A note on coupling for CBI processes

Chunhua Ma

School of Mathematical Sciences, Nankai University

8 May 2017, Beijing 3rd workshop on branching processes and related topics

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Coupling

- ► A coupling (X_t, Y_t): if both X_t and Y_t are Markov processes associated with the same transition probability P_t (possibly with different initial distributions), where X_t and Y_t are called the marginal processes of the coupling.
- A coupling (X_t, Y_t) is called successful if the coupling time

 $T := \inf\{t \ge 0 : X_t = Y_t\} < \infty, \ a.s.$

- A (strong) Markov process with P_t is said to have a coupling property: for any μ_1 and μ_2 , there exists a successful coupling with marginal processes starting from μ_1 and μ_2 , respectively.
 - \diamond Due to strong Markov property setting $X_t = Y_t$ for $t \ge T$.

$$\|\mu_1 P_t - \mu_2 P_t\|_{var} \le 2\mathbb{P}(T > t), t \ge 0,$$

where $\|\cdot\|$ is the total variational norm.

The coupling property of a strong Markov process with semigroup P_t is equivalent to each of the following:

- For any μ_1 , μ_2 , $\lim_{t\to\infty} \|\mu_1 P_t \mu_2 P_t\|_{var} = 0$.
- All bounded time-space harmonic functions (i.e. $u(t, \cdot) = P_s u(t + s, \cdot)$) are constant.
- The tail σ -algebra of the process is trivial.

We refer the reader to Chen (2004) and Lindvall (1992) for the systematical study.

Motivation

- A growing literature on coupling for jump processes.
 Chen (2004): Q processes; Schilling and Wang (2011): Levy processes; Wang (2011): Ornstein-Uhlenbeck processes...
- Nice applications of coupling to the study of ergodicity, Liouville theorem, convergence rate, gradient estimate for the processes.

Motivation

To consider the coupling for CB(I) processes.
 Dawson and Li (2006), Fu and Li (2010), Li and Mytnik (2011): a class of stochastic equation with jumps, e.g.

$$X_t(x) = x + \int_0^t (a + bX_s) ds + \sigma \int_0^t \sqrt{X_s} dB_s$$

+
$$\int_0^t \int_{\mathbb{R}_+} \int_0^{X_{s-}} z \tilde{N}_1(ds, dz, du).$$

The diffusion and jump terms with degenerate and non-Lipschitz coefficients

 \diamond $\alpha\text{-CIR}$ model for interest rate; See Jiao *et al* (2017); Li and Ma (2015).

$$r_{t} = r_{0} + \int_{0}^{t} \beta \left(\gamma - r_{s} \right) ds + \sigma \int_{0}^{t} \sqrt{r_{s}} dB_{s} + \sigma_{Z} \int_{0}^{t} r_{s-}^{1/\alpha} dZ_{s}$$

Ergodicity property by using coupling method (key for statistical inference)

CBI processes

CBI (Kawazu and Watanabe (1971)) of branching mechanism $\Psi(\cdot)$ and immigration mechanism $\Phi(\cdot)$: Markov process X on state space \mathbb{R}_+ with transition semigroup given by

$$\mathbb{E}_{x}\left[e^{-pX_{t}}\right] = \exp\left[-xv(t,p) - \int_{0}^{t} \Phi(v(s,p))ds\right],$$

where $v : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$\frac{\partial v(t,p)}{\partial t} = -\Psi(v(t,p)), \quad v(0,p) = p$$

and Ψ and Φ are functions on \mathbb{R}_+ given by

$$\Psi(q) = bq + \frac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu)\pi(du),$$

$$\Phi(q) = aq + \int_0^\infty (1 - e^{-qu})\nu(du),$$

with $\sigma, a \ge 0, b \in \mathbb{R}$ and π, ν being two Lévy measures such that $\int_0^\infty (u \wedge u^2) \pi(du) < \infty$ and $\int_0^\infty (1 \wedge u) \nu(du) < \infty$.

CB processes

• X_t is called CB process if $\Phi \equiv 0$. The extinction time of CB is defined by $\tau_0 = \inf\{t \ge 0 : X_t = 0\}$. and

$$\mathbb{P}_{\times}(\tau_0 \leq t) = \mathbb{P}_{\times}(X_t = 0) = \exp\{-x\bar{v}_t\}.$$

where the limit $\bar{v}_t = \uparrow \lim_{\lambda \to \infty} v(t, \lambda)$ exists in $(0, \infty]$.

$$\int_{\theta}^{\infty} \Psi(q)^{-1} dq < \infty.$$

For (sub)critical CB processes,

Grey condition holds $\iff \mathbb{P}(\tau_0 < \infty) = 1.$

Coupling for CBI processes when Grey condition holds

Li and Ma (2015).

Assume Grey condition holds. the (sub)critical CBI process with the transition semigroup $(P_t)_{t\geq 0}$ has the strong Feller property. Moreover, for any t > 0 and $x, y \in \mathbb{R}_+$, we have

$$\left\| P_t(x,\cdot) - P_t(y,\cdot) \right\|_{var} \le 2(1 - e^{-\overline{v}_t |x-y|}),$$

which goes to 0 as $t \rightarrow \infty$. In this case, the CBI processes have successful coupling.

ション ふゆ アメリア メリア しょうくの

Exponential ergodicity

Assume Grey condition holds and the Levy measure ν in immigration mechanism satisfies $\int_1^{\infty} y^{\delta} \nu(dy) < \infty$ for some $\delta > 0$. Then

(i) the subcritical CBI process is exponentially ergodic, i.e.

$$\|P_t(x,\cdot)-\mu(\cdot)\|_{var} \leq 2(x\overline{v}_1+M_\gamma)e^{-\gamma b(t-1)},$$

where μ is the stationary measure, γ = $\delta \wedge 1$ and

$$M_{\gamma} = \begin{cases} \gamma \bar{v}_{1}^{\gamma} \int_{0}^{\infty} (1 - L_{\mu}(\lambda)) \lambda^{-(1+\gamma)} d\lambda & \text{if } \gamma < 1, \\ \bar{v}_{1} b^{-1} (a + \int_{0}^{\infty} u \nu(du)) & \text{if } \gamma = 1. \end{cases}$$

(ii) the critical CBI process is ergodic.

Sketch of proof (coupling)

• Construct the flow $\{X_t(x) : t \ge 0, x \ge 0\}$ by

$$Y_{t}(x) = x + \int_{0}^{t} (a - bY_{s}(x))ds + \sigma \int_{0}^{t} \int_{0}^{Y_{s-}(x)} W(ds, du) + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{Y_{s-}(x)} z \tilde{N}_{1}(ds, dz, du) + \int_{0}^{\infty} z N_{0}(ds, dz).$$

For fixed x, the solution $\{Y_t(x), t \ge 0\}$ is a CBI process with branching mechanism Ψ and immigration mechanism Φ .

- Dawson and Li (2012): For any x ≥ y ≥ 0 we have P(Y_t(x) ≥ Y_t(y) for all t ≥ 0) = 1 and (Y_t(x) - Y_t(y))_{t≥0} is a CB process with branching mechanism Ψ.
- The coupling time is the extinction time of the above CB process.

Grey condition is necessary for coupling?

- **Theorem** The (sub)critical CB processes have successful coupling if and only if Grey condition holds.
- when Grey condition fails, X_t → 0 as t → ∞ but never hit 0 a.s. The processes belong to one of the following classes:
 - Class I (Ψ is of finite variation): $\sigma = 0$ and $\int_0^1 um(du) < \infty$.
 - Case II (Ψ is of infinite variation): $\sigma = 0$, $\int_0^1 um(du) = \infty$ and $\int_{\theta}^{\infty} \Psi(q)^{-1} dq = \infty$ for $\theta > 0$.

• we need to consider their asymptotic behavior to 0.

Asymptotic behavior of (sub)critical CB process

Foucart and Ma (2016+)

(i) Suppose that the process is of Class I. For any fixed $\lambda > 0$ and x > 0,

$$\eta_t(\lambda)X_t(x) \to W_x^{\lambda}, a.s.$$

as $t \to \infty$ and the process $\{W_x^{\lambda} : x \ge 0\}$ is a subordinator with $P(W_x^{\lambda} = 0) = 0$.

(ii) Suppose that the process is of Class II. Fix some $\lambda_0 > 0$ and set $G(y) = \exp\left(-\int_{\lambda_0}^y \frac{du}{\Psi(u)}\right)$ on $y \in (0, \infty)$. Then the map G is slowly varying at ∞ and for all $x \ge 0$,

$$e^t G\left(\frac{1}{X_t(x)}\right) \xrightarrow[t\to\infty]{} Z_x \text{ a.s.}$$

Here $(Z_x, x \ge 0)$ is a extremal process (i.e. $Z_{x+y} = Z_x \lor Z'_y, Z'_y$ is independent of $(Z_u, 0 \le u \le x)$ and $Z'_y \stackrel{d}{=} Z_y$

Grey condition is necessary for coupling of CB

- Theorem The (sub)critical CB processes have successful coupling if and only if Grey condition holds.
- sketch of proof: Choose some c ∈ Γ such that 0 < G⁻¹(c) < ∞.
 Since (Z_x) is an extremal process, for any x > y,

$$P(Z_x > c > Z_y) = e^{-yG^{-1}(c)} (1 - e^{-(x-y)G^{-1}(c)}).$$

Let $B_t = \{u > 0 : e^t G(1/u) > c\}$. Then

 $\|P_t(x,\cdot) - P_t(y,\cdot)\|_{\text{var}} \geq P(X_t(x) \in B_t) - P(X_t(y) \in B_t)$

which implies that $\liminf_{t\to\infty} \|P_t(x,\cdot) - P_t(y,\cdot)\|_{\operatorname{var}} \ge e^{-yG^{-1}(c)} (1 - e^{-(x-y)G^{-1}(c)}).$

ション ふゆ く 山 マ チャット しょうくしゃ

Coupling for CBI processes when Grey condition fails

- $D[0,\infty)$: the space of càdlàg paths $t \mapsto w_t$ from $[0,\infty)$ to \mathbb{R}_+ .
- $\mathbb{Q}_x(dw)$ denote the distribution on $D[0,\infty)$ of the CB process $(X_t(x): t \ge 0)$ with $X_0(x) = x$.
- $\mathbb{Q}_{
 u}(dw)$ on $D[0,\infty)$ by

$$\mathbb{Q}_{\nu}(dw) = \int_0^{\infty} \nu(dx) \mathbb{Q}_x(dw).$$

• M(ds, dw) be a Poisson random measure on $(0, \infty) \times D[0, \infty)$ with intensity measure $ds \mathbb{Q}_n(dw)$.

Suppose that *M* and $X_t(x)$ are independent of each other. We define the process $Y_t(x)$ by

$$Y_t(x) = X_t(x) + \int_0^t \int_{D[0,\infty)} w_{t-s} M(ds, dw), \quad t \ge 0.$$

The Lévy measure in immigration mechanism should have a local non-trivial absolutely continuous part to make the process active.

Coupling for CBI processes when Grey condition fails

- Based on idea of Wang (2011) dealing with coupling for OU type process.
- Assumption A: there exists some $z_0 \in \mathbb{R}_+$ and some $\varepsilon > 0$ with $B(z_0, \varepsilon) \subset (0, \infty)$ such that the Lévy measure $\nu(dz)$ has an absolutely continuous part in $B(z_0, \varepsilon)$, i.e.,

 $\nu(dz) \ge \rho(z)dz$

for some non-negative function $\boldsymbol{\rho}$ and

$$\int_{B(z_0,\varepsilon)}\rho(z)^{-1}dz<\infty.$$

Assumption A holds. Then for the subcritical CBI process

$$\|P_t(x,\cdot) - P_t(y,\cdot)\|_{var} \le \frac{K(1+|x-y|)}{\sqrt{t}}, \quad x,y \in \mathbb{R}_+, \ t > 0,$$

for some constant K > 0.

Idea of proof

- Add a "random jump" in immigration part which generate a independent CB process.
- By Palm formula

$$\mathbb{E}\left[f\left(X_{T}(x) + \int_{0}^{T} \int_{D[0,\infty)} w_{T-s}\left(M + \delta_{(\tau,\xi)}\right)(ds, dw)\right)\right]$$

=
$$\frac{1}{Tn_{\rho}(B_{\varepsilon/2})} \mathbb{E}\left[f(Y_{T}^{1}(x))\sum_{i=1}^{J_{T}} \mathbb{1}_{B_{\varepsilon/2}}(\eta_{i})\right].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Similarly

$$\mathbb{E}\left[f\left(X_{T}(x) + \int_{0}^{T} \int_{D[0,\infty)} w_{T-s}\left(M + \delta_{(\tau,\xi)}\right)(ds, dw)\right)\right]$$

= $\mathbb{E}\left[f\left(X_{T}(y) + \tilde{X}_{T} + \int_{0}^{T} \int_{D[0,\infty)} w_{T-s}\left(M + \delta_{(\tau,\xi)}\right)(ds, dw)\right)\right]$
= $\frac{1}{Tn_{\rho}(B_{\varepsilon/2})}\mathbb{E}\left[f(Y_{T}(y))\sum_{i=1}^{J_{T}}...\right] + I$

The bound of I is given by

$$|I| \leq \frac{1}{T} \int_0^T \mathbb{P}(X_t(x-y) > \varepsilon/2) dt$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Absolute continuity

Schilling and Wang (2011) :

The Lévy process $(Z_t)_{t\geq 0}$ has the coupling property if and only if there exists $t_0 > 0$ such that for any $t \geq t_0$, the transition probability $P_t(x, \cdot)$ has (with respect to Lebesgue measure) an absolutely continuous component.

 However it might be interesting to note that for the (general) jump processes (e.g. O-U type processes), absolutely continuous property is incomparable with the coupling property.

A natural problem is to consider the pure jump CB process with b > 0:

$$X_t = x - \int_0^t bX_s ds + \int_0^t \int_0^{X_{s-}} \int_0^\infty z \tilde{N}(ds, du, dz),$$

- Grey condition $(\Rightarrow \int_0^1 u\Pi(du) = \infty)$ if and only if the process has successful coupling.
- The law of X_t has a density on $\mathbb{R}_+ \setminus \{0\}$ for every t > 0 $\iff \int_0^1 zm(dz) = \infty$?
- The above condition is inspired by Bertoin and Legall (2000; Appendix) and they proved that

the process does not weight points for every t > 0

$$\iff \int_0^1 zm(dz) = \infty.$$

Thanks for your attention !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?