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Stoshastic heat equation

∂

∂t
X (t, x) =

1

2
∆X (t, x) + σ(X (t, x))Ẇ (x , t),

where Ẇ is the Gaussian space-time white noise with

E
[
Ẇ (x , t)Ẇ (y , s)

]
= δ(t − s)δ(x − y).

X (t, x) =

∫
pt(x − y)X (0, y)dy

+

∫ t

0

∫
pt−s(x − y)σ(X (s, y))W (dy , ds).
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Uniqueness

∂

∂t
X (t, x) =

1

2
∆X (t, x) + σ(X (t, x))Ẇ (x , t).

I Pathwise uniqueness (PU):
X 1,X 2 — two solutions, X 1(0, ·) = X 2(0, ·)
=⇒ X 1(t, ·) = X 2(t, ·) , ∀t > 0.

I Uniqueness in law (weak):
X 1,X 2 — two solutions (even on different spaces),

X 1(0, ·) = X 2(0, ·) =⇒ {X 1(t, ·)}t≥0
law
= {X 2(t, ·)}t≥0 .
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Uniqueness

∂

∂t
X (t, x) =

1

2
∆X (t, x) + σ(X (t, x))Ẇ (x , t).

If Ẇ is a space-time white noise, then function-valued solution
exists if d = 1.
Uniqueness?
σ — Lipschitz =⇒ PU follows easily.
σ - non-Lipschitz ?

4 / 35



Super-Brownian motion

Branching Brownian motions in Rd .
X n:
∼ n particles in Rd at time 0.
1

n
,

2

n
, . . . — times of death or split,

p0 = p2 =
1

2
— probabilities of death or split.

Critical branching: mean number of offspring = 1.
New particles move as independent Brownian motions.

X n
t (A) =

# particles in A at time t

n
, A ⊂ Rd .

X n ⇒ X ,

X is a super-Brownian motion — measure-valued process.

5 / 35



Characterization

Laplace transform:

E
[
e−〈Xt ,φ〉

]
= e−〈X0,ut〉, φ ≥ 0.

where

∂ut
∂t

=
1

2
∆ut −

1

2
u2t , u0 = φ.

X is continuous (in time) measure-valued process.

Regularity properties?
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Properties of SBM

I Singular measure if d > 1.

I Existence of density only in d = 1:
Xt(dx) = Xt(x)dx

I d = 1. Xt(x) is jointly continuous in (t, x). N. Konno,
T. Shiga(88); M. Reimers (89):

∂X

∂t
=

1

2
∆X +

√
XẆ .

Ẇ — Gaussian space-time white noise.

I From now on
d = 1.

7 / 35



Properties of SBM

I Singular measure if d > 1.

I Existence of density only in d = 1:
Xt(dx) = Xt(x)dx

I d = 1. Xt(x) is jointly continuous in (t, x). N. Konno,
T. Shiga(88); M. Reimers (89):

∂X

∂t
=

1

2
∆X +

√
XẆ .
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More properties

I

∂X

∂t
=

1

2
∆X +

√
XẆ .

Xt(x) is jointly continuous in (t, x).
Hölder 1/2− in space, Hölder 1/4− in time.

I Compact support property (Iscoe (88)).

I Define:

BZt ≡ ∂({x : X (t, x) = 0})
= {x : X (t, x) = 0,∀δ > 0Xt((x − δ, x + δ)) > 0}.

— the boundary of the zero set of Xt

I Question:
Properties of BZt?
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Hausdorff dimension

∂X

∂t
=

1

2
∆X +

√
XẆ .

In particular we are interested in Hausdorff dimension of BZt :

dim(BZt) =?
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Motivation: Pathwise Uniqueness for SBM?

∂X

∂t
=

1

2
∆X +

√
XẆ .

Weak uniqueness holds (by duality method)

Pathwise uniqueness (PU)?√
X — non-Lipschitz.

The trouble comes from the points in BZt — the boundary of the
support.
This is one of our motivations to study this set.

Is there a chance to get PU?
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XẆ .

Weak uniqueness holds (by duality method)

Pathwise uniqueness (PU)?√
X — non-Lipschitz.

The trouble comes from the points in BZt — the boundary of the
support.
This is one of our motivations to study this set.

Is there a chance to get PU?

10 / 35



Pathwise uniqueness for SDEs

dXt = σ(Xt)dBt

Bt is a one-dimensional Brownian motion.

Theorem ( Yamada, Watanabe (71))

If σ is Hölder continuous with exponent 1/2, then PU holds.

Remark
There are counter examples for σ which is Hölder continuous with
exponent less than 1/2.
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Back to SPDEs

Theorem (Perkins, M., 11)

Let σ(x) be Hölder continuous with exponent γ.
For any γ > 3/4, PU holds for

∂X

∂t
=

1

2
∆X + σ(X )Ẇ ,

where Ẇ is the space-time white noise.

Remark 1
Recently Yang, Zhou (2017) studied PU for SPDEs with Hölder
coefficients driven by stable noise.
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Non-uniqueness

I Is 3/4 sharp? Counter example: for γ < 3/4 try to construct
non-triviual solution to{

∂
∂tX (t, x) = 1

2∆X (t, x) + |X (t, x)|γẆ (x , t),
X (0, ·) = 0.

(1)

I Burdzy, Mueller, Perkins(2010); M., Mueller, Perkins(2012):
If 0 < γ < 3/4 there is solution X (t, x) to (1) such that with
positive probability, X (t, x) is not identically zero.

All this was about any solution to the SPDE.
What happens if we restrict consideration to the class of
non-negative solutions?
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Non-uniqueness for non-negative solutions

I Burdzy, Mueller, Perkins(2010): If 0 < γ < 1/2, ψ ≥ 0,
non-trivial, then PU fails for non-negative solutions to

∂

∂t
X (t, x) =

1

2
∆X (t, x) + |X (t, x)|γẆ (x , t) + ψ, (2)

I Chen (2015): If ψ ≥ 0, non-trivial, then PU fails for
non-negative solutions to

∂

∂t
X (t, x) =

1

2
∆X (t, x) + |X (t, x)|1/2Ẇ (x , t) + ψ. (3)

This is super-Brownian motion with immigration ψ for which
weak uniqueness holds!
Presence of ψ is very important: whenever ψ > 0, boundary
of the zero set of any solution has positive Lebesgue measure
Heuristically, it is ”easier” for two solutions to separate if the
boundary of the ”zero set” is ”large”.
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Non-uniqueness for non-negative solutions

ψ = 0?

The question whether PU holds for non-negative solutions to

∂

∂t
X (t, x) =

1

2
∆X (t, x) + |X (t, x)|γẆ (x , t), (4)

for γ < 3/4 is still open.

As we mentioned the presence of ψ is very important: whenever
ψ > 0, BZt of any solution has positive Lebesgue measure.

However if the set BZt is ”small” then one may expect that PU
holds also for some γ < 3/4.

This motivated our interest in the Hausdorff dimension of the
boundary of the zero set of X (t, ·) that solves (4).
At this point we can do it only in γ = 1/2 case: SBM without
immigration.
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Hausdorff dimension of BZt for SBM without immigration

∂X

∂t
=

1

2
∆X +

√
XẆ .

Main question: Hausdorff dimension of BZt :

dim(BZt) =?
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Main Theorems

Theorem 2
There exists η ∈ (0, 1), such that, ∀t > 0, x ∈ R

P(0 < X (t, x) ≤ ε) ∼ εη, as ε ↓ 0.

Theorem 3
For all t > 0

dim(BZt) ≤ 1− η, P − a.s.

and with positive probability,

dim(BZt) ≥ 1− η, on {Xt(R) > 0},

where η is from Theorem 2.

Throughout the proofs we will get the vaue of η.
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Proofs

By a Tauberian theorem

P(0 < X (t, x) ≤ ε) ∼ εη, as ε ↓ 0,

iff

E (e−λX (t,x)1(X (t, x) > 0)) ∼ λ−η, as λ ↑ ∞,

That is we need to study the assymptotic behavior of

E (e−λX (t,x)1(X (t, x) > 0))

= E (e−λX (t,x))− P(X (t, x) = 0), as λ ↑ ∞,
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Main question: assymptotic behavior of

E (e−λX (t,x))− P(X (t, x) = 0), as λ ↑ ∞.
Let V λ be solution of log-Laplace equation with initial condition
V0 = λδ0. That is

∂V λ
t

∂t
=

1

2
∆V λ

t −
1

2
(V λ

t )2, V λ
0 = λδ0.

For simplicity, let X0 = δ0. Then it is easy to check that

Eδ0(e−λX (t,x)) = e−V
λ(t,x),

Pδ0(X (t, x) = 0) = lim
λ→∞

Eδ0(e−λX (t,x))

= lim
λ→∞

e−V
λ(t,x)

=: e−V
∞(t,x).

Thus

Eδ0(e−λX (t,x))− Pδ0(X (t, x) = 0) = e−V
λ(t,x) − e−V

∞(t,x)

∼ V∞(t, x)− V λ(t, x).
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The analysis of P(0 < X (t, x) ≤ ε) ∼ εη, as ε ↓ 0, boils down to
to the analysis of behaviour of

V∞(t, x)− V λ(t, x), as λ ↑ ∞.

Another simple reduction shows that in fact

V∞(t, x)− V λ(t, x) ∼ λ
∂V λ(t, x)

∂λ
=: λUλ(t, x),

where Uλ solves the following equation

∂Uλ
t

∂t
=

1

2
∆Uλ

t − V λ
t U

λ
t , Uλ

0 = δ0.

Therefore by Feynman-Kac and reversing the time we get

Uλ(t, x) ≈ E0(e−
∫ t
0 Vλ(s,Ws)ds)
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Analysis of behavior of Uλ

Uλ(t, x) ∼ E0(e−
∫ t
0 Vλ(s,Ws)ds)

Afer scaling and transformations

Bt = λWλ−2t , Y (t) = B(et − 1)e−t/2

we get

Uλ(t, x) ∼ E0(e−
∫ log(λ2t)
0 V es/2 (1,Ys)ds)

∼ E0(e−
∫ log(λ2t)
0 V∞(1,Ys)ds)

where Y is an Ornstein-Uhlenbeck process with generator

Lh(x) =
1

2
h′′(x)− 1

2
xh′(x).
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Analysis of behavior of Uλ

Y is an Ornstein-Uhlenbeck process with generator

Lh(x) =
1

2
h′′(x)− 1

2
xh′(x).

Let

F (x) ≡ V∞(1, x).

Uλ(t, x) ∼ E0(e−
∫ log(λ2t)
0 F (Ys)ds).

Then

Uλ(t, x) ∼ e−ν0(log(λ
2t))

= λ−2ν0t−ν0 ,

where ν0 is the smallest eigenvalue of

−LFh ≡ −(Lh − Fh).

One can show: 1/2 < ν0 < 1.
22 / 35



Finishing the proof of Theorem 2

Uλ(t, x) ∼ λ−2ν0t−ν0 , as λ ↑ ∞,

Recall that

E (e−λX (t,x)1(X (t, x) > 0)) ∼ λUλ(t, x), as λ ↑ ∞.

Thus

E (e−λX (t,x)1(X (t, x) > 0)) ∼ λ1−2ν0t−ν0 , as λ ↑ ∞,

and by the Tauberian theorem

P(0 < X (t, x) ≤ ε) ∼ εη, as ε ↓ 0,

with
η = 2ν0 − 1.
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dim(BZt)

By Theorem 2

P(0 < X (t, x) ≤ ε) ∼ εη, as ε ↓ 0,

with η = 2ν0 − 1.

Theorem 2 is a corollary of Theorem 2, its proofs and known
regularity of X on BZt and thus

dim(BZt) ≤ 1− η
= 2− 2ν0, a.s.

and

dim(BZt) = 2− 2ν0, on {Xt(R) > 0}
with positive probability. Note

0 < 2− 2ν0 < 1.

Numerics (Peiyuan, UBC):

ν0 ≈ .8891 ⇒ dim(BZt) = 0.2218
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Open Problems

I Proving sharp lower bound: P-a.s.

dim(BZt) = 2− 2ν0, on {Xt(R) > 0}

I

dim(BZt)?

for γ 6= 1/2.
Conjecture dim(BZt) ↓ as γ ↑.

I Uniqueness/non-uniqueness of non-negative solutions to

{
∂
∂tX (t, x) = 1

2∆X (t, x) + X (t, x)γẆ (x , t),
X (0, ·) ≥ 0.

for some γ < 3/4.

25 / 35



Other supeprocesses

∂

∂t
X (t, x) = ∆αX (t, x) +

√
X (t, x)Ẇ (x , t), x ∈ R, t ≥ 0,

where ∆α = −(−∆)α/2 is the fractional Laplacian, α ≤ 2.
Very different behavior! For α < 2,

supp(Xt) = R, on Xt > 0,

BZt = Zt := zero set of Xt .

Based on the paper of Chen, Veron, Wang (15) one can conjecture:

Leb(Zt) > 0, if α < 2.
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Other supeprocesses

Again assume
α < 2.

Now consider

∂

∂t
X (t, x) = ∆αX (t, x) + X (t, x)

1
1+β L̇(x , t), x ∈ R, t ≥ 0,

where β ∈ (0, 1) and L is spectrally positive (1 + β)-stable noise.
Then again based on the paper of Chen, Veron, Wang (15) we can
conjecture:
If β ∈ ( α

α+1 , 1], then
Leb(Zt) > 0,

However if β < α
α+1 , then

Leb(Zt) = 0,

Open problem: if β < α
α+1 ,

dim(Zt) =?.
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Thank You
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Measure supported by the boundary of the zero set

Introduce random measures

Lλt (φ) = λ2ν0
∫
φ(x)X (t, x)e−λX (t,x) dx

( ≈ λ2ν0
∫
φ(x)1(0 ≤ X (t, x) ≤ λ−1) dx , as λ→∞)

Tnen (T. Hughes, UBC) there is a random finite non-trivial
measure Lt on R such that for any bounded continuous φ,

Lλt (φ)→ Lt(φ) in L2 as λ→∞.

Conjecture: Lt(1) > 0 a.s. on {Xt(1) > 0}.

If true, it would help to prove sharp lower bound:

dim(BZt) = 2− 2ν0, on {Xt(R) > 0}, P − a.s.
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Very Singular Solution (VSS)

V∞(t, x) = lim
λ→∞

V λ(t, x),∀(t, x) ∈ R+ × R \ {(0, 0)}.

V∞ is called very singular solution (VSS) to log-Laplace equation
(Brezis, Peletier, Terman(86)).

One can easily check (BPT(86)) that V = V∞ is a C 1,2 (on
R+ × R \ {(0, 0)}) solution of

(i)
∂V

∂t
=

1

2

∂2V

∂x2
− 1

2
V 2 (5)

(ii) V (0, x) = 0 for all x 6= 0; lim
t→0

∫
R
V (t, x) dx =∞.
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Very Singular Solution (VSS)

If we define
F (x) = V∞(1, x),

Then it is known that

V∞(t, x) = t−1F

(
x√
t

)
.,

and F solves ode
1
2F
′′(x)− 1

2F
2(x) + 1

2F
′(x) + F (x) = 0

F > 0

F ′(0) = 0,F (x) ∼ c0ye
−y2/2, asy →∞

(6)
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Analysis of behavior of Uλ

Uλ(t, x) ∼ E0(e−
∫ t
0 Vλ(s,Ws)ds)

Scaling of V λ:

V λ(t, x) = λ2V 1(λ2t, λx) (7)

Define

Bt = λWλ−2t , Y (t) = B(et − 1)e−t/2

Then

Uλ(t, x) ∼ E0(e−
∫ t
0 λ

2V 1(λ2s,λWs)ds)

= E0(e−
∫ λ2t
0 V 1(u,Bu)du)

∼ E0(e−
∫ log(λ2t)
0 V es/2 (1,Ys)ds)

∼ E0(e−
∫ log(λ2t)
0 V∞(1,Ys)ds)
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Open Problems

I Proving sharp lower bound: P-a.s.

dim(BZt) = 2− 2ν0, on {Xt(R) > 0}

I

dim(BZt)?

for γ 6= 1/2.
Conjecture dim(BZt) ↓ as γ ↑.

I Uniqueness/non-uniqueness of non-negative solutions to

{
∂
∂tX (t, x) = 1

2∆X (t, x) + X (t, x)γẆ (x , t),
X (0, ·) ≥ 0.

for some γ < 3/4.
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Ingredients of the proof

∂X

∂t
=

1

2
∆X + σ(X )Ẇ ,

X 1,X 2 — two solutions, X̃ = X 1 − X 2.

∂X̃t(x)

∂t
=

1

2
∆X̃t(x) + (σ(X 1

t (x))− σ(X 2
t (x)))Ẇ (t, x).

Clearly
|σ(X 1

t (x))− σ(X 2
t (x))| ≤ C |X̃t(x)|γ ,

and thus one can show that it is enough to consider uniqueness of

∂X̄t(x)

∂t
=

1

2
∆X̄t(x) + |X̄t(x)|γẆ (t, x),

with X̄0 = 0.
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Regularity and uniqueness of X̄

∂X̄t(x)

∂t
=

1

2
∆X̄t(x) + |X̄t(x)|γẆ (t, x).

I x 7→ X̄t(x) is Hölder 1/2− ε.
I For x ∈ BZt , roughly we have

x 7→ X̄t(x) is Hölder with any exponent

ξ <
1

2(1− γ)
.

I We can show PU if

γ >
1

2
+

1

2ξ
,

I Put it together: PU holds if

γ > 3/4.
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