hitting time to 0 of Z as follows

TZ0 = inf{t ≥ 0, Zt = 0},

with the convention that inf{∅} = +∞. We denote by Px for the
law of Z starting from x > 0.

In the sequel, we assume∫
(0,∞)

(z ∧ z2)µ(dz) +
∫
(−1,+∞)

|z|π(dz) < +∞.

We also assume tha that the branching mechanism ψ satisfies the
so-called Grey’s condition, i.e.∫ ∞ dλ

ψ(λ)
<∞.
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Important : Grey’s condition is a necessary and sufficient condition
for CB processes in random environment to be extinct (see He et
al. (2016)).

For our next result, we assume that following properties on the
competition mechanism g :

H1) There exists θ ≥ 0 such that for all x, y ≥ 0,

g(z)− g(z + y) ≤ (θ − b)y.

H2) There exists a0 > 0 such that by < g(y) for any y ≥ a0 and∫ +∞

a0

dy

g(y)− by
< +∞.
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g(z)− g(z + y) ≤ (θ − b)y.

H2) There exists a0 > 0 such that by < g(y) for any y ≥ a0 and∫ +∞
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dy

g(y)− by
< +∞.
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]
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A natural question : Does the process Z comes down from infinity ?
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Brownian case.

Here, we assume that St = σB
(e)
t , t ≥ 0 and we will observe that

we can obtain further results about the time to extinction.

Let X = (Xt, t ≥ 0) be a spectrally positive Lévy process with
characteristics (−b, γ, µ). (Not necesarilly finite mean)

Proposition
Let W = (Wt, t ≥ 0) be a standard Brownian motion independent
of X and assume that g is a continuous function and
non-decreasing on [0,∞) with g(0) = 0. For each x > 0, there is a
unique strong solution to

dRt = 1{Rr−>0:r≤t}dXt−1{Rr−>0:r≤t}
g(Rt)

Rt
dt+1{Rr−>0:r≤t}σ

√
RtdWt.
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Theorem
Let R = (Rt, t ≥ 0) be as before and TR0 = sup{s : Rs > 0}. We
also let C be the right-continuous inverse of η, where

ηt =

∫ t∧TR0

0

ds

Rs
, t > 0.

Hence the process defined by

Zt =

{
RCt , if 0 ≤ t < η∞
0, if η∞ <∞ and t ≥ η∞,

is a CSBP with competition in a Brownian random environment.
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Theorem
Reciprocally, let Z CSBP with competition in a Brownian random
environment with Z0 = x and let

Ct =

∫ t∧TZ0

0
Zsds, t > 0.

If η denotes the right-continuous inverse of C, then the process
defined by

Rt =

{
Zηt , if 0 ≤ t < C∞
0, if C∞ <∞ and t ≥ C∞,

satisfies the SDE from the previous definition.
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Logistic case.
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Bounded variation case

If X has bounded variation paths, then the process R satisfies

dRt = dXt − cRtdt+ σ
√
RtdWt.

In other words, R is a CBI process with branching mechanism

ψR(θ) = θ

(
c+

σ2θ

2

)
and φR(θ) = bθ+

∫
(0,∞)

(1− eθx)µ(dx),

The process R is subcritical and according to Foucart & Uribe the
only point that may be polar is 0. Actually 0 is polar or hit with
positive probability accordingly as∫ ∞

θ

dz

z
(
c+ σ2

2 z
) exp


∫ z

θ

φR(u)

u
(
c+ σ2

2 u
)du

 =∞ or <∞,

for θ > 0.
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According to Duhalde et al., the CBI R is recurrent or transient
provided that

∫ 1

0

dz

z
(
c+ σ2

2 z
) exp

−
∫ 1

z

φR(u)

u
(
c+ σ2

2 u
)du

 =∞ or <∞

Moreover, if ∫
(1,∞)

log(u)µ(du) <∞,

then R possesses an invariant probability distribution.
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Let τa = inf{t ≥ 0 : Rt ≤ a}, for every x ≥ a and λ ≥ 0 we have

Ex

[
e−λτa

]
=

∫∞
0

dz

z
(
c+σ2

2
z
) exp

{
−xz +

∫ z
θ

φR(u)+λ

u
(
c+σ2

2
u
)du

}
∫∞
θ

dz

z
(
c+σ2

2
z
) exp

{
−az +

∫ z
θ

φR(u)

u
(
c+σ2

2
u
)du

} ,

and for all x > a ≥ 0,

Ex[τa] =
∫ ∞
0

dz

z
(
c+ σ2

2 z
)(e−az−e−xz) exp

−
∫ z

0

φ(u)

u
(
c+ σ2

2 u
)du

 .
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In other words, all this results can be used to deduce :

• whether the process Z hits 0 or not
• Px(TZ0 <∞)

• whether the process Z is transient or recurrent
• existence of an invariant distribution (under the log moment
condition)

• the Laplace exponent of the total population∫ TZa

0
Zsds,

where TZa = inf{s : Zs ≤ a}
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Unbounded variation case.

In this case the process X is not longer a subordinator

In what follows, we assume that |ψ′(0+)| is finite. (which perhaps
can be improve)

Here we want to deduce an “explicit" expression for the law of TZ0 ,
the first step to reach this result is to find an explicit formulation of
the function

Gq,x(λ) =

∫ +∞

0
e−qtEx[e−λZt ]dt.

Indeed, we have that limλ→+∞ qGq,x(λ) = Ex[e−qT0 ].
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Observe that the infinitesimal generator of Z satisfies, for any
f ∈ C2

b (IR+),

Uf(z) = zAf(z)− cz2f ′(z) + σ2

2
z2f ′′(z),

where A is the generator of the Lévy process X.

By applying to the generator U to e−λz we deduce the following
Lemma.

Lemma
For any q ≥ 0, x ≥ 0, Gq,x is a positive solution to the differential
equation

ω(λ)y′′(λ)− ϕ(λ)y′(λ)− qy(λ) = e−λx,

where ω(λ) = cλ
(
1 + σ2

2cλ
)
.
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Observe that ω(λ) is positive on (0,+∞). Hence, a classical
application of Cauchy-Lipschitz’s Theorem implies that any solution
to the previous ODE is well defined on (0,+∞), and the space of
solutions has dimension 2.

In order to reach our goal, we study the homogeneous equation

ω(λ)y′′ − ψ(λ)y′ − qy = 0.

We set

m(λ) =

∫ λ

0

ψ(l)

ω(l)
dl and θ(λ) =

∫ λ

0
em(l)dl.

Note that θ is a positive increasing function with values in (0,+∞)
and also that m is non-decreasing on (λ0,+∞) and θ(λ) converges
to +∞ when λ tends to +∞.
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We denote the inverse function of θ by ϕ. A simple computation
gives

ϕ′(λ) = exp(−m ◦ ϕ(λ)).

Finally, we can link the solutions to the homogeneous ODE to

h′(λ) = h2(λ)− q ϕ
′(λ)2

ω(ϕ(λ))
.

Lemma
For any q > 0, there exists a unique non-negative solution hq to the
equation

h′ = h2 − qr2,

where r(λ) = ϕ′(λ)√
ω(ϕ(λ))

such that it vanishes at +∞. Moreover, hq

is positive on (0,∞), and for any λ sufficiently small or large,
hq(λ) <

√
qr(λ). As a consequence, hq is integrable at 0, and it

decreases initially and ultimately.
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Proposition
The extinction time TZ0 of Z satisfies

Ex[e
−qTZ

0 ]

= 1−
∫ +∞

0

∫ +∞

l

qr(s)2(1− e−xϕ(s))e−
∫ s
l
hq(u)due−

∫ +∞
l

hq(u)dudsdl,

and
Ex[T

Z
0 ] =

∫ +∞

0

lr2(l)(1− e−xϕ(l))dl.
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